• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Wan Yusheng, Dong Chunyan, Xie Hangqiang, Liu Shoujie, Ma Mingzhu, Li Pengchuan, Li Yuan, Wang Yuqing, Wang Kunli, Liu Dunyi, 2024. Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104
    Citation: Wan Yusheng, Dong Chunyan, Xie Hangqiang, Liu Shoujie, Ma Mingzhu, Li Pengchuan, Li Yuan, Wang Yuqing, Wang Kunli, Liu Dunyi, 2024. Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review. Earth Science, 49(11): 3855-3878. doi: 10.3799/dqkx.2024.104

    Formation and Evolution of Archean Continental Crust in the Anshan⁃Benxi Area, North China Craton: A Review

    doi: 10.3799/dqkx.2024.104
    • Received Date: 2024-10-29
    • Publish Date: 2024-11-25
    • Anshan-Benxi (Anben) is located in the northeastern North China Craton and is well-known for the huge banded iron formation (BIF) and 3.8 Ga rocks. Its importance lies not only in the discovery of 3.8 Ga rocks, but also in the long-term history of Archean crustal formation and evolution from 3.8 to 2.5 Ga. 3.8 Ga rocks occur in ancient complexes in the Anshan area. So far, six complexes have been identified. They are mainly composed of trondhjemitic rocks with meta-gabbro-diorite and have similar rock assemblages and zircon age records of 3.8‒3.1 Ga, thus considered to be the different remnants of the same one large ancient complex. In addition to the complexes, other important geological bodies include the Paleoarchean Chentaigou supracrustal rocks and the late Neoarchean Anshan Group, the 3.3‒3.1 Ga Chentaigou granite, 3.1 Ga Lishan trondhjemite, 3.0 Ga Donganshan granite, 3.0‒2.95 Ga Tiejiashan-Gongchangling granite and 2.5 Ga Qidashan granite. Three tectonothermal events have been identified at 3.3 Ga, 3.1 Ga and 2.5 Ga. Granitoid magmatism evolved from trondhjemite to K-rich granite with the renewal of time. The total REE amounts and light to heavy REE differentiations of the rocks increased suddenly at 3.3 Ga. The trondhjemitic rocks are considered to be mainly derived from low-K iron-magnesian rocks, with some from TTG rocks, whereas the K-rich granites are from TTG and sedimentary rocks. According to whole-rock Nd and zircon Hf isotopic compositions, both mantle addition and intracrustal recycling played important roles in each magmatic period, with the latter becoming more and more important with time, but the late Neoarchean is also an important period of mantle addition. The following conclusions have been obtained. (1) 3.3 Ga is an important period in the continental formation and evolution of the Anben area, with the thickness and scale of continental crust increasing significantly; (2) a long-term crustally-derived magmatism occurred between 3.3 and 2.95 Ga, with the granites increasing with time in magmatic intensity and K2O contents. (3) the Anshan Group was deposited on the > 2.95 Ga ancient continental basement, and there was a "quiet period" of ~400 Ma (2.95‒2.55 Ga) between the formation of the ancient basement and the deposition of the Anshan Group. (4) The formation and evolution of the Archean basement in the Anben area can be divided into four stages: continental nucleus formation (> 3.3 Ga), ancient block formation (3.3‒2.95 Ga), quiet period (2.95‒2.55 Ga) and stabilization (2.55‒2.5 Ga).

       

    • loading
    • Bao, H., Liu, S. W., Wan, Y. S., et al., 2022. Neoarchean Granitoids and Tectonic Regime of Lateral Growth in Northeastern North China Craton. Gondwana Research, 107: 176-200. https://doi.org/10.1016/j.gr.2022.02.015
      Barker, F., 1979. Trondhjemite: Definition, Environment and Hypotheses of Origin. Developments in Petrology. Elsevier, Amsterdam, 1-12. 10.1016/b978-0-444-41765-7.50006-x
      Cawood, P. A., Chowdhury, P., Mulder, J. A., et al., 2022. Secular Evolution of Continents and the Earth System. Reviews of Geophysics, 60(4): e2022rg000789. https://doi.org/10.1029/2022rg000789
      Cheng, Y. Q., 1957. Problems on the Genesis of the High⁃Grade Ore in the Pre⁃Sinian (Pre⁃Cambrian) Banded Iron Ore Deposits of the Anshan⁃Type of Liaoning and Shantung Provinces. Acta Geological Sinica, 31(2): 153-180 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Wang, C. L., et al., 2012. Genetic Type, Formation Age and Tectonic Setting of the Waitoushan Banded Iron Formation, Benxi, Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Zhu, M. T., et al., 2013. Chentaigou BIF⁃Type Iron Deposit, Anshan Area Associated with Archean Crustal Growth: Constraints from Zircon U⁃Pb Dating and Hf Isotope. Acta Petrologica Sinica, 29(7): 2537-2550 (in Chinese with English abstract).
      Dai, Y. P., Zhang, L. C., Zhu, M. T., et al., 2014. The Composition and Genesis of the Mesoarchean Dagushan Banded Iron Formation (BIF) in the Anshan Area of the North China Craton. Ore Geology Reviews, 63: 353-373. https://doi.org/10.1016/j.oregeorev.2014.04.013
      Dong, C. Y., Wan, Y. S., Xie, H. Q., et al., 2017. The Mesoarchean Tiejiashan⁃Gongchangling Potassic Granite in the Anshan⁃Benxi Area, North China Craton: Origin by Recycling of Paleo⁃ to Eoarchean Crust from U⁃Pb⁃Nd⁃Hf⁃O Isotopic Studies. Lithos, 290: 116-135. https://doi.org/10.1016/j.lithos.2017.08.009
      Dong, C. Y., Wan, Y. S., Zhang, Y. H., et al., 2013. 3.3-3.1 Ga Magmatism Recorded in an Outcrop of the Dongshan Complex in the Anshan Area, North China Craton: Evidence from Geochemistry and SHRIMP Zircon Dating. Acta Petrologica Sinica, 29(2): 414-420 (in Chinese with English abstract).
      Geng, Y. S., Du, L. L., Ren, L. D., 2012. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 21(2/3): 517-529. https://doi.org/10.1016/j.gr.2011.07.006
      Guo, R. R., Liu, S. W., Gong, E. P., et al., 2017. Arc⁃Generated Metavolcanic Rocks in the Anshan⁃Benxi Greenstone Belt, North China Craton: Constraints from Geochemistry and Zircon U⁃Pb⁃Hf Isotopic Systematics. Precambrian Research, 303: 228-250. https://doi.org/10.1016/j.precamres.2017.03.028
      Han, C. M., Xiao, W. J., Su, B. X., et al., 2014. Formation Age and Genesis of the Gongchangling Neoarchean Banded Iron Deposit in Eastern Liaoning Province: Constraints from Geochemistry and SHRIMP Zircon U⁃Pb Dating. Precambrian Research, 254: 306-322. https://doi.org/10.1016/j.precamres.2014.09.007
      Hoffmann, J. E., Zhang, C., Moyen, J. F., et al., 2019. The Formation of Tonalites⁃Trondjhemite⁃Granodiorites in Early Continental Crust. Earth's Oldest Rocks. Elsevier, Amsterdam, 133-168. 10.1016/b978-0-444-63901-1.00007-1
      Johnson, T. E., Gardiner, N. J., Miljković, K., et al., 2018. An Impact Melt Origin for Earth's Oldest Known Evolved Rocks. Nature Geoscience, 11: 795-799. https://doi.org/10.1038/s41561⁃018⁃0206⁃5
      Johnson, T. E., Kirkland, C. L., Lu, Y. J., et al., 2022. Giant Impacts and the Origin and Evolution of Continents. Nature, 608(7922): 330-335. https://doi.org/10.1038/s41586⁃022⁃04956⁃y
      Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., et al., 2010. Hadean Crustal Evolution Revisited: New Constraints from Pb⁃Hf Isotope Systematics of the Jack Hills Zircons. Earth and Planetary Science Letters, 296(1-2): 45-56. https://doi.org/10.1016/j.epsl.2010.04.043
      Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late⁃Archean Granitoids: Evidence for the Onset of "Modern⁃Style" Plate Tectonics between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012
      Lei, K., Wang, Y. F., Zhang, Q., et al., 2023. Decoding the Onset of ca. 3.8 Ga Continental Nuclei in Anshan, North China: A Review Integrated with 1: 10 000 Geological Mapping, Zircon U⁃Pb Dating, and Si⁃O⁃Nd⁃Hf⁃W Isotopes. Earth⁃Science Reviews, 247: 104606. https://doi.org/10.1016/j.earscirev.2023.104606
      Li, B., Jin, W., Zhang, J. H., et al., 2013. Composition and Structural Characteristics of Archean Granite in Chentaigou Area of Anshan. Global Geology, 32(2): 191-199 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2013.02.001
      Li, C. F., Wang, X. C., Wilde, S. A., et al., 2017. Differentiation of the Early Silicate Earth as Recorded by 142Nd⁃143Nd in 3.8‒3.0 Ga Rocks from the Anshan Complex, North China Craton. Precambrian Research, 301: 86-101. https://doi.org/10.1016/j.precamres.2017.09.001
      Liu, D., Wilde, S. A., Wan, Y., et al., 2008. New U⁃Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton. American Journal of Science, 308(3): 200-231. https://doi.org/10.2475/03.2008.02
      Liu, D. Y., Nutman, A. P., Compston, W., et al., 1992. Remnants of ≥3 800 Ma Crust in the Chinese Part of the Sino⁃Korean Craton. Geology, 20(4): 339. https://doi.org/10.1130/0091⁃7613(1992)0200339: romcit>2.3.co;2 doi: 10.1130/0091⁃7613(1992)0200339:romcit>2.3.co;2
      Liu, S. W., Wang, M. J., Wan, Y. S., et al., 2017. A Reworked ~3.45 Ga Continental Microblock of the North China Craton: Constraints from Zircon U⁃Pb⁃Lu⁃Hf Isotopic Systematics of the Archean Beitai⁃Waitoushan Migmatite⁃Syenogranite Complex. Precambrian Research, 303: 332-354. https://doi.org/10.1016/j.precamres.2017.04.003
      Long, Y. J., Yang, W., Lin, Y. T., et al., 2019. Sub⁃ Micron Trace Elemental Distributions and U⁃Pb Dating of Zircon from the Oldest Rock in the Anshan Area, North China Craton. Precambrian Research, 322: 1-17. https://doi.org/10.1016/j.precamres.2018.12.023
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016⁃7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016⁃7606(1989)1010635:tdog>2.3.co;2
      Martin, H., Chauvel, C., Jahn, B. M., 1983. Major and Trace Element Geochemistry and Crustal Evolution of Archaean Granodioritic Rocks from Eastern Finland. Precambrian Research, 21(3/4): 159-180. https://doi.org/10.1016/0301⁃9268(83)90039⁃6
      Mei, Q. F., Yang, J. H., Wang, Y. F., et al., 2020. Tungsten Isotopic Constraints on Homogenization of the Archean Silicate Earth: Implications for the Transition of Tectonic Regimes. Geochimica et Cosmochimica Acta, 278: 51-64. https://doi.org/10.1016/j.gca.2019.07.050
      Mojzsis, S. J., Cates, N. L., Caro, G., et al., 2014. Component Geochronology in the Polyphase Ca. 3 920 Ma Acasta Gneiss. Geochimica et Cosmochimica Acta, 133: 68-96. https://doi.org/10.1016/j.gca.2014.02.019
      Moyen, J. F., 2011. The Composite Archaean Grey Gneisses: Petrological Significance, and Evidence for a Non⁃Unique Tectonic Setting for Archaean Crustal Growth. Lithos, 123(1-4): 21-36. https://doi.org/10.1016/j.lithos.2010.09.015
      Næraa, T., Scherstén, A., Rosing, M. T., et al., 2012. Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr ago. Nature, 485(7400): 627-630. https://doi.org/10.1038/nature11140
      Nutman, A. P., Bennett, V. C., 2019. The 3.9‒3.6 Ga Itsaq Gneiss Complex of Greenland. Earth's Oldest Rocks. Elsevier, Amsterdam, 375-399. 10.1016/b978-0-444-63901-1.00017-4C
      Nutman, A. P., Friend, C. R. L., Barker, S. L. L., et al., 2004. Inventory and Assessment of Palaeoarchaean Gneiss Terrains and Detrital Zircons in Southern West Greenland. Precambrian Research, 135(4): 281-314. https://doi.org/10.1016/j.precamres.2004.09.002
      O'Neill, C., Marchi, S., Bottke, W., et al., 2020. The Role of Impacts on Archaean Tectonics. Geology, 48(2): 174-178. https://doi.org/10.1130/g46533.1
      Pearce, J. A., 1983. Role of the Subcontinental Lithosphere in Magmagenesis at Active Continental Margins. In: Hawkesworth, C. J., Norry, M. J., eds., Continental Basalts and Mantle, Xenoliths. Shiva Publishing Ltd., Nantwich, 230-249.
      Qiao, G. S., Zhai, M. G., Yan, Y. H., 1990. Geochronological Study of Archaean Rocks in Anshan, Liaoning Province. Chinese Journal of Geology, 25(2): 158-165 (in Chinese with English abstract).
      Reimink, J. R., Chacko, T., Stern, R. A., et al., 2014. Earth's Earliest Evolved Crust Generated in an Iceland⁃Like Setting. Nature Geoscience, 7: 529-533. https://doi.org/10.1038/ngeo2170
      Reimink, J. R., Davies, J. H. F. L., Chacko, T., et al., 2016. No Evidence for Hadean Continental Crust within Earth's Oldest Evolved Rock Unit. Nature Geoscience, 9: 777-780. https://doi.org/10.1038/ngeo2786
      Rozel, A. B., Golabek, G. J., Jain, C., et al., 2017. Continental Crust Formation on Early Earth Controlled by Intrusive Magmatism. Nature, 545(7654): 332-335. https://doi.org/10.1038/nature22042
      Song, B., Nutman, A. P., Liu, D. Y., et al., 1996. 3 800 to 2 500 Ma Crustal Evolution in the Anshan Area of Liaoning Province, Northeastern China. Precambrian Research, 78(1-3): 79-94. https://doi.org/10.1016/0301⁃9268(95)00070⁃4
      Song, B., Wu, J. S., Wan, Y. S., et al., 1994. A Preliminary Study on the Age Attribution of Chentaigou Supracrustal Rocks in Anshan Area. Acta Geoscientica Sinica, 15(S1): 14-16 (in Chinese with English abstract).
      Song, B., Zhao, D. M., Wan, Y. S., 1992. Geochronology Research of the Iron Formation of Gongchangling, Liaoning Province. Acta Petrologica et Mineralogica, 11(4): 317-323 (in Chinese with English abstract).
      Sun, M., Armstrong, R. L., Lambert, R. S. J., et al., 1993. Petrochemistry and Sr, Pb and Nd Isotopic Geochemistry of the Paleoproterozoic Kuandian Complex, the Eastern Liaoning Province, China. Precambrian Research, 62: 171-190. https://doi.org/10.1016/0301⁃9268(93)90099⁃N
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4. 4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410⁃005⁃0025⁃8
      van Kranendonk, M. J., Smithies, R. H., Bennett, V., 2007. Earth's Oldest Rocks. 1st ed. Elsevier, Amsterdam.
      van Kranendonk, M. J., Smithies, R. H., Bennett, V., 2019. Earth's Oldest Rocks. 2nd ed. Elsevier, Amsterdam.
      Wan, Y., Ma, M., Dong, C., et al., 2015a. Widespread Late Neoarchean Reworking of Meso⁃ to Paleoarchean Continental Crust in the Anshan⁃Benxi Area, North China Craton, as Documented by U⁃Pb⁃Nd⁃Hf⁃O Isotopes. American Journal of Science, 315(7): 620-670. https://doi.org/10.2475/07.2015.02
      Wan, Y. S., Liu, D. Y., Dong, C. Y., et al., 2015b. Formation and Evolution of Archean Continental Crust of the North China Craton. Springer Geology, Berlin, 59-136. https://doi.org/10.1007/978⁃3⁃662⁃47885⁃1_2
      Wan, Y. S., 1993. The Formation and Evolution of Iron Bearing Rock Series in Gongchangling, Liaoning. Beijing Science and Technology Press, Beijing (in Chinese with English).
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2012. Formation Ages of Early Precambrian BIFs in the North China Craton: SHRIMP Zircon U⁃Pb Dating. Acta Geologica Sinica, 86(9): 1447-1478 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2012.09.008
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2018. Formation Age of BIF⁃Bearing Anshan Group Supracrustal Rocks in Anshan⁃Benxi Area: New Evidence from SHRIMP U⁃Pb Zircon Dating. Earth Science, 43(1): 57-74 (in Chinese with English abstract).
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2023a. Hadean to Early Mesoarchean Rocks and Zircons in the North China Craton: A Review. Earth⁃Science Reviews, 243: 104489. https://doi.org/10.1016/j.earscirev.2023.104489
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2023b. SHRIMP U⁃Pb Zircon Dating and Geochemistry of the 3.8‒3.1 Ga Hujiamiao Complex in Anshan (North China Craton) and the Significance of the Trondhjemites for Early Crustal Genesis. Precambrian Research, 388: 106975. https://doi.org/10.1016/j.precamres.2023.106975
      Wan, Y. S., Dong, C. Y., Xie, H. Q., et al., 2024. Late Neoarchean Magmatism in the North China Craton: A Review. Earth Science Frontiers, 31(1): 1-18 (in Chinese with English abstract).
      Wan, Y. S., Geng, Y. S., Shen, Q. H., et al., 2002a. Geochemical Characteristics of Supracrustal Enclaves in Mesoarchean Tiejiashan Granite in Anshan Area and Its Geological Significance. Scientia Geologica Sinica, 37(2): 143-151 (in Chinese with English abstract).
      Wan, Y. S., Song, B., Liu, D. Y., 2002b. Discovery of Archean Felsic Rocks with Abnormal Rare Earth Composition in Anshan and Its Significance. Geological Review, 48(S1): 45-52 (in Chinese with English abstract).
      Wan, Y. S., Liu, D. Y., 1993. Ages of Zircons from Mid⁃Archaean Gneissic Granite and Fuchsite Quartzite in the Gongchangling Area, Liaoning. Geological Review, 39(2): 124-129 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1993.02.005
      Wan, Y. S., Liu, D. Y., Nutman, A., et al., 2012. Multiple 3.8‒3.1 Ga Tectono⁃Magmatic Events in a Newly Discovered Area of Ancient Rocks (the Shengousi Complex), Anshan, North China Craton. Journal of Asian Earth Sciences, 54: 18-30. https://doi.org/10.1016/j.jseaes.2012.03.007
      Wan, Y. S., Liu, D. Y., Song, B., et al., 2005. Geochemical and Nd Isotopic Compositions of 3.8 Ga Meta⁃Quartz Dioritic and Trondhjemitic Rocks from the Anshan Area and Their Geological Significance. Journal of Asian Earth Sciences, 24(5): 563-575. https://doi.org/10.1016/j.jseaes.2004.02.009
      Wan, Y. S., Liu, D. Y., Wu, J. S., et al., 1998. The Origin of Mesoarchaean Granitic Rocks from Anshan⁃Benxi Area: Constraints of Geochemistry and Nd Isotope. Acta Petrologica Sinica, 14(3): 278-288 (in Chinese with English abstract).
      Wan, Y. S., Liu, D. Y., Yin, X. Y., et al., 2007. SHRIMP Geochronology and Hf Isotope Composition of Zircons from the Tiejiashan Granite and Supracrustal Rocks in the Anshan Area, Liaoning Province. Acta Petrologica Sinica, 23(2): 241-252 (in Chinese with English abstract).
      Wan, Y. S., Song, B., Liu, D. Y., et al., 2001. Geochronology and Geochemistry of 3.8‒2.5 Ga Ancient Rock Belt in the Dongshan Scenic Park, Anshan Area. Acta Geologica Sinica, 75(3): 363-370 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2001.03.009
      Wan, Y. S., Song, B., Wu, J. S., et al., 1999. Geochemical and Nd and Sr Isotopic Compositions of 3.8 Ga Trondhjemitic Rocks from the Anshan Area and Their Significance. Acta Geologica Sinica, 73(1): 25-36 (in Chinese with English abstract).
      Wan, Y. S., Wu, J. S., Liu, D. Y., et al., 1997. Geochemistry and Nd and Pb Isotopic Characteristics of 3.3 Ga Chentaigou Granite in Anshan. Acta Geoscientica Sinica, 18(4): 382-388 (in Chinese with English abstract).
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2019. Hadean to Paleoarchean Rocks and Zircons in China. Earth's Oldest Rocks. Elsevier, Amsterdam, 293-327. 10.1016/b978-0-444-63901-1.00014-9
      Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2023. Oldest Continental Materials: A Review. Chinese Science Bulletin, 68: 2296-2311 (in Chinese with English abstract).
      Wan, Y. S., Zhang, Y. H., Williams, I. S., et al., 2013. Extreme Zircon O Isotopic Compositions from 3.8 to 2.5 Ga Magmatic Rocks from the Anshan Area, North China Craton. Chemical Geology, 352: 108-124. https://doi.org/10.1016/j.chemgeo.2013.06.009
      Wang, C. L., Huang, H., Tong, X. X., et al., 2016. Changing Provenance of Late Neoarchean Metasedimentary Rocks in the Anshan⁃Benxi Area, North China Craton: Implications for the Tectonic Setting of the World⁃Class Dataigou Banded Iron Formation. Gondwana Research, 40: 107-123. https://doi.org/10.1016/j.gr.2016.08.010
      Wang, W., Liu, S. W., Santosh, M., et al., 2015a. Neoarchean Intra⁃Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth⁃Science Reviews, 150: 329-364. https://doi.org/10.1016/j.earscirev.2015.08.002
      Wang, Y. F., Li, X. H., Jin, W., et al., 2015b. Eoarchean Ultra⁃Depleted Mantle Domains Inferred from Ca. 3.81 Ga Anshan Trondhjemitic Gneisses, North China Craton. Precambrian Research, 263: 88-107. https://doi.org/10.1016/j.precamres.2015.03.005
      Wang, W., Tian, Z. H., Liu, F. L., 2022. The Research Progress of the Paleoarchean Granite in the Gongchangling Area: Evidence from Geology and Zircon U⁃Th⁃Pb⁃Hf Isotopic Composition. Acta Petrologica et Mineralogica, 41(2): 359-370 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.02.010
      Wang, Y. F., Li, X. H., Jin, W., et al., 2020. Generation and Maturation of Mesoarchean Continental Crust in the Anshan Complex, North China Craton. Precambrian Research, 341: 105651. https://doi.org/10.1016/j.precamres.2020.105651
      Wu, F. Y., Zhang, Y. B., Yang, J. H., et al., 2008. Zircon U⁃Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 167(3/4): 339-362. https://doi.org/10.1016/j.precamres.2008.10.002
      Wu, J. S., Geng, Y. S., Shen, Q. H., et al., 1998. Geological Characteristics and Tectonic Evolution of the Archean Period in the Ancient Continent of China and Korea. Geological Publishing House, Beijing (in Chinese).
      Yin, X. Y., Wan, Y. S., Liu, D. Y., et al., 2006. Formation Time of Supracrustal Rocks in Tiejiashan Granite of the Anshan Area: Evidence from Detrital Zircon SHRIMP Dating. Acta Petrologica et Mineralogica, 25(4): 282-286 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2006.04.003
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G., Windley, B. F., Sills, J. D., 1990. Archaean Gneisses, Amphibolites and Banded Iron⁃Formations from the Anshan Area of Liaoning Province, NE China: Their Geochemistry, Metamorphism and Petrogenesis. Precambrian Research, 46(3): 195-216. https://doi.org/10.1016/0301⁃9268(90)90002⁃8
      Zhang, J. H., Jin, W., Wang, Y. F., et al., 2018. Formation and Evolution of Eo⁃Paleoarchean Granitic Crust in the Anshan Area: Evidence from Petrology, Geochronology and Geochemistry of the Shengousi Complex. Acta Geologica Sinica, 92(5): 887-907 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.05.001
      Zhang, J. H., Jin, W., Zheng, P. X., et al., 2013. Identification and Zircon U⁃Pb Geochronology of the Yingchengzi Paleoarchean Gneiss Complex, Anshan Area. Acta Petrologica Sinica, 29(2): 399-413 (in Chinese with English abstract).
      Zhang, L. C., Dai, Y. P., Wang, C. L., et al., 2014. Age, Material Sources and Formation Setting of Procambrian BIFs Iron Deposits in Anshan⁃Benxi Area. Journal of Earth Sciences and Environment, 36(4): 1-15, 17 (in Chinese with English abstract).
      Zhao, G. C., Zhai, M. G., 2013. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 23(4): 1207-1240. https://doi.org/10.1016/j.gr.2012.08.016
      Zhong, D. F., 1984. Geochronological Study of Archaean Granite⁃gneisses in Anshan Area, Northeast China. Geochimica, 13(3): 195-205 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1984.03.001
      Zhou, H. Y., Liu, D. Y., Nemchim, A., 2007a. 3.0 Ga Thermo⁃Tectonic Events Suffered by the 3.8 Ga Meta⁃ Quartz⁃Diorite in the Anshan Area: Constraints from Apatite SHRIMP U⁃Th⁃Pb Dating. Geological Review, 53(1): 120-125 (in Chinese with English abstract).
      Zhou, H. Y., Liu, D. Y., Wan, Y. S., et al., 2007b. 3.3 Ga Magmatic Events in the Anshan Area: New SHRIMP Age and Geochemical Constraints. Acta Petrologica et Mineralogica, 26(2): 123-129 (in Chinese with English abstract).
      Zhou, H. Y., Liu, D. Y., Wan, Y. S., et al., 2008. 3.3‒ 3.1 Ga Magmatism in the Dongshan Complex, Anshan Area, Liaoning, China: Evidence from Zircon SHRIMP U⁃Pb Dating. Geological Bulletin of China, 27(12): 2122-2126 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2008.12.020
      Zhu, M. T., Dai, Y. P., Zhang, L. C., et al., 2015. Geochronology and Geochemistry of the Nanfen Iron Deposit in the Anshan⁃Benxi Area, North China Craton: Implications for ~2.55 Ga Crustal Growth and the Genesis of High⁃Grade Iron Ores. Precambrian Research, 260: 23-38. https://doi.org/10.1016/j.precamres.2015.01.001
      程裕淇, 1957. 中国东北部辽宁东等省前寒武纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 31(2): 153-180.
      代堰锫, 张连昌, 王长乐, 等, 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3594.
      代堰锫, 张连昌, 朱明田, 等, 2013. 鞍山陈台沟BIF铁矿与太古代地壳增生: 锆石U⁃Pb年龄与Hf同位素约束. 岩石学报, 29(7): 2537-2550.
      董春艳, 万渝生, 张玉海, 等, 2013. 鞍山地区东山杂岩3.3~3.1 Ga岩浆作用: 地球化学和锆石定年. 岩石学报, 29(2): 414-420.
      李斌, 金巍, 张家辉, 等, 2013. 鞍山陈台沟地区太古宙花岗岩组成与构造特征, 世界地质, 32(2): 191-199. doi: 10.3969/j.issn.1004-5589.2013.02.001
      乔广生, 翟明国, 阎月华, 1990. 鞍山地区太古代岩石同位素地质年代学研究. 地质科学, 25(2): 158-165.
      宋彪, 伍家善, 万渝生, 等, 1994. 鞍山地区陈台沟表壳岩时代归属的初步研究. 地球科学, 15(S1): 14-16.
      宋彪, 赵敦敏, 万渝生, 1992. 辽宁弓长岭含铁建造年代学研究, 岩石矿物学杂志, 11(4): 317-323.
      万渝生, 1993. 辽宁弓长岭含铁岩系的形成与演化. 北京: 北京科学技术出版社.
      万渝生, 董春艳, 颉颃强, 等, 2012. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP锆石U⁃Pb定年. 地质学报, 86(9): 1447-1478. doi: 10.3969/j.issn.0001-5717.2012.09.008
      万渝生, 董春艳, 颉颃强, 等, 2018. 鞍山‒本溪地区鞍山群含BIF表壳岩形成时代新证据: 锆石SHRIMP U⁃Pb定年. 地球科学, 43(1): 57-74.
      万渝生, 董春艳, 颉颃强, 等, 2024. 华北克拉通新太古代晚期岩浆作用: 对构造体制和克拉通化的启示. 地学前缘, 31(1): 1-18.
      万渝生, 耿元生, 沈其韩, 等, 2002a. 鞍山中太古代铁架山花岗岩中表壳岩包体的地球化学特征及地质意义. 地质科学, 37(2): 143-151.
      万渝生, 宋彪, 刘敦一, 2002b. 鞍山太古宙具异常稀土组成长英质岩石的发现及其意义. 地质论评, 48(增刊): 45-52.
      万渝生, 刘敦一, 1993. 辽宁弓长岭中太古代片麻岩和铬云母石英岩的锆石年龄. 地质论评, 39(2): 124-129. doi: 10.3321/j.issn:0371-5736.1993.02.005
      万渝生, 刘敦一, 伍家善, 等, 1998. 辽宁鞍山‒本溪地区中太古代花岗质岩石的成因——地球化学及Nd同位素制约. 岩石学报, 14(3): 278-288.
      万渝生, 刘敦一, 殷小艳, 等, 2007. 鞍山地区铁架山花岗岩及表壳岩的锆石SHRIMP年代学和Hf同位素组成. 岩石学报, 23(2): 241-252.
      万渝生, 宋彪, 刘敦一, 等, 2001. 鞍山东山风景区3.8~ 2.5 Ga古老岩石带的同位素地质年代学和地球化学. 地质学报, 75(3): 363-370.
      万渝生, 宋彪, 伍家善, 等, 1999. 鞍山3.8 Ga奥长花岗质岩石的地球化学和Nd、Sr同位素组成及其意义. 地质学报, 73(1): 25-36.
      万渝生, 伍家善, 刘敦一, 等, 1997. 鞍山3.3 Ga陈台沟花岗岩地球化学和Nd、Pb同位素特征. 地球学报, 18(4): 382-388.
      万渝生, 颉颃强, 董春艳, 等, 2023. 最古老陆壳物质: 综述. 科学通报, 68: 2296-2311.
      王伟, 田中华, 刘福来, 2022. 辽宁鞍山弓长岭地区古太古代花岗岩研究进展——来自野外地质和锆石U⁃Th⁃Pb⁃Hf同位素的证据. 岩石矿物学杂志, 41(2): 359-370. doi: 10.3969/j.issn.1000-6524.2022.02.010
      伍家善, 耿元生, 沈其韩, 等, 1998. 中朝古大陆太古宙地质特征及构造演化. 北京: 地质出版社.
      殷小艳, 万渝生, 刘敦一, 等, 2006. 鞍山地区铁架山花岗岩中表壳岩的碎屑锆石SHRIMP年龄及其地质意义. 岩石矿物学杂志, 25(4): 282-286. doi: 10.3969/j.issn.1000-6524.2006.04.003
      张家辉, 金巍, 王亚飞, 等, 2018. 鞍山地区始‒古太古代花岗质地壳的形成及演化: 深沟寺杂岩的岩石学、年代学及地球化学证据. 地质学报, 92(5): 887-907. doi: 10.3969/j.issn.0001-5717.2018.05.001
      张家辉, 金巍, 郑培玺, 等, 2013. 鞍山地区营城子古太古代片麻岩杂岩的识别与锆石U⁃Pb年代学研究. 岩石学报, 29(2): 399-413.
      张连昌, 代堰锫, 王长乐, 等, 2014. 鞍山‒本溪地区前寒武纪条带状铁建造铁矿时代、物质来源与形成环境. 地球科学与环境学报, 36(4): 1-15, 17. doi: 10.3969/j.issn.1672-6561.2014.04.001
      钟富道, 1984. 鞍山铁甲山花岗片麻岩同位素年代学研究. 地球化学, 13(3): 195-205. doi: 10.3321/j.issn:0379-1726.1984.03.001
      周红英, 刘敦一, Nemchim, A., 等, 2007a. 鞍山地区3.8 Ga变质石英闪长岩遭受3.0 Ga构造热事件叠加: 来自磷灰石SHRIMP U⁃Th⁃Pb定年证据. 地质论评, 53(1): 120-125.
      周红英, 刘敦一, 万渝生, 等, 2007b. 鞍山地区3.3 Ga岩浆热事件⁃SHRIMP年代学和地球化学证据. 岩石矿物学杂志, 26(2): 123-129.
      周红英, 刘敦一, 万渝生, 等, 2008. 辽宁鞍山地区东山杂岩带3.3~3.1 Ga期间的岩浆作用: 锆石SHRIMP U⁃Pb定年. 地质通报, 27(12): 2122-2126.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(21)  / Tables(1)

      Article views (963) PDF downloads(456) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return