• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Zhang Yuchen, Yuan Yuan, Rong Hui, Xu Ying, Liu Zhengbang, Wu Xiaoge, Guo Liangliang, Ren Junxing, Liu Hui, 2025. The Occurrence and Genetic Mechanism of Residual Uranium after CO2+O2 In-Situ Leaching in the Qianjiadian Uranium Deposit, Inner Mongolia. Earth Science, 50(5): 1899-1916. doi: 10.3799/dqkx.2024.106
    Citation: Zhang Yuchen, Yuan Yuan, Rong Hui, Xu Ying, Liu Zhengbang, Wu Xiaoge, Guo Liangliang, Ren Junxing, Liu Hui, 2025. The Occurrence and Genetic Mechanism of Residual Uranium after CO2+O2 In-Situ Leaching in the Qianjiadian Uranium Deposit, Inner Mongolia. Earth Science, 50(5): 1899-1916. doi: 10.3799/dqkx.2024.106

    The Occurrence and Genetic Mechanism of Residual Uranium after CO2+O2 In-Situ Leaching in the Qianjiadian Uranium Deposit, Inner Mongolia

    doi: 10.3799/dqkx.2024.106
    • Received Date: 2024-05-28
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • The occurrence and genetic mechanism of residual uranium in uranium reservoirs after CO2 + O2 in-situ leaching of uranium are highly important for improving the in-situ leaching process and leaching efficiency of uranium, but few studies have been conducted in this field. Therefore, this work takes mineralized sandstones and drilling core samples after in-situ leaching of uranium as the research object in the Qian II block of the Qianjiadian uranium deposit in Inner Mongolia. Three types of residual uranium were identified via SEM-EDS analyses: uranium minerals, adsorbed uranium and minerals containing uranium. In the samples after in-situ leaching, uranium minerals include coffinite and pitchblende, which are mainly distributed in the dissolved pores of clastic particles or inside and around clay minerals such as kaolinite. The adsorbed uranium is adsorbed mainly by clay minerals and carbonaceous debris, whereas minerals containing uranium include mainly monazite containing uranium, zircon containing uranium and titanium minerals containing uranium. A comparison of the occurrence of uranium in the mineralized sandstones before and after in-situ leaching reveals the following. (1) In the types of uranium minerals associated with clastic particles, the residual uranium minerals inside the quartz, feldspar, rock debris and carbonaceous debris were observed, whereas no residual uranium minerals at the edge of clastic particles, or inside the mica joints were observed. (2) In the uranium minerals associated with interstitial material, residual uranium minerals associated with pyrite and kaolinite were observed, and no residual uranium minerals associated with siderite were observed.(3) Uranium adsorbed by kaolinite and carbonaceous debris was retained. (4) Minerals containing uranium retains between clastic particles. On the basis of above observations and analyses, four genetic mechanisms of uranium residue in uranium reservoirs during in-situ leaching are proposed. (1) Because of the lack of effective interconnected pores, the in-situ leaching solution has difficulty flowing through the uranium minerals inside the clastic particles, resulting in formation of the uranium residual uranium minerals.(2) Kaolinite can block fluid transport channels, making it difficult to leach uranium minerals associated. (3) Kaolinite has adsorption properties and is stable under acidic conditions, which makes it difficult for the adsorbed uranium to be leached out. Uranium cannot be leached in areas rich in carbonaceous debris because of its strong reduction ability, adsorption capacity and poor circulation in the area. (4) Minerals containing uranium have difficulty reacting with the leaching agent, which results in incomplete leaching. This research has shown that the occurrence of uranium in the mineralized sandstone is an important factor affecting its leaching, and the results provide a mineralogical basis for improving in-situ leaching processes and enhancing uranium leaching efficiency.

       

    • loading
    • Abzalov, M. Z., 2012. Sandstone-Hosted Uranium Deposits Amenable for Exploitation by In situ Leaching Technologies. Applied Earth Science, 121(2): 55-64. https://doi.org/10.1179/1743275812y.0000000021
      Bi, Y. Q., Hyun, S. P., Kukkadapu, R. K., et al., 2013. Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic Nanocrystalline Mackinawite. Geochimica et Cosmochimica Acta, 102: 175-190. https://doi.org/10.1016/j.gca.2012.10.032
      Bone, S. E., Dynes, J. J., Cliff, J., et al., 2017. Uranium(IV) Adsorption by Natural Organic Matter in Anoxic Sediments. Proceedings of the National Academy of Sciences of the United States of America, 114(4): 711-716. https://doi.org/10.1073/pnas.1611918114
      Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
      Bonnetti, C., Liu, X. D., Yan, Z. B., et al., 2017. Coupled Uranium Mineralisation and Bacterial Sulphate Reduction for the Genesis of the Baxingtu Sandstone-Hosted U Deposit, SW Songliao Basin, NE China. Ore Geology Reviews, 82: 108-129. https://doi.org/10.1016/j.oregeorev.2016.11.013
      Cao, M. Q., 2021. Constraints of the Sequence Stratigraphic Structure of Uranium-Bearing Series on Mineralization in Qianjiadian Uranium Deposit, Songliao Basin. Bulletin of Geological Science and Technology, 40(4): 131-142 (in Chinese with English abstract).
      Chen, F. H., Zhang, M. Y., Lin, C. S., 2005. Sedimentary Environments and Uranium Enrichment in the Yaojia Formation, Qianjiadian Depression, Kailu Basin, Nei Mongol. Sedimentary Geology and Tethyan Geology, 25(3): 74-79 (in Chinese with English abstract).
      Chen, X. L., Fang, X. H., Guo, Q. Y., et al., 2008a. Re- Disscussion on Uranium Metallogenesis in Qianjiadian Sag, Songliao Basin. Acta Geologica Sinica, 82(4): 553-561 (in Chinese with English abstract).
      Chen, X. L., Guo, Q. Y., Fang, X. H., et al., 2008b. Discussion on the Differences between Epigenetic Oxidized and Primary Red Beds. World Nuclear Geoscience, 25(4): 187-194 (in Chinese with English abstract).
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2006. Distribution Characteristics of Interlayer Oxidation Zone and Its Relationship with Sedimentary Facies and Uranium Mineralization in QJD Uranium Deposit, Songliao Basin, NE China. World Nuclear Geoscience, 23(3): 137-144 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2006.03.003
      Chen, X. L., Xiang, W. D., Li, T. G., et al., 2007. Lithofacies Characteristics of Ore-Hosting Horizon and Its Relationship to Uranium Mineralization in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 23(6): 335-341, 355 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2007.06.003
      Cheng, Y. H., Jin, R. S., Cuney, M., et al., 2024. The Strata Constraint on Large Scale Sandstone-Type Uranium Mineralization in Meso-Cenozoic Basins, Northern China. Acta Geologica Sinica, 98(7): 1953-1976 (in Chinese with English abstract).
      Cheng, Y. H., Wang, S. Y., Li, Y., et al., 2018. Late Cretaceous-Cenozoic Thermochronology in the Southern Songliao Basin, NE China: New Insights from Apatite and Zircon Fission Track Analysis. Journal of Asian Earth Sciences, 160: 95-106. https://doi.org/10.1016/j.jseaes.2018.04.015
      Cheng, Y. H., Wang, S. Y., Zhang, T. F., et al., 2020. Regional Sandstone-Type Uranium Mineralization Rooted in Oligo-Miocene Tectonic Inversion in the Songliao Basin, NE China. Gondwana Research, 88: 88-105. https://doi.org/10.1016/j.gr.2020.08.002
      Dai, S. F., Yang, J. Y., Ward, C. R., et al., 2015. Geochemical and Mineralogical Evidence for a Coal-Hosted Uranium Deposit in the Yili Basin, Xinjiang, Northwestern China. Ore Geology Reviews, 70: 1-30. https://doi.org/10.1016/j.oregeorev.2015.03.010
      Dill, H. G., 2010. The "Chessboard" Classification Scheme of Mineral Deposits: Mineralogy and Geology from Aluminum to Zirconium. Earth-Science Reviews, 100(1-4): 1-420. https://doi.org/10.1016/j.earscirev.2009.10.011
      Dill, H. G., 2016. Kaolin: Soil, Rock and Ore from the Mineral to the Magmatic, Sedimentary and Metamorphic Environments. Earth-Science Reviews, 161: 16-129. https://doi.org/10.1016/j.earscirev.2016.07.003
      Ding, B., Liu, H. X., Qiu, L. F., et al., 2022. Ilmenite Alteration and Its Adsorption and Catalytic Reduction in U Enrichment in Sandstone-Hosted U Deposits from the Northern Ordos Basin, North China. Minerals, 12(2): 167. https://doi.org/10.3390/min12020167
      Ding, B., Liu, H. X., Zhang, B., et al., 2020. Study on Ilmenite Alteration and Its Process of Uranium Enrichment in Sandstone-Type Uranium Deposits in Northern Ordos Basin. Geological Review, 66(2): 467-474 (in Chinese with English abstract).
      Du, C. C., Zhou, Y. P., 2019. Influence Factors on Permeability of Ore Layer in Uranium CO2+O2 In-Situ Leaching. Nonferrous Metals (Extractive Metallurgy), (7): 48-53 (in Chinese with English abstract).
      Duan, M. L., Song, H., Fan, Y. Q., et al., 2024. Mineralogical Characteristics of Neutral In-Situ Leaching Process in the Qian Ⅳ Block of the Qianjiadian Uranium Deposit, Songliao Basin. Mineralogy and Petrology, 44(1): 40-49 (in Chinese with English abstract).
      Gallegos, T. J., Campbell, K. M., Zielinski, R. A., et al., 2015. Persistent U(IV) and U(VI) Following In-Situ Recovery (ISR) Mining of a Sandstone Uranium Deposit, Wyoming, USA. Applied Geochemistry, 63: 222-234. https://doi.org/10.1016/j.apgeochem.2015.08.017
      Havelcová, M., Machovič, V., Mizera, J., et al., 2014. A Multi-Instrumental Geochemical Study of Anomalous Uranium Enrichment in Coal. Journal of Environmental Radioactivity, 137: 52-63. https://doi.org/10.1016/j.jenvrad.2014.06.015
      Ji, H. B., 2019. Study on Mechanism of Uranium Leaching and Solute Migration during the CO2+O2 In Situ Uranium Leach Mining Process in the Mengqiguer Deposit (Dissertation). East China Institute of Technology, Fuzhou (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract).
      Jin, R. S., Cheng, Y. H., Li, J. G., et al., 2017. Late Mesozoic Continental Basin "Red and Black Beds" Coupling Formation Constraints on the Sandstone Uranium Mineralization in Northern China. Geology in China, 44(2): 205-223 (in Chinese with English abstract).
      Johnson, R. H., Tutu, H., 2013. Reactive Transport Modeling at Uranium In Situ Recovery Sites: Uncertainties in Uranium Sorption on Iron Hydroxides. International Mine Water Association, 6: 377-382.
      Li, G. R., Zhou, Y. P., Zhao, K., et al., 2021. Research Progress on Mineral Leaching Technology of Sandstone Type Uranium Deposits. Nonferrous Metals (Extractive Metallurgy), (8): 9-19 (in Chinese with English abstract).
      Li, Y. Q., Cheng, X. H., 2018. Discussion on the Relationship between Humic Acid and Uranium Mineralization in Honghaigou Area of Yili Basin. Ground Water, 40(5): 140-142 (in Chinese with English abstract).
      Li, Z. Y., Liu, W. S., Li, W. T., et al., 2022. Exudative Metallogeny of the Hadatu Sandstone-Type Uranium Deposit in the Erlian Basin, Inner Mongolia. Geology in China, 49(4): 1009-1047 (in Chinese with English abstract).
      Liu, H. B., Xia, Y. L., Tian, S. F., 2007. Study on Geochronology and Uranium Source of Sandstone-Type Uranium Deposit in Dongsheng Area. Uranium Geology, 23(1): 23-29 (in Chinese with English abstract).
      Liu, H. X., Ding, B., Liu, W. H., et al., 2023. Progress of Research on Ilmenite Alteration and Sandstone-Type Uranium Mineralization. Uranium Geology, 39(2): 173-187 (in Chinese with English abstract).
      Liu, S. Y., Liu, J. H., Zhou, Y. P., et al., 2022. Study on Characteristics of Ore-Containing Layer Blockage during In-Situ Leaching of Uranium Mining. Nonferrous Metals (Extractive Metallurgy), (8): 65-75 (in Chinese with English abstract).
      Nasdala, L., Hanchar, J. M., Rhede, D., et al., 2010. Retention of Uranium in Complexly Altered Zircon: An Example from Bancroft, Ontario. Chemical Geology, 269(3-4): 290-300. https://doi.org/10.1016/j.chemgeo.2009.10.004
      Ning, J., Li, J. M., Lu, T. J., et al., 2023. Characteristics of Clay Minerals in the Lower Member of Yaojia Formation and Its Significance for Hailijin Uranium Deposit in the South of Songliao Basin. Uranium Geology, 39(2): 188-201 (in Chinese with English abstract).
      Pang, Y. Q., Chen, X. L., Fang, X. H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23 (in Chinese with English abstract).
      Payne, T. E., 1999. Uranium (Ⅵ) Interaction with Mineral Surfaces: Controlling Factors and Surface Complexation Modelling. University of New South Wales, Wales https://doi.org/10.26190/unsworks/19387
      Reynolds, H., 2013. Synthesis, Characterisation and Dissolution Studies of the Uranium Mineral Coffinite. RMIT University, Melbourne.
      Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166 (in Chinese with English abstract).
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Sassen, R., 1984. Effects of Radiation Exposure on Indicators of Thermal Maturity. Organic Geochemistry, 5(4): 183-186. https://doi.org/10.1016/0146-6380(84)90004-4
      Smieja-Król, B., Duber, S., Rouzaud, J. N., 2009. Multiscale Organisation of Organic Matter Associated with Gold and Uranium Minerals in the Witwatersrand Basin, South Africa. International Journal of Coal Geology, 78(1): 77-88. https://doi.org/10.1016/j.coal.2008.09.007
      Song, H., Fan, Y. Q., Zhang, C. J., et al., 2024. Advances in the Study of Process Mineralogy of Sandstone-Type Uranium Deposits in Northern China. Mineralogy and Petrology, 44(1): 11-29 (in Chinese with English abstract).
      Su, X. B., Du, Z. M., 2012. Development and Prospect of China Uranium In-Situ Leaching Technology. China Mining Magazine, 21(9): 79-83 (in Chinese with English abstract).
      Sun, B., Chen, S. T., Zhou, Q. L., et al., et al., 2020. Analysis of Factors Affecting Leaching Rate in In-Situ Leaching of Uranium. Modern Mining, 36(8): 89-93 (in Chinese with English abstract).
      Sun, Y. H., Wu, L. Q., Jiao, Y. Q., et al., 2020. Effect of Zircon Self-Radiation Damage on Lattice Destruction and Elements Migration. Geotectonica et Metallogenia, 44(4): 772-782 (in Chinese with English abstract).
      Sun, Y. H., Wu, L. Q., Jiao, Y. Q., et al., 2021. Alteration and Elements Migration of Detrital Zircons from the Daying Uranium Deposit in the Ordos Basin, China. Ore Geology Reviews, 139: 104418. https://doi.org/10.1016/j.oregeorev.2021.104418
      Sun, Z. X., Asghar, F., Zhao, K., et al., 2021. Review and Prospect of Uranium Mining and Metallurgy in China. Nonferrous Metals (Extractive Metallurgy), (8): 1-8 (in Chinese with English abstract).
      Tian, Z. H., Song, H., Fan, Y. Q., et al., 2024. Study on Uranium Occurrence State and Process Mineralogy of Uranium Minerals in Nalinggou Uranium Deposit, Ordos Basin. Mineralogy and Petrology, 44(1): 61-70 (in Chinese with English abstract).
      Wang, L., Li, X. L., Zhang, B., 2016. Study on CO2+O2 In-Situ Leaching Uranium with High Carbonate and Bicarbonate Content Sandstone Uranium Deposit. Uranium Mining and Metallurgy, 35(4): 253-260 (in Chinese with English abstract).
      Wolde Gabriel, G., Boukhalfa, H., Ware, S. D., et al., 2014. Characterization of Cores from an In-Situ Recovery Mined Uranium Deposit in Wyoming: Implications for Post-Mining Restoration. Chemical Geology, 390: 32-45. https://doi.org/10.1016/j.chemgeo.2014.10.009
      Xia, F. Y., Jiao, Y. Q., Rong, H., et al., 2019. Geochemical Characteristics and Geological Implications of Sandstones from the Yaojia Formation in Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 44(12): 4235-4251 (in Chinese with English abstract).
      Xia, Y. L., Lin, J. R., Li, Z. Y., et al., 2003. Perspective and Resource Evaluation and Metallogenic Studies on Sandstone-Type Uranium Deposit in Qianjiadian Depression of Songliao Basin. China Nuclear Science and Technology Report, (3): 105-117 (in Chinese with English abstract).
      Xiang, W. D., Chen, Z. B., Chen, Z. Y., et al., 2000. Discussion on Relationship between Organic Matter and Metallo-Genesis of Epigenetic Sandstone-Type Uranium Deposits: Take Shihongtan District in Turpan-Hami Basin as an Example. Uranium Geology, 16(2): 65-73, 114 (in Chinese with English abstract).
      Yin, J. H., Zhang, H., Zan, G. J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 82-89 (in Chinese with English abstract).
      Yin, J. S., Xiang, W. D., Ou, G. X., et al., 2005. Sandstone-Type Uranium Mineralization with Respect to Organic Matter, Microbe, and Oil and Gas. Uranium Geology, 21(5): 287-295, 274 (in Chinese with English abstract).
      Yin, S., Yan, Z. B., Fu, J. L., et al., 2024. Polymorphic Transformations of Titanium Oxides Contribute to Economic Uranium Mineralization in Sandstone. Geology, 52(7): 481-485. https://doi.org/10.1130/g51982.1
      Yu, H. J., Song, H., Wang, Z. X., et al., 2024. Changes of Uranium Occurrence State in Neutral CO2+O2 In-Situ Leaching in the Mengqiguer Sandstone-Type Uranium Deposit in Yili Basin. Mineralogy and Petrology, 44(1): 81-90 (in Chinese with English abstract).
      Yuan, X., Liu, J. H., Zhou, Y. P., 2022. Kinetics of Calcite Dissolution and Precipitation in Groundwater Transport. Nonferrous Metals (Extractive Metallurgy), (1): 88-96 (in Chinese with English abstract).
      Yuan, X., Liu, J. H., Zhou, Y. P., et al., 2021. Effect of CO2+O2 In-Situ Leaching of Uranium on Permeability of Ore-Bearing Layer. Nonferrous Metals (Extractive Metallurgy), (5): 50-57 (in Chinese with English abstract).
      Yuan, Y., Jiang, G. P., Liao, T. W., et al., 2019. Research on Main Influence Factors on Calcium Carbonate Scaling of In-Situ Leaching Process. China Mining Magazine, 28(11): 128-130 (in Chinese with English abstract).
      Yue, L., 2021. The Formation Process and Evolution Law of Pyrite in Uranium Reservoir in Zhiluo Formation, Northern Ordos Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Yue, L., Jiao, Y. Q., Fayek, M., et al., 2022. Transformation of Fe-Bearing Minerals from Dongsheng Sandstone-Type Uranium Deposit, Ordos Basin, North-Central China: Implications for Ore Genesis. American Mineralogist, 107(7): 1396-1409. https://doi.org/10.2138/am-2021-7888
      Zhang, C. J., Tan, Y. H., Song, H., et al., 2024. Theory, Current Status and Problems of Process Mineralogy Research on In-Situ Leachable Sandstone-Type Uranium Deposits. Mineralogy and Petrology, 44(1): 1-10, 169 (in Chinese with English abstract).
      Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019. In-Situ Analyses of Organic Matter Maturation Heterogeneity of Uranium-Bearing Carbonaceous Debris within Sandstones: A Case Study from the Ordos Basin in China. Ore Geology Reviews, 109: 117-129. https://doi.org/10.1016/j.oregeorev.2019.03.021
      Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2021. Roles of Dispersed Organic Matters in Sandstone-Type Uranium Mineralization: A Review of Geological and Geochemical Processes. Ore Geology Reviews, 139: 104485. https://doi.org/10.1016/j.oregeorev.2021.104485
      Zhang, F. F., Su, X. B., Xing, Y. G., et al., 2012. New Progresses on In-Situ Leaching of Uranium Deposit. China Mining Magazine, 21(S1): 9-12 (in Chinese with English abstract).
      Zhang, M. Y., Zheng, J. W., Tian, S. F., et al., 2005. Research on Existing State of Uranium and Uranium Ore-Formation Age at Qianjiadian Uranium Deposit in Kailu Depression. Uranium Geology, 21(4): 213-218 (in Chinese with English abstract).
      Zhang, Y. C., Rong, H., Jiao, Y. Q., et al., 2024. Occurrence State of Fe-Ti Oxides and Its Response to Uranium Mineralization Process in Interlayer Oxidation Zone of Qianjiadian Uranium Deposit. Earth Science, 49(6): 2024-2043 (in Chinese with English abstract).
      Zhang, Y. N., 2022. Study on Typical Mineral Dissolution Characteristics Related to CO2+O2 In Situ Leaching in a Uranium Mine in Xinjiang (Dissertation). East China Institute of Technology, Fuzhou (in Chinese with English abstract).
      Zhao, K., Zhang, Y. N., Zhou, Y. P., et al., 2023. Interaction between Gangue Mineral and Leaching Agent in CO2+O2 In-Situ Leaching. Nonferrous Metals (Extractive Metallurgy), (3): 68-87 (in Chinese with English abstract).
      Zhou, J., Song, H., Fan, Y. Q., et al., 2024. Impact of Layered Silicate Minerals on Uranium Leaching Efficiency during Sandstone-Type Uranium Leaching Process. Mineralogy and Petrology, 44(1): 143-152 (in Chinese with English abstract).
      Zhu, P., Chen, J. C., Yu, X. L., et al., 2011. Summary of In-Situ Leaching Technology for Uranium Mining in Sandstone-Type Uranium Deposits. Mining Technology, 11(4): 4-6, 92 (in Chinese).
      曹民强, 2021. 松辽盆地钱家店铀矿含铀岩系层序地层结构对铀成矿的约束. 地质科技通报, 40(4): 131-142.
      陈方鸿, 张明瑜, 林畅松, 2005. 开鲁盆地钱家店凹陷含铀岩系姚家组沉积环境及其富铀意义. 沉积与特提斯地质, 25(3): 74-79.
      陈晓林, 方锡珩, 郭庆银, 等, 2008a. 对松辽盆地钱家店凹陷铀成矿作用的重新认识. 地质学报, 82(4): 553-561.
      陈晓林, 郭庆银, 方锡珩, 等, 2008b. 试论后生氧化红层与原生红层的区别. 世界核地质科学, 25(4): 187-194.
      陈晓林, 向伟东, 李田港, 等, 2006. 松辽盆地QJD铀矿床层间氧化带的展布特征及其与沉积相、铀成矿的关系. 世界核地质科学, 23(3): 137-144.
      陈晓林, 向伟东, 李田港, 等, 2007. 松辽盆地钱家店铀矿床含矿层位的岩相特征及其与铀成矿的关系. 铀矿地质, 23(6): 335-341, 355.
      程银行, 金若时, Cuney, M., 等, 2024. 中国北方盆地大规模铀成矿作用: 地层篇. 地质学报, 98(7): 1953-1976.
      丁波, 刘红旭, 张宾, 等, 2020. 鄂尔多斯盆地北缘砂岩型铀矿含矿砂岩中钛铁矿蚀变及其聚铀过程探讨. 地质论评, 66(2): 467-474.
      杜超超, 周义朋, 2019. CO2+O2地浸采铀矿层渗透性影响因素. 有色金属(冶炼部分), (7): 48-53.
      段美铃, 宋昊, 范元清, 等, 2024. 松辽盆地钱家店铀矿床钱Ⅳ块中性地浸工艺矿物学特征. 矿物岩石, 44(1): 40-49.
      吉宏斌, 2019. 蒙其古尔铀矿床CO2+O2地浸过程中铀的浸出及溶质迁移机理研究(博士学位论文). 抚州: 东华理工大学.
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205.
      焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
      金若时, 程银行, 李建国, 等, 2017. 中国北方晚中生代陆相盆地红-黑岩系耦合产出对砂岩型铀矿成矿环境的制约. 中国地质, 44(2): 205-223.
      黎广荣, 周义朋, 赵凯, 等, 2021. 砂岩型铀矿浸出矿物工艺学研究进展. 有色金属(冶炼部分), (8): 9-19.
      李艳青, 程相虎, 2018. 试论伊犁盆地洪海沟地区腐殖酸与铀矿化的联系. 地下水, 40(5): 140-142.
      李子颖, 刘武生, 李伟涛, 等, 2022. 内蒙古二连盆地哈达图砂岩铀矿渗出铀成矿作用. 中国地质, 49(4): 1009-1047.
      刘汉彬, 夏毓亮, 田时丰, 2007. 东胜地区砂岩型铀矿成矿年代学及成矿铀源研究. 铀矿地质, 23(1): 23-29.
      刘红旭, 丁波, 刘威宏, 等, 2023. 有关砂岩中钛铁矿蚀变与铀成矿作用的研究进展. 铀矿地质, 39(2): 173-187.
      刘石玉, 刘金辉, 周义朋, 等, 2022. 地浸采铀过程中含矿层堵塞特征研究. 有色金属(冶炼部分), (8): 65-75.
      宁君, 李继木, 卢天军, 等, 2023. 松辽盆地南部海力锦铀矿床姚家组下段黏土矿物特征及其铀成矿意义. 铀矿地质, 39(2): 188-201.
      庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23.
      荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      宋昊, 范元清, 张成江, 等, 2024. 中国北方砂岩型铀矿床工艺矿物学研究若干进展. 矿物岩石, 44(1): 11-29.
      苏学斌, 杜志明, 2012. 我国地浸采铀工艺技术发展现状与展望. 中国矿业, 21(9): 79-83.
      孙冰, 陈世团, 周庆来, 等, 2020. 原地浸出采铀过程中浸出率影响因素分析. 现代矿业, 36(8): 89-93.
      孙钰函, 吴立群, 焦养泉, 等, 2020. 锆石自辐射损伤对晶格破坏与元素运移的影响. 大地构造与成矿学, 44(4): 772-782.
      孙占学, Fiaz Asghar, 赵凯, 等, 2021. 中国铀矿采冶回顾与展望. 有色金属(冶炼部分), (8): 1-8.
      田增辉, 宋昊, 范元清, 等, 2024. 鄂尔多斯盆地纳岭沟铀矿床铀赋存状态及铀矿物工艺矿物学研究. 矿物岩石, 44(1): 61-70.
      王亮, 李喜龙, 张渤, 2016. 高含量碳酸氢根-碳酸盐砂岩铀矿CO2+O2浸出技术研究. 铀矿冶, 35(4): 253-260.
      夏飞勇, 焦养泉, 荣辉, 等, 2019. 松辽盆地南部钱家店铀矿床姚家组砂岩地球化学特征及地质意义. 地球科学, 44(12): 4235-4251. doi: 10.3799/dqkx.2019.045
      夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告(3): 105-117.
      向伟东, 陈肇博, 陈祖伊, 等, 2000. 试论有机质与后生砂岩型铀矿成矿作用: 以吐哈盆地十红滩地区为例. 铀矿地质, 16(2): 65-73, 114.
      殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 82-89.
      尹金双, 向伟东, 欧光习, 等, 2005. 微生物、有机质、油气与砂岩型铀矿①. 铀矿地质, 21(5): 287-295, 274.
      于慧杰, 宋昊, 王泽鑫, 等, 2024. 伊犁盆地蒙其古尔砂岩型铀矿床中性CO2+O2地浸中铀的赋存状态变化特征及其规律. 矿物岩石, 44(1): 81-90.
      袁新, 刘金辉, 周义朋, 2022. 地下水运移过程中碳酸钙溶解沉淀的反应动力学. 有色金属(冶炼部分), (1): 88-96.
      袁新, 刘金辉, 周义朋, 等, 2021. CO2+O2地浸采铀工艺对含矿层渗透性的影响. 有色金属(冶炼部分), (5): 50-57.
      原渊, 江国平, 廖天伟, 等, 2019. 地浸采铀碳酸钙结垢主要影响因素研究. 中国矿业, 28(11): 128-130.
      乐亮, 2021. 鄂尔多斯盆地北部直罗组铀储层中黄铁矿的形成过程与演化规律(博士学位论文). 武汉: 中国地质大学.
      张成江, 谭亚辉, 宋昊, 等, 2024. 可地浸砂岩型铀矿工艺矿物学研究理论、现状与问题思考. 矿物岩石, 44(1): 1-10, 169.
      张飞凤, 苏学斌, 邢拥国, 等, 2012. 地浸采铀新工艺综述. 中国矿业, 21(S1): 9-12.
      张明瑜, 郑纪伟, 田时丰, 等, 2005. 开鲁坳陷钱家店铀矿床铀的赋存状态及铀矿形成时代研究. 铀矿地质, 21(4): 213-218.
      张宇辰, 荣辉, 焦养泉, 等, 2024. 钱家店铀矿床层间氧化带中铁钛氧化物的赋存状态及其对铀成矿的响应. 地球科学, 49(6): 2024-2043. doi: 10.3799/dqkx.2023.181
      张一诺, 2022. 新疆某铀矿CO2+O2地浸相关典型矿物溶解特征研究(硕士学位论文). 抚州: 东华理工大学.
      赵凯, 张一诺, 周义朋, 等, 2023. CO2+O2地浸采铀脉石矿物与浸矿剂相互作用研究. 有色金属(冶炼部分), (3): 68-87.
      周靖, 宋昊, 范元清, 等, 2024. 层状硅酸盐矿物对砂岩型铀矿地浸过程中铀浸出效率的影响. 矿物岩石, 44(1): 143-152.
      朱鹏, 陈建昌, 尉小龙, 等, 2011. 砂岩型铀矿床地浸采铀工艺方法概述. 采矿技术, 11(4): 4-6, 92.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (34) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return