Citation: | Liu Cong, Chen Yongji, Zhang Tiao, Lu Quanzhong, 2025. Landslide Susceptibility Mapping Based on AI Technology. Earth Science, 50(6): 2270-2283. doi: 10.3799/dqkx.2024.114 |
Alkhasawneh, M. S., Ngah, U. K., Tay, L. T., et al., 2014. Modeling and Testing Landslide Hazard Using Decision Tree. Journal of Applied Mathematics, (1): 929768. https://doi.org/10.1155/2014/929768
|
Breiman, L, 1996. Bagging Predictors. Machine Learning, 24: 123-140.
|
Breiman, L, 2001. Random Forests. Mach. Learn., 45(1): 5-32. https://doi.org/10.1023/a:1010933404324
|
Catani, F., Lagomarsino, D., Segoni, S., et al., 2013. Landslide Susceptibility Estimation by Random Forests Technique: Sensitivity and Scaling Issues. Natural Hazards and Earth System Sciences, 13(11): 2815-2831. https://doi.org/10.5194/nhess-13-2815-2013
|
Chang, Z. L., Catani, F., Huang, F. M., et al., 2023. Landslide Susceptibility Prediction Using Sope Unit-Based Machine Learning Models Considering the Heterogeneity of Conditioning Factors. Journal of Rock Mechanics and Geotechnical Engineering, 15(5): 1127-1143. https://doi.org/10.1016/j.jrmge.2022.07.009
|
Dikshit, A., Pradhan, B., Alamri, A. M., 2021. Pathways and Challenges of the Application of Artificial Intelligence to Geohazards Modelling. Gondwana Research, 100: 290-301. https://doi.org/10.1016/j.gr.2020.08.007
|
Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al., 2020. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. ArXiv e-Prints: arXiv: 2010.11929.
|
Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674(in Chinese with English abstract).
|
Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers & Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470
|
Hochreiter, S., Schmidhuber, J., 1997. Long Short-Term Memory. Neural Computation, 9(8): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
|
Huang, Y., Zhao, L., 2018. Review on Landslide Susceptibility Mapping Using Support Vector Machines. Catena, 165: 520-529. https://doi.org/10.1016/j.catena.2018.03.003
|
Jia, J., Mao, Y. M., Meng, X. J., et al., 2023. Comparison of Landslide Susceptibility Evaluation by Deep Random Forest and Random Forest Model: A Case Study of Lueyang County, Hanzhong City. Northwestern Geology, 56(3): 239-249(in Chinese with English abstract).
|
Kirschbaum, D., Stanley, T., 2018. Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earth's Future, 6(3): 505-523. https://doi.org/10.1002/2017ef000715
|
Krizhevsky, A., Sutskever, I., Hinton, G., 2012. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. https://doi.org/10.1145/3065386
|
Li, L. P., Lan, H. X., Guo, C. B., et al., 2017. Geohazard Susceptibility Assessment along the Sichuan-Tibet Railway and Its Adjacent Area Using an Improved Frequency Ratio Method. Geoscience, 31(5): 911-929 (in Chinese with English abstract).
|
Li, X. P., Chong, J. X., Lu, Y. B., et al., 2022. Application of Information Gain in the Selection of Factors for Regional Slope Stability Evaluation. Bulletin of Engineering Geology and the Environment, 81(11): 470. https://doi.org/10.1007/s10064-022-02970-y
|
Liu, F., Deng, Y. H., Mu, H. D., et al., 2023. A Study of the Stability Evaluation Method of Rainfall-Induced Shallow Loess Landslides Based on the Maxent-Sinmap Slope Model. Hydrogeology & Engineering Geology, 50(5): 146-158(in Chinese with English abstract).
|
Liu, S. L., Wang, L. Q., Zhang, W. G., et al., 2023. A Comprehensive Review of Machine Learning-Based Methods in Landslide Susceptibility Mapping. Geological Journal, 58(6): 2283-2301. https://doi.org/10.1002/gj.4666
|
Lyu, L., Chen, T., Li, J., 2023. An Interpretation Study on the ML Models for Landslide Susceptibility Mapping. IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium. July 16-21, 2023, Pasadena, CA, USA. IEEE, 7241-7244.
|
Miao, F. S., Wu, Y. P., Xie, Y. H., et al., 2018. Prediction of Landslide Displacement with Step-Like Behavior Based on Multialgorithm Optimization and a Support Vector Regression Model. Landslides, 15(3): 475-488. https://doi.org/10.1007/s10346-017-0883-y
|
Miao, F. S., Zhao, F. C., Wu, Y. P., et al., 2023. Landslide Susceptibility Mapping in Three Gorges Reservoir Area Based on GIS and Boosting Decision Tree Model. Stochastic Environmental Research and Risk Assessment, 37(6): 2283-2303. https://doi.org/10.1007/s00477-023-02394-4
|
Ngo, P. T. T., Panahi, M., Khosravi, K., et al., 2021. Evaluation of Deep Learning Algorithms for National Scale Landslide Susceptibility Mapping of Iran. Geoscience Frontiers, 12(2): 505-519. https://doi.org/10.1016/j.gsf.2020.06.013
|
Pham, B. T., Prakash, I., Singh, S. K., et al., 2019. Landslide Susceptibility Modeling Using Reduced Error Pruning Trees and Different Ensemble Techniques: Hybrid Machine Learning Approaches. Catena, 175: 203-218. https://doi.org/10.1016/j.catena.2018.12.018
|
Pradhan, B., Dikshit, A., Lee, S., et al., 2023. An Explainable AI (XAI) Model for Landslide Susceptibility Modeling. Applied Soft Computing, 142. https://doi.org/10.1016/j.asoc.2023.110324
|
Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001
|
Sahin, E. K., 2022. Comparative Analysis of Gradient Boosting Algorithms for Landslide Susceptibility Mapping. Geocarto International, 37(9): 2441-2465. https://doi.org/10.1080/10106049.2020.1831623
|
Saito, H., Nakayama, D., Matsuyama, H., 2009. Comparison of Landslide Susceptibility Based on a Decision-Tree Model and Actual Landslide Occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3-4): 108-121. https://doi.org/10.1016/j.geomorph.2009.02.026.
|
Stott, P., 2016. How Climate Change Affects Extreme Weather Events. Science, 352(6293): 1517-1518. https://doi.org/10.1126/science.aaf7271
|
Taalab, K., Cheng, T., Zhang, Y., 2018. Mapping Landslide Susceptibility and Types Using Random Forest. Big Earth Data, 2(2): 159-178. https://doi.org/10.1080/20964471.2018.1472392
|
Tian, N. M., Lan, H. X., Wu, Y. M., et al., 2020. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction. Journal of Geo-Information Science, 22(12): 2304-2316(in Chinese with English abstract).
|
van Westen, C. J., van Asch, T. W. J., Soeters, R., 2006. Landslide Hazard and Risk Zonation: Why is It still so Difficult?Bulletin of Engineering Geology and the Environment, 65(2): 167-184. https://doi.org/10.1007/s10064-005-0023-0
|
Wang, H. J., Wang, L., Zhang, L. M., 2023. Transfer Learning Improves Landslide Susceptibility Assessment. Gondwana Research, 123: 238-254. https://doi.org/10.1016/j.gr.2022.07.008
|
Wang, H. J., Zhang L., Luo H., et al., 2021. AI-Powered Landslide Susceptibility Assessment in Hong Kong. Engineering Geology, 288: 106103. https://doi.org/10.1016/j.enggeo.2021.106103
|
Wang, Y., Fang, Z. C., Hong, H. Y., 2019. Comparison of Convolutional Neural Networks for Landslide Susceptibility Mapping in Yanshan County, China. Science of the Total Environment, 666: 975-993. https://doi.org/10.1016/j.scitotenv.2019.02.263
|
Wang, Y. K., Tang, H. M., Huang, J. S., et al., 2022. A Comparative Study of Different Machine Learning Methods for Reservoir Landslide Displacement Prediction. Engineering Geology, 298: 106544. https://doi.org/10.1016/j.enggeo.2022.106544
|
Ward, P. J., Blauhut, V., Bloemendaal, N., et al., 2020. Review Article: Natural Hazard Risk Assessments at the Global Scale. Natural Hazards and Earth System Sciences, 20(4): 1069-1096. https://doi.org/10.5194/nhess-20-1069-2020
|
Xu, S. H., Liu, J. P., Wang, X. H., et al., 2020. Landslide Susceptibility Assessment Method Incorporating Index of Entropy Based on Support Vector Machine: A Case Study of Shaanxi Province. Geomatics and Information Science of Wuhan University, 45(8): 1214-1222(in Chinese with English abstract).
|
Yang, C., Liu, L. L., Huang, F. M., et al., 2023. Machine Learning-Based Landslide Susceptibility Assessment with Optimized Ratio of Landslide to Non-Landslide Samples. Gondwana Research, 123: 198-216. https://doi.org/10.1016/j.gr.2022.05.012
|
Zhang, W. G., He, Y. W., Wang, L. Q., et al., 2023. Landslide Susceptibility Mapping Using Random Forest and Extreme Gradient Boosting: A Case Study of Fengjie, Chongqing. Geological Journal, 58(6): 2372-2387. https://doi.org/10.1002/gj.4683
|
Zhu, J. J., Yang, M. Q., Ren, Z. J., 2023. Machine Learning in Environmental Research: Common Pitfalls and Best Practices. Environmental Science & Technology, 57(46): 17671-17689. https://doi.org/10.1021/acs.est.3c00026
|
Zuccaro, G., De Gregorio, D., Leone, M. F., 2018. Theoretical Model for Cascading Effects Analyses. International Journal of Disaster Risk Reduction, 30: 199-215. https://doi.org/10.1016/j.ijdrr.2018.04.019
|
窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657-1674. doi: 10.3799/dqkx.2022.419
|
贾俊, 毛伊敏, 孟晓捷, 等, 2023. 深度随机森林和随机森林算法的滑坡易发性评价对比: 以汉中市略阳县为例. 西北地质, 56(3): 239-249.
|
李郎平, 兰恒星, 郭长宝, 等, 2017. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价. 现代地质, 31(5): 911-929.
|
刘凡, 邓亚虹, 慕焕东, 等, 2023. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究. 水文地质工程地质, 50(5): 146-158.
|
田乃满, 兰恒星, 伍宇明, 等, 2020. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比. 地球信息科学学报, 22(12): 2304-2316.
|
徐胜华, 刘纪平, 王想红, 等, 2020. 熵指数融入支持向量机的滑坡灾害易发性评价方法: 以陕西省为例. 武汉大学学报(信息科学版), 45(8): 1214-1222.
|