• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Chen Huanxiong, Li Jing, Huang Chongming, Chen Zhiwen, Pan Xiaodong, Cheng Ruirui, 2025. Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers. Earth Science, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098
    Citation: Chen Huanxiong, Li Jing, Huang Chongming, Chen Zhiwen, Pan Xiaodong, Cheng Ruirui, 2025. Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers. Earth Science, 50(6): 2416-2427. doi: 10.3799/dqkx.2024.098

    Effects of Cave Filling on Seepage and Hydraulic Parameters of Aquifers

    doi: 10.3799/dqkx.2024.098
    • Received Date: 2024-07-24
      Available Online: 2025-07-11
    • Publish Date: 2025-06-25
    • In the karst area of Southwest China, water and soil leakage is serious, and topsoil fills and plugs the aquifer storage structure, changing the hydrodynamic parameters of the media field. In order to explore the influence of cavern plugging on aquifer seepage, a three-dimensional physical model of karst fissure-cavern was designed, and experiments on water storage-release seepage from karst fissures under different plugging rates and rainfall conditions were carried out. The results show that the karst water flow shows a three-stage decline pattern during baseflow recession. The initial flow rate and recession coefficient are affected by aquifer thickness, water level drop and permeability coefficient of media field. Clogging prolongs the storage time and accelerates the rate of water level fallback at the end of rainfall; At a clogging rate of more than 50%, there is a large reduction in the storage space, and the clogging medium retards the drainage significantly, slowing down the rate of water level fallback. Clogging rate and permeability coefficient K and water storage coefficient S is an exponential function of the relationship between the two parameters at the beginning of the plugging rapid decrease. Numerical simulation results show that the decrease of parameters K and S will cause the groundwater level to be elevated, leading to the instability of the groundwater level at the beginning and the end of rainfall, and weakening the ability to regulate the groundwater in karst aquifers.

       

    • loading
    • Abusaada, M., Sauter, M., 2013. Studying the Flow Dynamics of a Karst Aquifer System with an Equivalent Porous Medium Model. Groundwater, 51(4): 641-650. https://doi.org/10.1111/j.1745⁃6584.2012.01003.x
      Aksoy, H., Wittenberg, H., 2011. Nonlinear Baseflow Recession Analysis in Watersheds with Intermittent Streamflow. Hydrological Sciences Journal, 56(2): 226-237. https://doi.org/10.1080/02626667.2011.553614
      Alattar, M. H., Troy, T. J., 2023. A Proposed Composite Boussinesq Equation for Estimating Baseflow Recessions and Storage⁃Outflow Relationship. Journal of Hydrology, 626: 130321. https://doi.org/10.1016/j.jhydrol.2023.130321
      Cao, J. H., Lu, S. L., Yang, D. S., et al., 2011. Process of Soil and Water Loss and Its Control Measures in Karst Regions, Southwestern China. Science of Soil and Water Conservation, 9(2): 52-56(in Chinese with English abstract).
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Earth Science, 47(11): 4196-4209(in Chinese with English abstract).
      Chang, Y., Wu, J. C., Liu, L., et al., 2016. On Recession Curve of Karst Spring. Journal of China Hydrology, 36(1): 15-21(in Chinese with English abstract).
      Chen, X., Zhang, Y. F., Xue, X. W., et al., 2012. Estimation of Baseflow Recession Constants and Effective Hydraulic Parameters in the Karst Basins of Southwest China. Hydrology Research, 43(1-2): 102-112. https://doi.org/10.2166/nh.2011.136
      Chu, X. W., Ding, H. H., Zhang, X. M., 2021. Simulation of Solute Transport Behaviors in Saturated Karst Aquifer System. Scientific Reports, 11: 15614. https://doi.org/10.1038/s41598⁃021⁃94950⁃7
      Dai, Q. H., Peng, X. D., Yang, Z., et al., 2017. Runoff and Erosion Processes on Bare Slopes in the Karst Rocky Desertification Area. CATENA, 152: 218-226. https://doi.org/10.1016/j.catena.2017.01.013
      Denić⁃Jukić, V., Jukić, D., 2003. Composite Transfer Functions for Karst Aquifers. Journal of Hydrology, 274(1-4): 80-94. https://doi.org/10.1016/s0022-1694(02)00393⁃1
      Dewandel, B., Lachassagne, P., Bakalowicz, M., et al., 2003. Evaluation of Aquifer Thickness by Analysing Recession Hydrographs. Application to the Oman Ophiolite Hard⁃Rock Aquifer. Journal of Hydrology, 274(1-4): 248-269. https://doi.org/10.1016/s0022⁃1694(02)00418⁃3
      Fiorillo, F., 2009. Spring Hydrographs as Indicators of Droughts in a Karst Environment. Journal of Hydrology, 373(3-4): 290-301. https://doi.org/10.1016/j.jhydrol.2009.04.034
      Fiorillo, F., 2014. The Recession of Spring Hydrographs, Focused on Karst Aquifers. Water Resources Management, 28(7): 1781-1805. https://doi.org/10.1007/s11269⁃014⁃0597⁃z
      Hall, F. R., 1968. Base⁃Flow Recessions: A Review. Water Resour. Res. , 4(5): 973-983. https://doi.org/10.1029/wr004i005p00973
      He, Y. B., Li, H., Zhang, X. B., et al., 2009. 137Cs Method Study on Soil Erosion and Sediment Yield in Grass⁃Covered Peak Cluster Depression in Maolan, Guizhou. Carsologica Sinica, 28(2): 181-188(in Chinese with English abstract).
      Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2014. The Leakage of Water and Soil in the Karst Peak Cluster Depression and Its Prevention and Treatment. Acta Geoscientica Sinica, 35(5): 535-542(in Chinese with English abstract).
      Jiang, Z. C., Luo, W. Q., Deng, Y., et al., 2018. Features and Treatment of Soil Erosion in Karst Areas of Guangxi. Guangxi Sciences, 25(5): 449-455(in Chinese with English abstract).
      Lastennet, R., Mudry, J., 1997. Role of Karstification and Rainfall in the Behavior of a Heterogeneous Karst System. Environmental Geology, 32(2): 114-123. https://doi.org/10.1007/s002540050200
      Li, Y. B., Wang, S. J., Wei, C. F., et al., 2006. The Spatial Distribution of Soil Loss Tolerance in Carbonate Area in Guizhou Province. Earth and Environment, 34(4): 36-40(in Chinese with English abstract).
      Loáiciga, H. A., Maidment, D. R., Valdes, J. B., 2000. Climate⁃Change Impacts in a Regional Karst Aquifer, Texas, USA. Journal of Hydrology, 227(1-4): 173-194. https://doi.org/10.1016/s0022⁃1694(99)00179⁃1
      Luo, M. M., Chen, J., Ji, H. S., et al., 2023. Review of Solute Exchange between Karst Conduit and Matrix. Earth Science, 48(11): 4202-4213(in Chinese with English abstract).
      Ma, Z. L., Cai, D. S., Jiang, Z. C., 2009. About Karst Wetland Classification System. Journal of Guangxi Normal University (Natural Science Edition), 27(2): 101-106(in Chinese with English abstract).
      Maillet, E., 1905. Essais d'Hydraulique Souterraine et Fluviale. Nature, 72: 25-26. https://doi.org/10.1038/072025a0
      Rodríguez, L., Vives, L., Gomez, A., 2013. Conceptual and Numerical Modeling Approach of the Guarani Aquifer System. Hydrology and Earth System Sciences, 17(1): 295-314. https://doi.org/10.5194/hess-17-295-201310.5194/hessd⁃9⁃9885⁃2012
      Rorabaugh, M. I., 1964. Estimating Changes in Bank Storage and Ground Water Contribution to Stream Flow. International Association of Scientific Hydrology, 63: 432-441. https://doi.org/10.1029/2009wr008539
      Schoeller, H., 1948. Le Regime Hydro⁃Geologique des Calcaires Eocenes Du Synclinal Du Dyr El Kef (Tunisie). Bulletin de la Société Géologique de France, S5⁃ⅩⅧ(1-3): 167-180. https://doi.org/10.2113/gssgfbull.s5⁃xviii.1⁃3.167
      Shu, L. C., Zou, Z. K., Li, F. L., et al., 2020. Laboratory and Numerical Simulations of Spatio⁃Temporal Variability of Water Exchange between the Fissures and Conduitsin a Karstic Aquifer. Journal of Hydrology, 590: 125219. https://doi.org/10.1016/j.jhydrol.2020.125219
      Silva, R., Bacellar, L., Fernandes, K. N., 2010. Aquifer Parameter Estimation through the Recession Coefficient in Basement Areas of Minas Gerais. Rem: Revista Escola De Minas, 63(3): 465-471. https://doi.org/10.1590/s0370⁃44672010000300007
      Tallaksen, L. M., 1995. A Review of Baseflow Recession Analysis. Journal of Hydrology, 165(1-4): 349-370. https://doi.org/10.1016/0022⁃1694(94)02540⁃r
      Tang, R., Shu, L. C., Lu, C. P., et al., 2016. Laboratory Analog Analysis of Spring Recession Curve in a Karst Aquifer with Fracture and Conduit Domains. Journal of Hydrologic Engineering, 21(2): 06015013. https://doi.org/10.1061/(asce)he.1943-5584.0001271
      Vogel, R. M., Kroll, C. N., 1992. Regional Geohydrologic-Geomorphic Relationships for the Estimation of Low-Flow Statistics. Water Resources Research, 28(9): 2451-2458. https://doi.org/10.1029/92WR01007
      Wu, Q. L., Liang, H., Xiong, K. N., et al., 2021. Effectiveness of Monitoring Methods for Soil Leakage Loss in Karst Regions. Environmental Earth Sciences, 80(7): 278. https://doi.org/10.1007/s12665⁃021⁃09593⁃8
      Yang, P., Tang, Y. Q., Zhou, N. Q., et al., 2011. Characteristics of Red Clay Creep in Karst Caves and Loss Leakage of Soil in the Karst Rocky Desertification Area of Puding County, Guizhou, China. Environmental Earth Sciences, 63(3): 543-549. https://doi.org/10.1007/s12665⁃010⁃0721⁃1
      Yang, Z. H., Song, X. Q., Su, W. C., 2019. Slope Runoff Process and Its Utilization Technology in Southwest Karst Area. Earth Science, 44(9): 2931-2943(in Chinese with English abstract).
      Zhang, J. Y., Wang, L. C., Su, W. C., et al., 2014. Status and Prospect of the Hydrological Effects of Human Activities in the Karstarea. Progress in Geography, 33(8): 1125-1135(in Chinese with English abstract).
      Zhang, X. B., Wang, S. J., He, X. B., et al., 2007. Soil Creeping in Weathering Crusts of Carbonate Rocks and Underground Soil Losses on Karst Slopes. Earth and Environment, 35(3): 202-206(in Chinese with English abstract).
      Zhao, X. E., Chang, Y., Wu, J. C., et al., 2021. Investigating the Relationships between Parameters in the Transient Storage Model and the Pool Volume in Karst Conduits through Tracer Experiments. Journal of Hydrology, 593: 125825. https://doi.org/10.1016/j.jhydrol.2020.125825
      曹建华, 鲁胜力, 杨德生, 等, 2011. 西南岩溶区水土流失过程及防治对策. 中国水土保持科学, 9(2): 52-56.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      常勇, 吴吉春, 刘玲, 等, 2016. 岩溶泉流量衰减曲线分析. 水文, 36(1): 15-21.
      何永彬, 李豪, 张信宝, 等, 2009. 贵州茂兰峰丛草地洼地小流域侵蚀产沙的137Cs法研究. 中国岩溶, 28(2): 181-188.
      蒋忠诚, 罗为群, 邓艳, 等, 2014. 岩溶峰丛洼地水土漏失及防治研究. 地球学报, 35(5): 535-542.
      蒋忠诚, 罗为群, 邓艳, 等, 2018. 广西岩溶区的水土流失特点及其防治. 广西科学, 25(5): 449-455.
      李阳兵, 王世杰, 魏朝富, 等, 2006. 贵州省碳酸盐岩地区土壤允许流失量的空间分布. 地球与环境, 34(4): 36-40.
      罗明明, 陈静, 季怀松, 等, 2023. 岩溶管道与裂隙介质间溶质交换研究进展. 地球科学, 48(11): 4202-4213. doi: 10.3799/dqkx.2022.003
      马祖陆, 蔡德所, 蒋忠诚, 2009. 岩溶湿地分类系统研究. 广西师范大学学报(自然科学版), 27(2): 101-106.
      杨振华, 宋小庆, 苏维词, 2019. 西南喀斯特地区坡地产流过程及其利用技术. 地球科学, 44(9): 2931-2943. doi: 10.3799/dqkx.2019.213
      张军以, 王腊春, 苏维词, 等, 2014. 岩溶地区人类活动的水文效应研究现状及展望. 地理科学进展, 33(8): 1125-1135.
      张信宝, 王世杰, 贺秀斌, 等, 2007. 碳酸盐岩风化壳中的土壤蠕滑与岩溶坡地的土壤地下漏失. 地球与环境, 35(3): 202-206.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(7)

      Article views (87) PDF downloads(14) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return