• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 49 Issue 11
    Nov.  2024
    Turn off MathJax
    Article Contents
    Cao Liang, Hu Peng, Jiang Junsheng, Chen Xin, Xiang Peng, Li Leguang, Lu Shansong, Zhao Kai, Tong Xirun, Wang Jianqing, 2024. Zircon and Cassiterite U-Pb Geochronology and Hf Isotopes of Kama Li-Nb-Ta Pegmatite Deposit and Its Geological Significance in Nasarawa, Central Nigeria. Earth Science, 49(11): 3971-3994. doi: 10.3799/dqkx.2024.116
    Citation: Cao Liang, Hu Peng, Jiang Junsheng, Chen Xin, Xiang Peng, Li Leguang, Lu Shansong, Zhao Kai, Tong Xirun, Wang Jianqing, 2024. Zircon and Cassiterite U-Pb Geochronology and Hf Isotopes of Kama Li-Nb-Ta Pegmatite Deposit and Its Geological Significance in Nasarawa, Central Nigeria. Earth Science, 49(11): 3971-3994. doi: 10.3799/dqkx.2024.116

    Zircon and Cassiterite U-Pb Geochronology and Hf Isotopes of Kama Li-Nb-Ta Pegmatite Deposit and Its Geological Significance in Nasarawa, Central Nigeria

    doi: 10.3799/dqkx.2024.116
    • Received Date: 2024-11-06
    • Publish Date: 2024-11-25
    • The Nasarawa region in central Nigeria is a typical area with developed lithium-niobium-tantalum rare metal pegmatite veins. The Kama granitic pegmatite-type rare metal deposit, located in the central part of the Nigerian lithium-niobium-tantalum-tin polymetallic metallogenic belt, is a newly discovered large deposit mainly containing lithium with associated niobium and tantalum ores. To define its metallogenic age and explore the sources and evolution of its mineralization process, this paper conducts a study of petrology, mineralogy, zircon and cassiterite U-Pb geochronology, zircon trace elements, and Lu-Hf isotopes on the ore-bearing pegmatite veins The zircon U-Pb dating yields the ages of (577.3±2.5) Ma (n=18, MSWD=6.4), and the cassiterite U-Pb dating yields the ages of (582.6±8.6) Ma (n=25, MSWD=0.72), therefore the pegmatite of the Kama deposit is inferred to have formed between 577 and 583 Ma, with the main mineralization occurring in the late Neoproterozoic. Trace elementsgeochemical analyses indicate that the pegmatites in the study area were formed during subduction-collision processes, with their magma source primarily being metamorphic sedimentary rocks, originating from the continental crust. The magma evolution process may have involved fractional crystallization of minerals such as plagioclase, apatite, and zircon. The intense fractional crystallization evolution of the magma results in rocks with highly differentiated evolutionary characteristics. The Hf isotopic compositions of zircon, cassiterite and columbite-tantalite in pegmatite show that the εHf(t) value of zircon is between -20.6 and -19.0, and the TDM2 value is 2.7 Ga; The εHf(t) value of cassiterite is between -17.7 and -14.9, and the TDM2 value varies between 2.4 Ga and 2.6 Ga. The εHf(t) value of Columbite-tantalite is between -15.9 and -7.4, and the TDM2 values are between 2.0 Ga and 2.4 Ga, indicating that the parent melt of pegmatite mainly originated from the remelting of Neoarchean-Proterozoic basement rocks. The mineralization of rare metal pegmatite deposits in Nigeria is closely related to Gondwana orogeny, which corresponds to the post-collision extension period of Gondwana orogeny.

       

    • loading
    • Abdallah, N., Liégeois, J. P., De Waele, B., et al., 2007. The Temaguessine Fe-Cordierite Orbicular Granite (Central Hoggar, Algeria): U-Pb SHRIMP Age, Petrology, Origin and Geodynamical Consequences for the Late Pan-African Magmatism of the Tuareg Shield. Journal of African Earth Sciences, 49(4/5): 153-178. https://doi.org/10.1016/j.jafrearsci.2007.08.005
      Adetunji, A., Olarewaju, V. O., Ocan, O. O., et al., 2018. Geochemistry and U-Pb Zircon Geochronology of Iwo Quartz Potassic Syenite, Southwestern Nigeria: Constraints on Petrogenesis, Timing of Deformation and Terrane Amalgamation. Precambrian Research, 307: 125-136. https://doi.org/10.1016/j.precamres.2018.01.015
      Ajibade, A. C., Wright, J. B., 1989. The Togo-Benin-Nigeria Shield: Evidence of Crustal Aggregation in the Pan-African Belt. Tectonophysics, 165(1/2/3/4): 125-129. https://doi.org/10.1016/0040-1951(89)90041-3
      Akintola, A, A. I., 2012. Compositional Features of Precambrian Pegmatites of Ago-Iwoye Area South Western, Nigeria. Journal of Ecology and the Natural Environment, 4(3): 71-87. https://doi.org/10.5897/jene11.112
      Ananaba, S. E., Ajakaiye, D. E., 1987. Evidence of Tectonic Control of Mineralization in Nigeria from Lineament Density Analysis a Landsat-Study. International Journal of Remote Sensing, 8(10): 1445-1453. https://doi.org/10.1080/01431168708954788
      Black, R., Latouche, L., Liégeois, J. P., et al., 1994. Pan-African Displaced Terranes in the Tuareg Shield (Central Sahara). Geology, 22(7): 641. https://doi.org/10.1130/0091-7613(1994)0220641: padtit>2.3.co;2 doi: 10.1130/0091-7613(1994)0220641:padtit>2.3.co;2
      Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
      Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
      Caby, R., 1989. Precambrian Terranes of Benin-Nigeria and Northeast Brazil and the Late Proterozoic South Atlantic Fit. Special Paper of the Geological Society of America, 230: 145-158. https://doi.org/10.1130/SPE230-p145
      Cao, L., Cui, S., Hu, P., et al., 2022. Development Status and Investment Environment of Mineral Resources in Nigeria. Geological Bulletin of China, 41(1): 167-183 (in Chinese with English abstract).
      Cao, L., Wang, L. X., Zhu, Y. X., et al., 2024. Termination of Anorogenic Alkaline Magmatism in Nigerian Younger Granite Province: Insights from Afu A-Type Granite Complex. International Journal of Earth Sciences, 113: 1029-1052. https://doi.org/10.1007/s00531-024-02401-1
      Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites revisited. Canadian Mineralogist, 43: 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
      Černý, P., London, D., Novak, M., et al., 2012. Granitic Pegmatites as Reflections of their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289
      Černý, P., Meintzer, R. E., Anderson, A. J., 1985. Extreme Fractionation in Rare-Element Granitic Pegmatites; Selected Examples of Data and Mechanisms. Canadian Mineralogist, 23: 381-421.
      Choubey, P. K., Kim, M., Srivastava, R. R., et al., 2016. Advance Review on the Exploitation of the Prominent Energy-Storage Element: Lithium. Part I: From Mineral and Brine Resources. Minerals Engineering, 89: 119-137. https://doi.org/10.1016/j.mineng.2016.01.010
      Dada, S. S., 1998. Crust-Forming Ages and Proterozoic Crustal Evoluton in Nigeria: A Reappraisal of Current Interpretations. Precambrian Research, 87: 65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
      Ferré, E. C., Caby, R., 2007. Granulite Facies Metamorphism and Chamockite Plutonism: Examples from the Neoproterozoic Belt of Northerm Nigeria. Proc. Gool. Soc. Lond, 118(1): 47-54. https://doi.org/10.1016/S0016-7878(07)80046-0
      Ferré, E. C., Gleizes, G., Caby, R., 2002. Obliquely Convergent Tectonics and Granite Emplacement in the Trans-Saharan Belt of Eastern Nigeria: A Synthesis. Precambriam Research, 114: 199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
      Ganade, C. E., Cordani, U. G., Agbossoumounde, Y., et al., 2016. Tightening-up NE Brazil and NW Africa Connections: New U-Pb/Lu-Hf Zircon Data of a Complete Plate Tectonic Cycle in the Dahomey Belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276: 24-42. https://doi.org/10.1016/j.precamres.2016.01.032
      Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., et al., 2014. Post-Collisional Pan-African Granitoids and Rare Metal Pegmatites in Western Nigeria: Age, Petrogenesis, and the 'Pegmatite Conundrum'. Lithos, 200-201: 22-34. https://doi.org/10.1016/j.lithos.2014.04.006
      Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1007/s00410-007-0201-0
      Grimes, C. B., Wooden, J. L., Cheadle, M. J, et al., 2015. "Fingerprinting"Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
      Han, J., Hanchar, J. M., Pan, Y., et al., 2023. Hydrothermal Alteration, not Metamictization, is the Main Trigger for Modifying Zircon in Highly Evolved Granites. GSA Bulletin. 136(5-6): 1878-1888. https://doi.org/10.1130/B36996.1
      Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; l, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64: 843-864. https://doi.org/10.2113/gsecongeo.64.8.843
      Jiang, S. Y., Wang, R. C., Xu, X. S., et al., 2005. Mobility of High Field Strength Elements (HFSE) in Magmatic-, Metamorphic-, and Submarine-Hydrothermal Systems. Physics and Chemistry of the Earth, Parts A/B/C, 30: 1020-1029. https://doi.org/10.1016/j.pce.2004.11.004
      Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the YunLong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021
      Jochum, K. P., Weis, U., Stoll, B., et al., 2011. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4): 397-429. https://doi.org/10.1111/j.1751-908x.2011.00120.x
      Jolliff, B. L., Papike, J. J., Shearer, C. K., 1992. Petrogenetic Relationships between Pegmatite and Granite Based on Geochemistry of Muscovite in Pegmatite Wall Zones, Black Hills, South Dakota, USA. Geochimica et Cosmochimica Acta, 56: 1915-1939. https://doi.org/10.1016/0016-7037(92)90320-I
      Kavanagh, L., Keohane, J., Cabellos, G. G., et al., 2018. Resources Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3): 57. https://doi.org/10.3390/resources7030057
      Kendall, L. L. A., Kemp, A. I. S., Grigson, J. L., et al., 2020. U-Pb and Reconnaissance Lu-Hf Isotope Analysis of Cassiterite and Columbite Group Minerals from Archean Li-Cs-Ta Type Pegmatites of Western Australia. Lithos, 352-353: 105231. https://doi.org/10.1016/j.lithos.2019.105231
      Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract).
      Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
      Liégeois, J. P., Latouche, L., Boughrara, M., et al., 2003. The LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria): Behaviour of an Old Passive Margin during the Pan-African Orogeny. Journal of African Earth Sciences, 37: 161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
      Lima, M. M. C., Ferreira, V. P., Silva, T. R., et al., 2021. Crustal Growth during Western Gondwana Amalgamation and Onset of the Brasiliano Orogeny: Insights from Geochemistry and Pb-Sr-Nd-O Isotopes from Granites in Northeastern Brazil. Lithos 396: 10. https://doi.org/10.1016/j.lithos.2021.106223
      Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Casiterite and Zircon from the DuLong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract).
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 30: 499-540. https://doi.org/10.1016/0169-1368(92)90013-B
      London, D., 2018. Ore Foming Proceses wihin Granais Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
      Lorenzo, M., Judith, A. K., Jérémie L., et al., 2015. Role of Crustal Contribution in the Early Stage of the Damara Orogen, Namibia: New Constraints from Combined U-Pb and Lu-Hf Isotopes from the Goas Magmatic Complex. Gondwana Research, 28: 961-986. http://doi.org/10.1016/j.gr.2014.08.007
      Mccauley, A., Bradley, D. C., 2014. The Global Age Distribution of Granitic Pegmatites. Canadian Mineralogist, 52: 183-190. https://doi.org/10.3749/canmin.52.2.183
      McNaughton, N. J., Pollard, P. J., Gulson, B. L., et al., 1993. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites: Comment and Reply. Geology, 21(3): 285-286. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2
      Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/c1ja10172b
      Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2018. Geology and Mineralogy of Li Mineralization in the Central Iberian Zone (Spainand Portugal). Mineralogical Magazine, 80(1): 103-126. https://doi.org/10.1180/minmag.2016.080.049
      Safiyanu, M. E., Li, H., Zheng, H., et al., 2022. Cryogenian Crustal Evolution in Western Nigeria Shield: Whole-Rock Geochemistry, Sr-Nd and Zircon U-Pb-Hf Isotopic Evidence from Bakoshi-Gadanya Granites. International Geology Review, 64: 2626-2652. https://doi.org/10.1080/00206814.2021.1998799
      Saleh, I. B., Yang, X. Y., Cao, J. Y., et al., 2020. Origin and Tectonic Implications of Ferroan Alkali-Calcic Granitoids from the Hawal Massif, East-Eastern Nigeria Terrane: Clues from Geochemistry and Zircon U-Pb-Hf Isotopes. International Geology Review, 62(2): 129-152. https://doi.org/10.1080/00206814.2019.1593250
      Simons, B., Andersen, J. C. O., Shail, R. K., et al., 2017. Fractionationof Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith: Precursor Processes to Magmatic-Hydrothermal Mineralisation. Lithos, 278-281: 491-512. http://doi.org/10.1016/j.lithos.2017.02.007
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1): 528-548. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tabelin, C. B., Dallas, J., Casanova, S., et al., 2021. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Minerals Engineering, 163: 1-4. https://doi.org/10.1016/j.mineng.2020.106743
      Tapster, S., Bright, J. W. G., 2020. High-Precision ID-TIMS Cassiterite U-Pb Systematics Using a Low-Contamination Hydrothermal Decomposition: Implications for LA-ICP-MS and Ore Deposit Geochronology. Geochronology, 2(2): 425-441. https://doi.org/10.5194/gchron-2-425-2020
      Tchouankoue, J. P., Li, X. H., Belnoun, R. N. N., et al., 2016. Timing and Tectonic Implications of the Pan-African Bangangte Syenomonzonite, West Cameroon: Constraints from In-Situ Zircon U-Pb Age and Hf-O Isotopes. Journal of African Earth Sciences, 124: 94-103. https://doi.org/10.1016/jjafrearsci.2016.09.009
      Thirlwall, M., Anczkiewicz, R., 2004. Multidynamic Isotope Ratio Analysis Using MC-ICP-MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. International Journal of Mass Spectrometry, 235: 59-81. https://doi.org/10.1016/j.ijms.2004.04.002
      Turner, D. C., 1983. Upper Proterozoic Schist Belts in the Nigerian Sector of the Pan-African Province of West Africa. Precambrian Research, 21(1-2): 55-79. https://doi.org/10.1016/0301-9268(83)90005-0
      Van, L. M., Holtz, F., Dziony, W., et al., 2011. Incorporation Mechanisms of Ta and Nb in Zircon and Implications for Pegmatitic Systems. American Mineralogist, 96(7): 1079-1089. https://doi.org/10.2138/am.2011.3650
      Van, L. M., Melcher, F., Wirth, R., 2009. Magmatic vs. Hydrothermal Origins for Zircon Associated with Tantalum Mineralization in the Tanco Pegmatite, Manitoba, Canada. American Mineralogist, 94(4): 439-450. https://doi.org/10.2138/am.2009.2952
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-S and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
      Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-Km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western KunLun Orogenic Belt, Western China. Economic Geology, 117: 213-236. https://doi.org/10.5382/econgeo.4858
      Yuan, S. D, Peng, J., Hao, S., et al., 2011. In Situ LA- MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
      Yuan, S. D., Peng, J. T., Hu, R. Z., et al., 2008. A Precise U-Pb Age on Cassiterite from the Xianghualing Tin-Polymetallic Deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382. https://doi.org/10.1007/s00126-007-0166-y
      Zhang, D. L., Peng, J. T., Hu, R. Z., et al., 2011. The Closure of U-Pb Isotope System in Cassiteriteand Its Reliability for Dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract).
      Zhang, H., Li, Z. H., Tang Y., 2021. A Review of LCT Pegmatite and Its Lithium Ore Genesis. Acta Geologica Sinic, 95(10): 2955-2970 (in Chinese with English abstract).
      曹亮, 崔森, 胡鹏, 等, 2022. 尼日利亚矿产资源开发现状及投资环境. 地质通报, 41(1): 167-183.
      李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283.
      李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244.
      刘玉平, 李正祥, 李惠民, 等, 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
      张东亮, 彭建堂, 胡瑞忠, 等, 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554.
      张辉, 吕正航, 唐勇, 2021. LCT型伟晶岩及其锂矿床成因概述. 地质学报, 95(10): 2955-2970.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(18)  / Tables(6)

      Article views (461) PDF downloads(84) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return