| Citation: | Chen Huayong, Wu Chao, Xiao Bing, Wang Yunfeng, 2025. Superimposed Mineralization Model of Paleozoic Porphyry Copper Deposits in Xinjiang. Earth Science, 50(11): 4177-4194. doi: 10.3799/dqkx.2024.115 |
With the advance of green energy transformation in the 21st century, the demand for copper has surged dramatically and porphyry copper deposits as the main suppliers of global copper resources have been paid great attention from both academic and industrial communities. Although a set of classic models have been established for Cenozoic porphyry copper deposits, the porphyry copper deposits located at Paleozoic Central Asian Orogenic Belt exhibit unique characteristics and their genesis mechanisms are not fully understood. Taking important porphyry copper deposits in Xinjiang as research objects, this study reveals that these deposits generally experienced multiple magmatic activities with time spanning up to 100-200 Ma and often underwent superimposed and/or modification mineralization stages after porphyry mineralization. For example, the Tuwu-Yandong deposit has mineral assemblages of anhydrite, chalcopyrite, calcite, and chlorite after porphyry mineralization; the Yuhai-Sanchakou mining area exhibits post-porphyry veins of epidote, quartz, chlorite, zeolite, and calcite; and the Halasu copper belt shows late alteration and mineralization with copper-bearing sulfide veins and argillic alteration. Fluid inclusion studies further confirm that new fluid systems would overprint on the hydrothermal fluid system in the porphyry stage. Based on these observations, it proposes a new superimposed mineralization model of modification for Paleozoic porphyry copper deposits in Xinjiang. In the early stage of island arc evolution, pre-mineralization magmatic activities may form unmineralized alterations in the mining areas such as early sodic-calcic alteration and epidote alteration at the Halasu belt. With the maturity of the island arc, tectonic triggers such as flat subduction facilitated high oxygen fugacity, water-rich magmatic activities which partly have adakite-like geochemical features and formed the porphyry-type mineralization and alteration in the mining areas such as diorite porphyry in Tuwu-Yandong and diorite porphyry and granodiorite porphyry at Halasu. Further tectonic evolution including change of subduction polarity or postcollisional asthenospheric upwelling led to new magmatic hydrothermal activities superimposed on preexisting porphyry-type mineralization and alteration. Moreover, post-mineralization tectonic metamorphism may also introduce new mineralizing materials or cause remobilization of preexisting ores. The aforementioned models underscore the importance of specific tectonic or magmatic activities that may superimpose on pre-existing porphyry mineralization systems in long-lived arcs with sustained multistage magmatic activities. These activities, beyond the classic types of porphyry mineralization alteration, require special attention due to their exploration potential to introduce new mineralizing components.
|
Chen, H. Y., Wan, B., Pirajno, F., et al., 2018. Metallogenesis of the Xinjiang Orogens, NW China: New Discoveries and Ore Genesis. Ore Geology Reviews, 100: 1-11. https://doi.org/10.1016/j.oregeorev.2018.02.035
|
|
Chen, H. Y., Wu, C., 2020. Metallogenesis and Major Challenges of Porphyry Copper Systems above Subduction Zones. Science China Earth Sciences, 63(7): 899-918 (in Chinese). https://doi.org/10.1007/s11430-019-9595-8
|
|
Chiaradia, M., 2022. Distinct Magma Evolution Processes Control the Formation of Porphyry Cu-Au Deposits in Thin and Thick Arcs. Earth and Planetary Science Letters, 599: 117864. https://doi.org/10.1016/j.epsl.2022.117864
|
|
Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
|
|
Du, S. J., Qu, X., Deng, G., et al., 2010. Chronology and Tectonic Setting of the Intrusive Bodies and Associated Porphyry Copper Deposit in Hersai Area, Eastern Junggar. Acta Petrologica Sinica, 26(10): 2981-2996 (in Chinese with English abstract).
|
|
Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Geological Characteristics and Genesis of the Tuwu Porphyry Copper Deposit, Hami, Xinjiang, Central Asia. Ore Geology Reviews, 29(1): 77-94. https://doi.org/10.1016/j.oregeorev.2005.07.032
|
|
Hou, Z. Q., 2004. Porphyry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract).
|
|
Hou, Z. Q., Yang, Z. M., 2009. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic-Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12): 1779-1817 (in Chinese with English abstract).
|
|
Hou, Z. Q., Yang, Z. M., Wang, R., et al., 2020. Further Discussion on Porphyry Cu-Mo-Au Deposit Formation in Chinese Mainland. Earth Science Frontiers, 27(2): 20-44 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.sf.2020.3.8
|
|
Long, L. L., Wang, Y. W., Du, A. D., et al., 2011. Molybdenite Re-Os Age of Xilekuduke Cu-Mo Deposit in Xinjiang and Its Geological Significance. Mineral Deposits, 30(4): 635-644 (in Chinese with English abstract).
|
|
Lowell, J. D., Guilbert, J. M., 1970. Lateral and Vertical Alteration-Mineralization Zoning in Porphyry Ore Deposits. Economic Geology, 65(4): 373-408. https://doi.org/10.2113/gsecongeo.65.4.373
|
|
Meng, X. Y., Mao, J. W., Simon, A., et al., 2024. Contrasting Tectonomagmatic Conditions for Coexisting Iron Oxide-Apatite Deposits and Porphyry and Skarn Cu ± Au Deposits in the Middle-Lower Yangtze River Metallogenic Belt, China. Economic Geology, 119(5): 1059-1087. https://doi.org/10.5382/econgeo.5084
|
|
Richards, J. P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
|
|
Rui, Z. Y., Wang, L. S., Wang, Y. T., et al., 2002. Discussion on Metallogenic Epoch of Tuwu and Yandong Porphyry Copper Deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 21(1): 16-22 (in Chinese with English abstract).
|
|
Shen, P., Dong, L. H., Feng, J., et al., 2010. Distribution, Age and Metallogenic Characteristics of the Porphyry Copper Deposits in Xinjiang, China. Xinjiang Geology, 28(4): 358-364 (in Chinese with English abstract).
|
|
Shen, P., Pan, H. D., Eleonora, S., 2015. Characteristics of the Porphyry Cu Deposits in the Central Asia Metallogenic Domain. Acta Petrologica Sinica, 31(2): 315-332 (in Chinese with English abstract).
|
|
Shen, P., Pan, H. D., Zhou, T. F., et al., 2014. Petrography, Geochemistry and Geochronology of the Host Porphyries and Associated Alteration at the Tuwu Cu Deposit, NW China: A Case for Increased Depositional Efficiency by Reaction with Mafic Hostrock? Mineralium Deposita, 49(6): 709-731. https://doi.org/10.1007/s00126-014-0517-4
|
|
Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3-41. https://doi.org/10.2113/gsecongeo.105.1.3
|
|
Sun, W. D., Huang, R. F., Li, H., et al., 2015. Porphyry Deposits and Oxidized Magmas. Ore Geology Reviews, 65: 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
|
|
Sun, Y., Xiao, Y. F., Li, F. C., et al., 2009. The Mineralizing Fluid Characteristics and Genesis of the Sanchakou Copper Deposit in Xinjiang. Geology and Exploration, 45(3): 235-239 (in Chinese with English abstract).
|
|
Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Geochronology and Geochemistry of Late Paleozoic Magmatic Rocks in the Lamasu-Dabate Area, Northwestern Tianshan (West China): Evidence for a Tectonic Transition from Arc to Post-Collisional Setting. Lithos, 119(3/4): 393-411. https://doi.org/10.1016/j.lithos.2010.07.010
|
|
Tong, Y., Hong, D. W., Wang, T., et al., 2006. TIMS U-Pb Zircon Ages of Fuyun Post-Orogenic Linear Granite Plutons on the Southern Margin of Altay Orogenic Belt and Their Implications. Acta Petrologica et Mineralogica, 25(2): 85-89 (in Chinese with English abstract).
|
|
Tu, G. Z., 1999. On the Certral Asia Metallogenic Province. Chinese Journal of Geology (Scientia Geologica Sinica), 34(4): 397-404 (in Chinese with English abstract).
|
|
Wang, J. B., Xu, X., 2006. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31 (in Chinese with English abstract).
|
|
Wang, Y. F., 2018. Overprinting-Type Porphyry Cu Deposits and Associated Magmatism in the Eastern Tianshan, Xinjiang-Case Study of the Tuwu, Yandong, Yuhai and Sanchakou Cu deposits (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
|
|
Wang, Y. F., Chen, H. Y., Baker, M. J., et al., 2019. Multiple Mineralization Events of the Paleozoic Tuwu Porphyry Copper Deposit, Eastern Tianshan: Evidence from Geology, Fluid Inclusions, Sulfur Isotopes, and Geochronology. Mineralium Deposita, 54(7): 1053-1076. https://doi.org/10.1007/s00126-018-0859-4
|
|
Wang, Y. F., Chen, H. Y., Falloon, T. J., et al., 2022. The Paleozoic-Mesozoic Magmatic Evolution of the Eastern Tianshan, NW China: Constraints from Geochronology and Geochemistry of the Sanchakou Intrusive Complex. Gondwana Research, 103: 1-22. https://doi.org/10.1016/j.gr.2021.11.002
|
|
Wang, Y. F., Chen, H. Y., Han, J. S., et al., 2018a. Paleozoic Tectonic Evolution of the Dananhu-Tousuquan Island Arc Belt, Eastern Tianshan: Constraints from the Magmatism of the Yuhai Porphyry Cu Deposit, Xinjiang, NW China. Journal of Asian Earth Sciences, 153: 282-306. https://doi.org/10.1016/j.jseaes.2017.05.022
|
|
Wang, Y. F., Chen, H. Y., Xiao, B., et al., 2018b. Overprinting Mineralization in the Paleozoic Yandong Porphyry Copper Deposit, Eastern Tianshan, NW China—Evidence from Geology, Fluid Inclusions and Geochronology. Ore Geology Reviews, 100: 148-167. https://doi.org/10.1016/j.oregeorev.2017.04.013
|
|
Wang, Y. F., Chen, H. Y., Xiao, B., et al., 2016. Porphyritic-Overlapped Mineralization of Tuwu and Yandong Copper Deposits in Eastern Tianshan Mountains, Xinjiang. Mineral Deposits, 35(1): 51-68 (in Chinese with English abstract).
|
|
Wang, Y. H., Xue, C. J., Liu, J. J., et al., 2014. Geochemistry, Geochronology, Hf Isotope, and Geological Significance of the Tuwu Porphyry Copper Deposit in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 30(11): 3383-3399 (in Chinese with English abstract).
|
|
Wang, Y. H., Zhang, F. F., Liu, J. J., 2016. The Genesis of the Ores and Intrusions at the Yuhai Cu-Mo Deposit in Eastern Tianshan, NW China: Constraints from Geology, Geochronology, Geochemistry, and Hf Isotope Systematics. Ore Geology Reviews, 77: 312-331. https://doi.org/10.1016/j.oregeorev.2016.03.003
|
|
Wang, Y. W., Wang, J. B., Long, L. L., et al., 2012. Tectonic Evolution Stages of Northern Xinjiang and Tectonic Types of Porphyry-Epithermal Deposits. Geology in China, 39(3): 695-716 (in Chinese with English abstract).
|
|
Wu, C., Chen, H. Y., Hollings, P., et al., 2015. Magmatic Sequences in the Halasu Cu Belt, NW China: Trigger for the Paleozoic Porphyry Cu Mineralization in the Chinese Altay-East Junggar. Ore Geology Reviews, 71: 373-404. https://doi.org/10.1016/j.oregeorev.2015.06.017
|
|
Wu, C., Chen, H. Y., Liang, P., et al., 2018. Paragenesis and Fluid Evolution of the Halasu Ⅲ Porphyry Cu Deposit, East Junggar (NW China): Implications for the Paleozoic Multiphase Superimposing Mineralization in the Central Asian Orogenic Belt. Ore Geology Reviews, 100: 183-204. https://doi.org/10.1016/j.oregeorev.2016.08.001
|
|
Wu, C., Chen, H. Y., Lu, Y. J., 2022. Crustal Structure Control on Porphyry Copper Systems in Accretionary Orogens: Insights from Nd Isotopic Mapping in the Central Asian Orogenic Belt. Mineralium Deposita, 57(4): 631-641. https://doi.org/10.1007/s00126-021-01074-z
|
|
Wu, C., Cooke, D. R., Baker, M. J., et al., 2024. Using Pyrite Composition to Track the Multi-Stage Fluids Superimposed on a Porphyry Cu System. American Mineralogist, 109(5): 827-845. https://doi.org/10.2138/am-2022-8727
|
|
Xiao, B., 2016. Magmatic Evolution, Alteration Characteristics and Genesis of the Tuwu-Yandong Cu Belt, Xinjiang (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
|
|
Xiao, B., Chen, H. Y., 2020. Elemental Behavior during Chlorite Alteration: New Insights from a Combined EMPA and LA-ICPMS Study in Porphyry Cu Systems. Chemical Geology, 543: 119604. https://doi.org/10.1016/j.chemgeo.2020.119604
|
|
Xiao, B., Chen, H. Y., Hollings, P., et al., 2017. Magmatic Evolution of the Tuwu-Yandong Porphyry Cu Belt, NW China: Constraints from Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Gondwana Research, 43: 74-91. https://doi.org/10.1016/j.gr.2015.09.003
|
|
Xiao, B., Chen, H. Y., Wang, Y. F., et al., 2015. Discovery of the Late Silurian Granodiorite and Its Tectonic Significance in the Tuwu-Yandong Porphyry Copper Deposits, Dananhu-Tousuquan Island Arc, Eastern Tianshan. Earth Science Frontier, 22(6): 251-266 (in Chinese with English abstract).
|
|
Xiao, W. J., Song, D. F., Windley, B. F., et al., 2020. Accretionary Processes and Metallogenesis of the Central Asian Orogenic Belt: Advances and Perspectives. Science China Earth Sciences, 63(3): 329-361. https://doi.org/10.1007/s11430-019-9524-6
|
|
Yang, F. Q., Chai, F. M., Zhang, Z. X., et al., 2014. Zircon U-Pb Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of Granitoids in the Yulekenhalasu Copper Ore District, Northern Junggar, China: Petrogenesis and Tectonic Implications. Lithos, 190: 85-103. https://doi.org/10.1016/j.lithos.2013.12.003
|
|
Zhai, Y. S., Wang, J. P., Peng, R. M., et al., 2009. Research on Superimposed Metallogenic Systems and Polygenetic Mineral Deposits. Earth Science Frontiers, 16(6): 282-290 (in Chinese with English abstract).
|
|
Zhang, D., Fan, J. J., Liu, P., et al., 2013. 40Ar-39Ar Dating of Sericite in the Songkaersu Cu-Au Deposit of Eastern Junggar, Xinjiang. Journal of Mineralogy and Petrology, 33(4): 61-67 (in Chinese with English abstract).
|
|
Zhang, F. F., Wang, Y. H., Liu, J. J., et al., 2023. Multiple Mineralization Events at Paleozoic Sanchakou Porphyry Cu Deposit, Xinjiang: New Insights from Geology, Geochronology, Fluid Inclusions, and H-O-C Isotopes. Ore Geology Reviews, 163: 105726. https://doi.org/10.1016/j.oregeorev.2023.105726
|
|
Zhou, T. F., Yuan, F., Tan, L. G., et al., 2006. Time Limit, Geochemical Characteristics and Tectonic Setting of the Paleozoic Magmatism in the Sawuer Region, Xinjiang. Acta Petrologica Sinica, 22(5): 1225-1237 (in Chinese with English abstract).
|
|
陈华勇, 吴超, 2020. 俯冲带斑岩铜矿系统成矿机理与主要挑战. 中国科学: 地球科学, 50(7): 865-886.
|
|
杜世俊, 屈迅, 邓刚, 等, 2010. 东准噶尔和尔赛斑岩铜矿成岩成矿时代与形成的构造背景. 岩石学报, 26(10): 2981-2996.
|
|
侯增谦, 2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘, 11(1): 131-144.
|
|
侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型. 地质学报, 83(12): 1779-1817.
|
|
侯增谦, 杨志明, 王瑞, 等, 2020. 再论中国大陆斑岩Cu- Mo-Au矿床成矿作用. 地学前缘, 27(2): 20-44.
|
|
龙灵利, 王玉往, 杜安道, 等, 2011. 新疆希勒库都克铜钼矿床辉钼矿Re-Os年龄及其地质意义. 矿床地质, 30(4): 635-644.
|
|
芮宗瑶, 王龙生, 王义天, 等, 2002. 东天山土屋和延东斑岩铜矿床时代讨论. 矿床地质, 21(1): 16-22.
|
|
申萍, 董连慧, 冯京, 等, 2010. 新疆斑岩型铜矿床分布、时代及成矿特点. 新疆地质, 28(4): 358-364.
|
|
申萍, 潘鸿迪, Eleonora, S., 2015. 中亚成矿域斑岩铜矿床基本特征. 岩石学报, 31(2): 315-332.
|
|
孙燕, 肖渊甫, 李凤春, 等, 2009. 新疆三岔口铜矿床成矿流体性质及成因. 地质与勘探, 45(3): 235-239.
|
|
童英, 洪大卫, 王涛, 等, 2006. 阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义. 岩石矿物学杂志, 25(2): 85-89.
|
|
涂光炽, 1999. 初议中亚成矿域. 地质科学, 34(4): 397-404.
|
|
王京彬, 徐新, 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31.
|
|
王云峰, 2018. 新疆东天山叠加改造型斑岩铜矿成岩成矿作用研究——以土屋、延东、玉海和三岔口铜矿为例(博士学位论文). 北京: 中国科学院大学.
|
|
王云峰, 陈华勇, 肖兵, 等, 2016. 新疆东天山地区土屋和延东铜矿床斑岩‒叠加改造成矿作用. 矿床地质, 35(1): 51-68.
|
|
王银宏, 薛春纪, 刘家军, 等, 2014. 新疆东天山土屋斑岩铜矿床地球化学、年代学、Lu-Hf同位素及其地质意义. 岩石学报, 30(11): 3383-3399.
|
|
王玉往, 王京彬, 龙灵利, 等, 2012. 新疆北部大地构造演化阶段与斑岩‒浅成低温热液矿床的构造环境类型. 中国地质, 39(3): 695-716.
|
|
肖兵, 2016. 新疆土屋‒延东铜矿岩浆演化、蚀变特征与矿床成因(博士学位论文). 北京: 中国科学院大学.
|
|
肖兵, 陈华勇, 王云峰, 等, 2015. 东天山土屋‒延东铜矿矿区晚志留世岩体的发现及构造意义. 地学前缘, 22(6): 251-266.
|
|
翟裕生, 王建平, 彭润民, 等, 2009. 叠加成矿系统与多成因矿床研究. 地学前缘, 16(6): 282-290.
|
|
张栋, 范俊杰, 刘鹏, 等, 2013. 新疆东准噶尔松喀尔苏铜金矿区蚀变绢云母40Ar-39Ar年龄及其地质意义. 矿物岩石, 33(4): 61-67.
|
|
周涛发, 袁峰, 谭绿贵, 等, 2006. 新疆萨吾尔地区晚古生代岩浆作用的时限、地球化学特征及地球动力学背景. 岩石学报, 22(5): 1225-1237.
|