• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 2
    Feb.  2025
    Turn off MathJax
    Article Contents
    Zhou Di, Xia Changyou, Li Pengchun, Liang Xi, 2025. CO2 Mineralization Storage in Basalt (Ⅱ): Storage Conditions, Site Selections and Challenges on Leizhou Peninsula, Guangdong Province, South China. Earth Science, 50(2): 569-584. doi: 10.3799/dqkx.2024.103
    Citation: Zhou Di, Xia Changyou, Li Pengchun, Liang Xi, 2025. CO2 Mineralization Storage in Basalt (Ⅱ): Storage Conditions, Site Selections and Challenges on Leizhou Peninsula, Guangdong Province, South China. Earth Science, 50(2): 569-584. doi: 10.3799/dqkx.2024.103

    CO2 Mineralization Storage in Basalt (Ⅱ): Storage Conditions, Site Selections and Challenges on Leizhou Peninsula, Guangdong Province, South China

    doi: 10.3799/dqkx.2024.103
    • Received Date: 2024-05-12
      Available Online: 2025-02-26
    • Publish Date: 2025-02-25
    • CO2 mineralization storage in basaltis a new CCUS technique that enables the sequestration of CO2 in basaltic areas for carbon reduction. The Leizhou Peninsula in the Guangdong Province of South China boasts a vast area covered by basalt, exceeding 3 000 km2.The basaltic formations on the Leizhou Peninsula consist primarily of tholeiite and alkali olivine basalts, making it a promising candidate for CO2 mineralization storage. This paper analyzed the geological and hydrological conditions of the Leizhou Peninsular and pointed out that the Carbfix technology, which allows safe storage of CO2 without caprocks, is applicable to the area, However, the basalts in the peninsular are mostly shallowly buried, and only volcanic crater basalts and deeply buried Tertiary basalts might meet the minimum depth requirements of the Carbfix technology. Currently, Xuwun County's Tianyang Quaternary caldera basalts and the Yongshi Farmland's Tertiary basalts have been identified as potential pilot project sites. The geological and hydrological conditions at these two sites are reviewed, and favorable and unfavorable factors and potential for CO2 storage are analyzed. The primary challenges currently faced are to investigate the safety issues of large⁃quantity water injection into the caldera basalts, and to detect the deep basal interface and lateral extension of the basalts. Additionally, the potential impacts of injected CO2⁃changed water on underground water resources need to be monitored and investigated. The article proposes to develop techniques of storing CO2 in shallower (e.g. < 150 m) basalts, and suggests to conduct necessary experiments at a shore site to explore the feasibility and techniques of using seawater for basalt CO2 storage. These actions will benefit not only expanding the potential of basalt mineralization storage on the Leizhou Peninsula, but also contributing to the study of utilizing global submarine basaltic carbon storage resources.

       

    • loading
    • Aradóttir, E., Sonnenthal, E., Björnsson, G., et al., 2012. Multidimensional Reactive Transport Modeling of CO2 Mineral Sequestration in Basalts at the Hellisheidi Geothermal Field, Iceland. International Journal of Greenhouse Gas Control, 9: 24-40. doi: 10.1016/j.ijggc.2012.02.006
      Cao, X., Li, Q., Xu, L., Tan, Y., 2024a. Experiments of CO2⁃Basalt⁃Fluid Interactions and Micromechanical Alterations: Implications for Carbon Mineralization. Energy & Fuels, 38(7): 6205-6214.
      Cao, X., Li, Q., Xu, L. and Tan, Y., 2024b. A Review of in situ Carbon Mineralization in Basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4): 1467-1485. https://doi.org/10.1016/j.jrmge.2023.11.010
      Chen, J. R., 1990. Quaternary Geology of Tianyang Volcanic Lake in Guangdong Province. Geological Publishing House, Beijing(in Chinese)
      Chen, M. X., Xia, S. G., Yang, S. Z., 1991. Local Geothermal Anomalies and Their Formation Mechanisms on Leizhou Peninsula, South China. Chinese Journal of Geology, 26(4): 369-383(in Chinese with English abstract).
      Flaathen, T. K., Gislason, S. R., Oelkers, E. H. et al., 2009. Chemical Evolution of the Mt. Hekla, Iceland, Groundwaters: A Natural Analogue for CO2 Sequestration in Basaltic Rocks. App. Geochem, 24: 463-474.
      Gao, Z. H., Xia, C. Y., Liao, S. L., et al., 2023. Progress of Methods for Assessing CO2 Mineralization Storage Potential in Basalt. Geological Journal of China Universities, 29(1): 66-75(in Chinese with English abstract).
      Gislason, S. R., Oelkers, E. H., 2014. Carbon Storage in Basalt. Science, 344(6182): 373-374. https://doi.org/10.1126/science.1250828
      Goldberg, D. S., Takahashi, T., Slagle, A. L., 2008. Carbon Dioxide Sequestration in Deep⁃Sea Basalt. Proceedings of the National Academy of Sciences of the United States of America, 105(29): 9920-9925. https://doi.org/10.1073/pnas.0804397105
      Guangdong Geological Bureau, 1996. Stratigraphy(lithostratic) of Guangdong Province. China University of Geosciences Press, Wuhan(in Chinese).
      Han, J. W., Xiong, X. L., Zhu, Z. Y., 2009. Geochemistry of Late⁃Cenozoic Basalts from Leiqiong area; The Origin of EM2 and the Contribution from Sub⁃Continental Lithosphere Mantle. Acta Petrologica Sinica, 25(12): 3208-3220(in Chinese with English abstract).
      Ho, H. J., Iizuka, A., 2023. Mineral Carbonation Using Seawater for CO2 Sequestration and Utilization: A Review. Separation and Purification Technology, 307: 122855. doi: 10.1016/j.seppur.2022.122855
      Huang, Z. G., Cai, F. X., Han, Z. Y., 1993. Quaternary Volcano in Lei Qiong. Science Press, Beijing(in Chinese).
      IEAGHG, 2011. Geological Storage of CO2 in Basalts. 2011/TR2. IEA Greenhouse Gas R & D Programme, 18.
      IEAGHG, 2017. Review of CO2 Storage in Basalts. 2017-TR2. IEA Greenhouse Gas R & D Programme, 27.
      Kong, Z. H., 2004. Hydrogeological Property and Laws of Water Abundance of the Volcanic Rocks in Leizhou Peninsula. Tropical Geography, 24(2): 136-139(in Chinese with English abstract). doi: 10.3969/j.issn.1001-5221.2004.02.009
      Li, C., Li, Y., Zhu, W. H., et al., 2023. Carbon Dioxide Cured Building Materials as an Approach to Decarbonizing the Calcium Carbide Related Industry. Renewable and Sustainable Energy Reviews, 186: 113688. https://doi.org/10.1016/j.rser.2023.113688
      Li, P. C., Jiang, J. L., Cheng, J. H., et al., 2023. Assessment of Carbon Dioxide Mineralization Sequestration Potential of Volcanic Rocks in Leizhou Peninsula, Guangdong Province, China. Geological Journal of China Universities, 29(1): 76-84(in Chinese with English abstract).
      Li, W. L., Chen, J., Jia, L. X., et al., 2022a. Research Progress of CO2 Geological Sequestration in Basalts. Geological Review, 68(2): 648-657(in Chinese with English abstract).
      Li, W. L., Xu, J. J., Jia, L. X., et al., 2022b. Research Progress on Key Technologies of CO2 Storage in Basalts. Hydrogeology & Engineering Geology, 49(3): 164-173(in Chinese with English abstract).
      Li, X. Y., Chang, C., Yu, Q. C., 2013. Model of Basalt Dissolution Rate under CO2 Mineral Sequestration Conditions. Geoscience, 27(6): 1477-1483(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.06.028
      Luo, S. W., 1998. Volcanic Activity in Southern Leizhou Peninsula and Its Tectonic Setting. Guangdong Geology, (3): 20-24(in Chinese).
      Marieni, C., Voigt, M., Clark, D. E., et al., 2021. Mineralization Potential of Water⁃Dissolved CO2 and H2S Injected into Basalts as Function of Temperature: Freshwater Versus Seawater. International Journal of Greenhouse Gas Control, 109: 103357. https://doi.org/10.1016/j.ijggc.2021.103357
      Matter, J. M., Kelemen, P. B., 2009. Permanent Storage of Carbon Dioxide in Geological Reservoirs by Mineral Carbonation. Nature Geoscience, 2: 837-841. https://doi.org/10.1038/ngeo683
      Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., et al., 2016. Rapid Carbon Mineralization for Permanent Disposal of Anthropogenic Carbon Dioxide Emissions. Science, 352(6291): 1312-1314. https://doi.org/10.1126/science.aad8132
      McGrail, B. P., Schaef, H. T., Ho, A. M., et al., 2006. Potential for Carbon Dioxide Sequestration in Flood Basalts. Journal of Geophysical Research: Solid Earth, 111(B12): 1-15.
      McGrail, B. P., Spane, F. A., Amonette, J. E., et al., 2014. Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63: 2939-2948. https://doi.org/10.1016/j.egypro.2014.11.316
      Oelkers, E. H., Gislason, S. R., Matter, J., 2008. Mineral Carbonation of CO2. Elements, 4(5): 333-337. doi: 10.2113/gselements.4.5.333
      Olsson, J., Stipp, S. L. S., Makovicky, E., et al., 2014. Metal Scavenging by Calcium Carbonate at the Eyjafjallajökull Volcano: a Carbon Capture and Storage Analogue. Chemical Geology, 384: 135-148. https://doi.org/10.1016/j.chemgeo.2014.06.025
      Pan, S. Y., Chung, T. C., Ho, C. C., et al., 2017. CO2 Mineralization and Utilization Using Steel Slag for Establishing a Waste⁃to⁃Resource Supply Chain. Scientific Reports, 7(1): 17227. https://doi.org/10.1038/s41598⁃017⁃17648⁃9
      Power, I. M., Dipple, G. M., Bradshaw, P. M. D., et al., 2020. Prospects for CO2 Mineralization and Enhanced Weathering of Ultramafic Mine Tailings from the Baptiste Nickel Deposit in British Columbia, Canada. International Journal of Greenhouse Gas Control, 94: 102895. https://doi.org/10.1016/j.ijggc.2019.102895
      Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., et al., 2020. Carbon Dioxide Storage through Mineral Carbonation. Nature Reviews Earth & Environment, 1: 90-102. https://doi.org/10.1038/s43017⁃019⁃0011⁃8
      Snæbjörnsdóttir, S. Ó., Wiese, F., Fridriksson, T., et al., 2014. CO2 Storage Potential of Basaltic Rocks in Iceland and the Oceanic Ridges. Energy Procedia, 63: 4585-4600. https://doi.org/10.1016/j.egypro.2014.11.491
      Sui, S. Z., Wang, W. Y., 2003. The Discussion of the Bottom Age of TY2 Core from Paleo⁃Maar⁃Lake Tianyang, Guangdong Province. Quaternary Sciences, 23(2): 232(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2003.02.015
      Sun, J. S., 1991. Cenozoic Volcanic Activity in the Northern South China Sea and Guangdong Coastal Area. Marine Geology & Quaternary Geology, 11(3): 45-67, 125-130(in Chinese with English abstract).
      Wang, M., Lu, H. Y., 2019. Age, Geochemical Composition and Their Paleoclimatic Implications of the Basalt in Leizhou Peninsula, Southern China. Quaternary Sciences, 39(5): 1071-1082(in Chinese with English abstract).
      Wen, H. H., 2013. Study on groundwater circulation law and rational development and utilization in Leizhou Peninsula(Dissertation). China University of Geosciences, Wuhan, 167(in Chinese with English abstract).
      White, S. K., Spane, F. A., Todd Schaef, H., et al., 2020. Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology, 54(22): 14609-14616. https://doi.org/10.1021/acs.est. 0c05142 doi: 10.1021/acs.est.0c05142
      Wiese, F., Fridriksson, T., Ármannsson, H., 2008. CO2 Fixation by Calcite in High⁃Temperature Geothermal Systems in Iceland, Iceland Geosurvey.
      Wolff⁃Boenisch, D., 2011. On the Buffer Capacity of CO2 ⁃Charged Seawater Used for Carbonation and Subsequent Mineral Sequestration. Energy Procedia, 4(C): 3738-3745
      Wu, E. N., Chen, Q., Wang, S. W., et al., 2017. Study on CO2 Storage Potential of Basalt Reservoir in Jiyang Depression. West⁃China Exploration Engineering, 29(12): 98-100(in Chinese with English abstract).
      Wu, E. N., Wu, C. Z., Ji, J. F., et al., 2012. Potential Capacity and Feasibility of CO2 Sequestration in Petroleum Reservoirs of Basaltic Rocks: Example from Basaltic Hydrocarbon Reservoir in the Xujiaweizi Fault Depression the Songliao Basin, East China. Geological Journal of China Universities, 18(2): 239-247(in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.02.006
      Yao, J. M., Zhou, X., Li, J., et al., 2007. Hydrogeochemical Characteristics and Evolution Simulation of Groundwater in Basalts on the Leizhou Peninsula, Guangdong, China. Geological Bulletin of China, 26(3): 327-334(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.03.010
      Zhang, G. M., 1993. Characteristics and Enrichment Law of Volcanic Groundwater in Leizhou Peninsula. Guangdong Geology, (2): 1-13(in Chinese).
      Zhang, L., Wen, R., Li, F., et al., 2023. Assessment of CO2 Mineral Storage Potential in the Terrestrial Basalts of China. Fuel, 348: 128602. doi: 10.1016/j.fuel.2023.128602
      Zhang, L., Wen, R. H., Geng, S. H., et al., 2022. Mineral Trapping of CO2 in Basalt Rock: Progress and Key Issues. Journal of Chemical Engineering of Chinese Universities, 36(4): 473-480(in Chinese with English abstract). doi: 10.3969/j.issn.1003-9015.2022.04.002
      Zhang, S. H., 2016. Conjunctive Use of Surface Water and Groundwater on Leizhou Peninsula. Guangxi Water Resources & Hydropower Engineering, (1): 1-5(in Chinese with English abstract). doi: 10.3969/j.issn.1003-1510.2016.01.001
      Zhang, Z., Zhang, H. F., 2012. Carbonation of Mafic⁃Ultramafic Rocks: a New Approach to Carbon Dioxide Geological Sequestration. Earth Science, 37(1): 156-162(in Chinese with English abstract).
      Zhou, D., Xia, C. Y., Li, PC., et al., 2024. CO2 Mineral Storage in Basalt (Ⅰ): Technology and Application Conditions. Chinese Journal of Environmental Engineering, 18(10): 2708-2718(in Chinese with English abstract).
      Zhou, Y. Q., 1990. Geological Characteristics and Development Prospect of Diatomite Deposit in Leizhou Peninsula. Guangdong Geology, (2): 22-27(in Chinese).
      陈俊仁, 黄成彦, 林茂福, 等, 1990. 广东田洋火山湖第四纪地质. 北京: 地质出版社, 197.
      陈墨香, 夏斯高, 杨淑贞, 1991. 雷州半岛局部地热异常及其形成机制. 地质科学, 26(4): 369-383.
      高志豪, 夏菖佑, 廖松林, 等, 2023. 玄武岩CO2矿化封存潜力评估方法研究现状及展望. 高校地质学报, 29(1): 66-75.
      广东省地质矿产局, 1996. 广东省岩石地层. 武汉: 中国地质大学出版社, 171.
      韩江伟, 熊小林, 朱照宇, 2009. 雷琼地区晚新生代玄武岩地球化学: EM2成分来源及大陆岩石圈地幔的贡献. 岩石学报, 25(12): 3208-3220.
      黄镇国, 蔡福详, 韩中元, 等, 1993. 雷琼第四纪火山. 北京: 科学出版社, 281.
      孔中恒, 2004. 雷州半岛火山岩的水文地质特征与富水规律. 热带地理, 24(2): 136-139.
      李鹏春, 江静练, 程锦辉, 等, 2023. 广东雷州半岛火山岩二氧化碳矿化封存潜力评估. 高校地质学报, 29(1): 76-84.
      李万伦, 陈晶, 贾凌霄, 等, 2022a. 玄武岩CO2地质封存研究进展. 地质论评, 68(2): 648-657.
      李万伦, 徐佳佳, 贾凌霄, 等, 2022b. 玄武岩封存CO2技术方法及其进展. 水文地质工程地质, 49(3): 164-173.
      李晓媛, 常春, 于青春, 2013. CO2矿化封存条件下玄武岩溶解反应速率模型. 现代地质, 27(6): 1477-1483.
      罗树文, 1998. 雷州半岛南部火山活动及其构造背景. 广东地质, 13(3): 20-24.
      隋淑珍, 王文远, 2003. 广东田洋古玛珥湖TY2孔基底岩芯的年龄探讨. 第四纪研究, 23(2): 232.
      孙嘉诗, 1991. 南海北部及广东沿海新生代火山活动. 海洋地质与第四纪地质, 11(3): 45-67, 125-130.
      汪苗, 鹿化煜, 2019. 雷州半岛玛珥湖区玄武岩的年代、地球化学特征及其意义. 第四纪研究, 39(5): 1071-1082.
      温汉辉, 2013. 雷州半岛地下水循环规律及合理开发利用研究(博士毕业论文). 武汉: 中国地质大学.
      吾尔娜, 陈琦, 王世伟, 等, 2017. 济阳坳陷玄武岩油气藏储层的CO_2封存潜力研究. 西部探矿工程, 29(12): 98-100.
      吾尔娜, 吴昌志, 季峻峰, 等, 2012. 松辽盆地徐家围子断陷玄武岩气藏储层的CO2封存潜力研究. 高校地质学报, 18(2): 239-247.
      姚锦梅, 周训, 李娟, 等, 2007. 广东雷州半岛玄武岩地下水水文地球化学特征及演化模拟. 地质通报, 26(3): 327-334.
      张国梅, 1993. 雷州半岛火山岩地下水特征及其富集规律. 广东地质, (2): 1-13.
      张亮, 温荣华, 耿松鹤, 等, 2022. CO2在玄武岩中矿物封存研究进展及关键问题. 高校化学工程学报, 36(4): 473-480.
      张胜华, 2016. 雷州半岛地表水与地下水联合利用浅析. 广西水利水电(1): 1-5.
      张一驰, 2023. 腾讯启动碳寻计划, 投入过亿聚焦CCUS生态共建.
      张舟, 张宏福, 2012. 基性、超基性岩: 二氧化碳地质封存的新途径. 地球科学, 37(1): 156-162. doi: 10.3799/dqkx.2012.015
      周蒂, 夏菖佑, 李鹏春, 等, 2024. 玄武岩二氧化碳矿化封存(Ⅰ): 技术特点及适用条件. 环境工程学报, 18(10): 2708-2718
      周永清, 1990. 雷州半岛硅藻土矿床地质特征和开发前景. 广东地质, 5(2): 22-27.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(3)

      Article views (167) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return