• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Liu Hongping, Luo Yang, 2025. P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone. Earth Science, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108
    Citation: Liu Hongping, Luo Yang, 2025. P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone. Earth Science, 50(5): 1999-2010. doi: 10.3799/dqkx.2024.108

    P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone

    doi: 10.3799/dqkx.2024.108
    • Received Date: 2024-07-02
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • It is an important method to simulate P- and S-wave velocities using digital core obtained from X-ray CT images. However, since it is impossible to differentiate clay and grains, and abundant micro-pores exist in shaly tight sandstones, simulating P- and S-wave velocities using digital core is a challenge. In this study, 2D digital core models are constructed and simulated using finite element method to understand the effect of clay content and distribution, amount of micro-pores on the rock elastic properties. The results will be used to assist the construction of a 3D model that can be used to simulated P- and S-wave velocities of shaly sandstones. The results show that dispersed clay and framework clay have minor effects on the bulk modulus, while interstitial clay shows large effect on bulk modulus. Effects of the different clay distributions on shear modulus are similar. Clay distribution has larger effect on bulk modulus than clay content, whereas clay content has larger effect on shear modulus than clay distribution. Micro-pores related to dispersed clay have minor effect on rock elastic properties, however micro-pores related to framework clay and grain-grain contact clay are sensitive to rock elastic properties. In addition, micro-pores have larger effect on shear modulus than bulk modulus. Based on the above results, a 3D digital core model using 3D watershed method on the X-ray images has been built and the results show good match with the measured velocities.

       

    • loading
    • Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., et al., 2002. Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement between Theory and Experiment. Geophysics, 67(5): 1396. https://doi.org/10.1190/1.1512785
      Cheng, J. W., Zhang, F., Li, X. Y., 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312 (in Chinese with English abstract).
      Dvorkin, J., Nur, A., 1996. Elasticity of High-Porosity Sandstones: Theory for Two North Sea Data Sets. Geophysics, 61(5): 1363-1370. https://doi.org/10.1190/1.1444059
      Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
      Jiang, L. M., 2012. Numerical Simulation of Acoustic and Electrical Characteristics of Natural Gas Reservoir Rocks Based on Digital Cores (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract).
      Jin, G. D., Patzek, T. W., Silin, D. B., 2012. Modeling the Impact of Rock Formation History on the Evolution of Absolute Permeability. Journal of Petroleum Science and Engineering, 100: 153-161. https://doi.org/10.1016/j.petrol.2012.03.005
      Li, W., Gao, L., 2013. Pavement Crack Detection Based on Improved Watershed Algorithm. Computer Engineering and Applications, 49(20): 263-266, 270 (in Chinese with English abstract). doi: 10.3778/j.issn.1002-8331.1210-0221
      Lin, C. L., Miller, J. D., Luttrell, G. H., 2002. Evaluation of a CT-Based Coal Washability Analysis System under Simulated On-Line Conditions. Mining, Metallurgy & Exploration, 19(1): 9-16. https://doi.org/10.1007/BF03402894
      Liu, H. P., Luo, Y., Zhao, Y. C., et al., 2022. Controlling Factors and Predictions of Well-Connected Pore-Throat Volumes in Tight Oil Sandstones. Journal of Petroleum Science and Engineering, 218: 111034. https://doi.org/10.1016/j.petrol.2022.111034
      Liu, H. P., Rodrigues, S., Shi, F. N., et al., 2017. Coal Washability Analysis Using X-Ray Tomographic Images for Different Lithotypes. Fuel, 209: 162-171. https://doi.org/10.1016/j.fuel.2017.07.104
      Liu, X. F., 2010. Numerical Simulation of Elastic and Electrical Properties of Rock Based on Digital Cores (Dissertation). China University of Petroleum (East China), Qingdao (in Chinese with English abstract).
      Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook (2nd Ed). Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511626753
      Minear, J. W., 1982. Clay Models and Acoustic Velocities. 57th Annual Meeting, American Institute of Mining, Metallurgical and Petroleum Engineers, Dallas, https://doi.org/10.2118/11031-MS
      Nur, A., Simmons, G., 1969. The Effect of Saturation on Velocity in Low Porosity Rocks. Earth and Planetary Science Letters, 7(2): 183-193. https://doi.org/10.1016/0012-821X(69)90035-1
      Qiao, H. Q., Liu, C., Fang, H., et al., 2023. S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model. Earth Science, 48(8): 2993-3006 (in Chinese with English abstract).
      Sams, M. S., Andrea, M., 2001. The Effect of Clay Distribution on the Elastic Properties of Sandstones. Geophysical Prospecting, 49(1): 128-150. https://doi.org/10.1046/j.1365-2478.2001.00230.x
      Saxena, N., Mavko, G., 2016. Estimating Elastic Moduli of Rocks from Thin Sections: Digital Rock Study of 3D Properties from 2D Images. Computers & Geosciences, 88: 9-21. https://doi.org/10.1016/j.cageo.2015.12.008
      Sheppard, A. P., Sok, R. M., Averdunk, H., 2004. Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials. Physica A: Statistical Mechanics and Its Applications, 339(1/2): 145-151. https://doi.org/10.1016/j.physa.2004.03.057
      Shulakova, V., Pervukhina, M., Müller, T. M., et al., 2013. Computational Elastic Up-Scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images. Geophysical Prospecting, 61(2): 287-301. https://doi.org/10.1111/j.1365-2478.2012.01082.x
      Smith, T. M., Sayers, C. M., Sondergeld, C. H., 2009. Rock Properties in Low-Porosity/Low-Permeability Sandstones. The Leading Edge, 28(1): 48-59. https://doi.org/10.1190/1.3064146
      Soille, P., 2003. Morphological Image Analysis-Principles and Applications. Springer, New York.
      Swanson, B. F., 1985. Microporosity in Reservoir Rocks-Its Measurement and Influence on Electrical Resistivity. The Log Analyst, 26(6): 42-52.
      Torskaya, T. S., 2013. Pore-Scale Analysis of Grain Shape and Sorting Effects on Fluid Transport Phenomena in Porous Media (Dissertation). The University of Texas at Austin, Austin.
      Wang, K. W., 2007. Reservoir Rock Electrical Properties Study Based on Percolation Network Model and Upscaling (Dissertation). China University of Petroleum (East China), Dongying (in Chinese with English abstract).
      Wyllie, M. R. J., Gregory, A. R., Gardner, G. H. F., 1958. An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media. Geophysics, 23(3): 459-493. https://doi.org/10.1190/1.1438493
      Xu, M. M., Yin, X. Y., Zong, Z. Y., et al., 2020. Rock-Physics Model of Volcanic Rocks, an Example from Junggar Basin of China. Journal of Petroleum Science and Engineering, 195: 107003. https://doi.org/10.1016/j.petrol.2020.107003
      Xu, S. Y., White, R. E., 1995. A New Velocity Model for Clay-Sand Mixtures 1. Geophysical Prospecting, 43(1): 91-118. https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
      Zeng, W. C., 1991. Oil and Gas Reservoir Well Logging Evaluation Technology. Petroleum Industry Press, Beijing (in Chinese).
      程绩伟, 张峰, 李向阳, 2024. 四川盆地含裂缝海相页岩储层正交各向异性岩石物理建模. 地球科学, 49(1): 299-312. doi: 10.3799/dqkx.2022.229
      姜黎明, 2012. 基于数字岩心的天然气储层岩石声电特性数值模拟研究(博士学位论文). 青岛: 中国石油大学(华东).
      黎蔚, 高璐, 2013. 基于改进的分水岭算法的路面裂缝检测. 计算机工程与应用, 49(20): 263-266, 270.
      刘学锋, 2010. 基于数字岩心的岩石声电特性微观数值模拟研究(博士学位论文). 青岛: 中国石油大学(华东).
      乔汉青, 刘财, 方慧, 等, 2023. 基于统计学岩石物理模型的火山岩横波速度预测方法. 地球科学, 48(8): 2993-3006. doi: 10.3799/dqkx.2022.417
      王克文, 2007. 基于逾渗网络模型和升尺度方法的储层岩石电性研究(博士学位论文). 东营: 中国石油大学(华东).
      曾文冲, 1991. 油气藏储集层测井评价技术. 北京: 石油工业出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(12)  / Tables(1)

      Article views (45) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return