Citation: | Cao Liang, Hu Peng, Jiang Junsheng, Chen Xin, Xiang Peng, Li Leguang, Lu Shansong, Zhao Kai, Tong Xirun, Wang Jianqing, 2024. Zircon and Cassiterite U-Pb Geochronology and Hf Isotopes of Kama Li-Nb-Ta Pegmatite Deposit and Its Geological Significance in Nasarawa, Central Nigeria. Earth Science, 49(11): 3971-3994. doi: 10.3799/dqkx.2024.116 |
Abdallah, N., Liégeois, J. P., De Waele, B., et al., 2007. The Temaguessine Fe-Cordierite Orbicular Granite (Central Hoggar, Algeria): U-Pb SHRIMP Age, Petrology, Origin and Geodynamical Consequences for the Late Pan-African Magmatism of the Tuareg Shield. Journal of African Earth Sciences, 49(4/5): 153-178. https://doi.org/10.1016/j.jafrearsci.2007.08.005
|
Adetunji, A., Olarewaju, V. O., Ocan, O. O., et al., 2018. Geochemistry and U-Pb Zircon Geochronology of Iwo Quartz Potassic Syenite, Southwestern Nigeria: Constraints on Petrogenesis, Timing of Deformation and Terrane Amalgamation. Precambrian Research, 307: 125-136. https://doi.org/10.1016/j.precamres.2018.01.015
|
Ajibade, A. C., Wright, J. B., 1989. The Togo-Benin-Nigeria Shield: Evidence of Crustal Aggregation in the Pan-African Belt. Tectonophysics, 165(1/2/3/4): 125-129. https://doi.org/10.1016/0040-1951(89)90041-3
|
Akintola, A, A. I., 2012. Compositional Features of Precambrian Pegmatites of Ago-Iwoye Area South Western, Nigeria. Journal of Ecology and the Natural Environment, 4(3): 71-87. https://doi.org/10.5897/jene11.112
|
Ananaba, S. E., Ajakaiye, D. E., 1987. Evidence of Tectonic Control of Mineralization in Nigeria from Lineament Density Analysis a Landsat-Study. International Journal of Remote Sensing, 8(10): 1445-1453. https://doi.org/10.1080/01431168708954788
|
Black, R., Latouche, L., Liégeois, J. P., et al., 1994. Pan-African Displaced Terranes in the Tuareg Shield (Central Sahara). Geology, 22(7): 641. https://doi.org/10.1130/0091-7613(1994)0220641: padtit>2.3.co;2 doi: 10.1130/0091-7613(1994)0220641:padtit>2.3.co;2
|
Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1/2): 243-258. https://doi.org/10.1016/S0012-821X(97)00040-X
|
Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR: Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2): 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
|
Caby, R., 1989. Precambrian Terranes of Benin-Nigeria and Northeast Brazil and the Late Proterozoic South Atlantic Fit. Special Paper of the Geological Society of America, 230: 145-158. https://doi.org/10.1130/SPE230-p145
|
Cao, L., Cui, S., Hu, P., et al., 2022. Development Status and Investment Environment of Mineral Resources in Nigeria. Geological Bulletin of China, 41(1): 167-183 (in Chinese with English abstract).
|
Cao, L., Wang, L. X., Zhu, Y. X., et al., 2024. Termination of Anorogenic Alkaline Magmatism in Nigerian Younger Granite Province: Insights from Afu A-Type Granite Complex. International Journal of Earth Sciences, 113: 1029-1052. https://doi.org/10.1007/s00531-024-02401-1
|
Černý, P., Ercit, T. S., 2005. The Classification of Granitic Pegmatites revisited. Canadian Mineralogist, 43: 2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
|
Černý, P., London, D., Novak, M., et al., 2012. Granitic Pegmatites as Reflections of their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289
|
Černý, P., Meintzer, R. E., Anderson, A. J., 1985. Extreme Fractionation in Rare-Element Granitic Pegmatites; Selected Examples of Data and Mechanisms. Canadian Mineralogist, 23: 381-421.
|
Choubey, P. K., Kim, M., Srivastava, R. R., et al., 2016. Advance Review on the Exploitation of the Prominent Energy-Storage Element: Lithium. Part I: From Mineral and Brine Resources. Minerals Engineering, 89: 119-137. https://doi.org/10.1016/j.mineng.2016.01.010
|
Dada, S. S., 1998. Crust-Forming Ages and Proterozoic Crustal Evoluton in Nigeria: A Reappraisal of Current Interpretations. Precambrian Research, 87: 65-74. https://doi.org/10.1016/S0301-9268(97)00054-5
|
Ferré, E. C., Caby, R., 2007. Granulite Facies Metamorphism and Chamockite Plutonism: Examples from the Neoproterozoic Belt of Northerm Nigeria. Proc. Gool. Soc. Lond, 118(1): 47-54. https://doi.org/10.1016/S0016-7878(07)80046-0
|
Ferré, E. C., Gleizes, G., Caby, R., 2002. Obliquely Convergent Tectonics and Granite Emplacement in the Trans-Saharan Belt of Eastern Nigeria: A Synthesis. Precambriam Research, 114: 199-219. https://doi.org/10.1016/S0301-9268(01)00226-1
|
Ganade, C. E., Cordani, U. G., Agbossoumounde, Y., et al., 2016. Tightening-up NE Brazil and NW Africa Connections: New U-Pb/Lu-Hf Zircon Data of a Complete Plate Tectonic Cycle in the Dahomey Belt of the West Gondwana Orogen in Togo and Benin. Precambrian Research, 276: 24-42. https://doi.org/10.1016/j.precamres.2016.01.032
|
Goodenough, K. M., Lusty, P. A. J., Roberts, N. M. W., et al., 2014. Post-Collisional Pan-African Granitoids and Rare Metal Pegmatites in Western Nigeria: Age, Petrogenesis, and the 'Pegmatite Conundrum'. Lithos, 200-201: 22-34. https://doi.org/10.1016/j.lithos.2014.04.006
|
Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1007/s00410-007-0201-0
|
Grimes, C. B., Wooden, J. L., Cheadle, M. J, et al., 2015. "Fingerprinting"Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
|
Han, J., Hanchar, J. M., Pan, Y., et al., 2023. Hydrothermal Alteration, not Metamictization, is the Main Trigger for Modifying Zircon in Highly Evolved Granites. GSA Bulletin. 136(5-6): 1878-1888. https://doi.org/10.1130/B36996.1
|
Hoskin, P. W. O., 2005. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648. https://doi.org/10.1016/j.gca.2004.07.006
|
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
|
Jahns, R. H., Burnham, C. W., 1969. Experimental Studies of Pegmatite Genesis; l, A Model for the Derivation and Crystallization of Granitic Pegmatites. Economic Geology, 64: 843-864. https://doi.org/10.2113/gsecongeo.64.8.843
|
Jiang, S. Y., Wang, R. C., Xu, X. S., et al., 2005. Mobility of High Field Strength Elements (HFSE) in Magmatic-, Metamorphic-, and Submarine-Hydrothermal Systems. Physics and Chemistry of the Earth, Parts A/B/C, 30: 1020-1029. https://doi.org/10.1016/j.pce.2004.11.004
|
Jiang, S. Y., Yu, J. M., Lu, J. J., 2004. Trace and Rare-Earth Element Geochemistry in Tourmaline and Cassiterite from the YunLong Tin Deposit, Yunnan, China: Implication for Migmatitic-Hydrothermal Fluid Evolution and Ore Genesis. Chemical Geology, 209(3-4): 193-213. https://doi.org/10.1016/j.chemgeo.2004.04.021
|
Jochum, K. P., Weis, U., Stoll, B., et al., 2011. Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines. Geostandards and Geoanalytical Research, 35(4): 397-429. https://doi.org/10.1111/j.1751-908x.2011.00120.x
|
Jolliff, B. L., Papike, J. J., Shearer, C. K., 1992. Petrogenetic Relationships between Pegmatite and Granite Based on Geochemistry of Muscovite in Pegmatite Wall Zones, Black Hills, South Dakota, USA. Geochimica et Cosmochimica Acta, 56: 1915-1939. https://doi.org/10.1016/0016-7037(92)90320-I
|
Kavanagh, L., Keohane, J., Cabellos, G. G., et al., 2018. Resources Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources, 7(3): 57. https://doi.org/10.3390/resources7030057
|
Kendall, L. L. A., Kemp, A. I. S., Grigson, J. L., et al., 2020. U-Pb and Reconnaissance Lu-Hf Isotope Analysis of Cassiterite and Columbite Group Minerals from Archean Li-Cs-Ta Type Pegmatites of Western Australia. Lithos, 352-353: 105231. https://doi.org/10.1016/j.lithos.2019.105231
|
Li, J. K., Liu, X. F., Wang, D. H., 2014. The Metallogenetic Regularity of Lithium Deposit in China. Acta Geologica Sinica, 88(12): 2269-2283 (in Chinese with English abstract).
|
Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
|
Liégeois, J. P., Latouche, L., Boughrara, M., et al., 2003. The LATEA Metacraton (Central Hoggar, Tuareg Shield, Algeria): Behaviour of an Old Passive Margin during the Pan-African Orogeny. Journal of African Earth Sciences, 37: 161-190. https://doi.org/10.1016/j.jafrearsci.2003.05.004
|
Lima, M. M. C., Ferreira, V. P., Silva, T. R., et al., 2021. Crustal Growth during Western Gondwana Amalgamation and Onset of the Brasiliano Orogeny: Insights from Geochemistry and Pb-Sr-Nd-O Isotopes from Granites in Northeastern Brazil. Lithos 396: 10. https://doi.org/10.1016/j.lithos.2021.106223
|
Liu, Y. P., Li, Z. X., Li, H. M., et al., 2007. U-Pb Geochronology of Casiterite and Zircon from the DuLong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province China. Acta Petrologica Sinica, 23(5): 967-976 (in Chinese with English abstract).
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
London, D., 1992. The Application of Experimental Petrology to the Genesis and Crystallization of Granitic Pegmatites. Canadian Mineralogist, 30: 499-540. https://doi.org/10.1016/0169-1368(92)90013-B
|
London, D., 2018. Ore Foming Proceses wihin Granais Pegmatites. Ore Geology Reviews, 101: 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
|
Lorenzo, M., Judith, A. K., Jérémie L., et al., 2015. Role of Crustal Contribution in the Early Stage of the Damara Orogen, Namibia: New Constraints from Combined U-Pb and Lu-Hf Isotopes from the Goas Magmatic Complex. Gondwana Research, 28: 961-986. http://doi.org/10.1016/j.gr.2014.08.007
|
Mccauley, A., Bradley, D. C., 2014. The Global Age Distribution of Granitic Pegmatites. Canadian Mineralogist, 52: 183-190. https://doi.org/10.3749/canmin.52.2.183
|
McNaughton, N. J., Pollard, P. J., Gulson, B. L., et al., 1993. Cassiterite: Potential for Direct Dating of Mineral Deposits and a Precise Age for the Bushveld Complex Granites: Comment and Reply. Geology, 21(3): 285-286. https://doi.org/10.1130/0091-7613(1993)0212.3.CO;2
|
Paton, C., Hellstrom, J., Paul, B., et al., 2011. Iolite: Freeware for the Visualisation and Processing of Mass Spectrometric Data. Journal of Analytical Atomic Spectrometry, 26(12): 2508-2518. https://doi.org/10.1039/c1ja10172b
|
Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2018. Geology and Mineralogy of Li Mineralization in the Central Iberian Zone (Spainand Portugal). Mineralogical Magazine, 80(1): 103-126. https://doi.org/10.1180/minmag.2016.080.049
|
Safiyanu, M. E., Li, H., Zheng, H., et al., 2022. Cryogenian Crustal Evolution in Western Nigeria Shield: Whole-Rock Geochemistry, Sr-Nd and Zircon U-Pb-Hf Isotopic Evidence from Bakoshi-Gadanya Granites. International Geology Review, 64: 2626-2652. https://doi.org/10.1080/00206814.2021.1998799
|
Saleh, I. B., Yang, X. Y., Cao, J. Y., et al., 2020. Origin and Tectonic Implications of Ferroan Alkali-Calcic Granitoids from the Hawal Massif, East-Eastern Nigeria Terrane: Clues from Geochemistry and Zircon U-Pb-Hf Isotopes. International Geology Review, 62(2): 129-152. https://doi.org/10.1080/00206814.2019.1593250
|
Simons, B., Andersen, J. C. O., Shail, R. K., et al., 2017. Fractionationof Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith: Precursor Processes to Magmatic-Hydrothermal Mineralisation. Lithos, 278-281: 491-512. http://doi.org/10.1016/j.lithos.2017.02.007
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London Special Publications, 42(1): 528-548. https://doi.org/10.1144/gsl.sp.1989.042.01.19
|
Tabelin, C. B., Dallas, J., Casanova, S., et al., 2021. Towards a Low-Carbon Society: A Review of Lithium Resource Availability, Challenges and Innovations in Mining, Extraction and Recycling, and Future Perspectives. Minerals Engineering, 163: 1-4. https://doi.org/10.1016/j.mineng.2020.106743
|
Tapster, S., Bright, J. W. G., 2020. High-Precision ID-TIMS Cassiterite U-Pb Systematics Using a Low-Contamination Hydrothermal Decomposition: Implications for LA-ICP-MS and Ore Deposit Geochronology. Geochronology, 2(2): 425-441. https://doi.org/10.5194/gchron-2-425-2020
|
Tchouankoue, J. P., Li, X. H., Belnoun, R. N. N., et al., 2016. Timing and Tectonic Implications of the Pan-African Bangangte Syenomonzonite, West Cameroon: Constraints from In-Situ Zircon U-Pb Age and Hf-O Isotopes. Journal of African Earth Sciences, 124: 94-103. https://doi.org/10.1016/jjafrearsci.2016.09.009
|
Thirlwall, M., Anczkiewicz, R., 2004. Multidynamic Isotope Ratio Analysis Using MC-ICP-MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. International Journal of Mass Spectrometry, 235: 59-81. https://doi.org/10.1016/j.ijms.2004.04.002
|
Turner, D. C., 1983. Upper Proterozoic Schist Belts in the Nigerian Sector of the Pan-African Province of West Africa. Precambrian Research, 21(1-2): 55-79. https://doi.org/10.1016/0301-9268(83)90005-0
|
Van, L. M., Holtz, F., Dziony, W., et al., 2011. Incorporation Mechanisms of Ta and Nb in Zircon and Implications for Pegmatitic Systems. American Mineralogist, 96(7): 1079-1089. https://doi.org/10.2138/am.2011.3650
|
Van, L. M., Melcher, F., Wirth, R., 2009. Magmatic vs. Hydrothermal Origins for Zircon Associated with Tantalum Mineralization in the Tanco Pegmatite, Manitoba, Canada. American Mineralogist, 94(4): 439-450. https://doi.org/10.2138/am.2009.2952
|
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
|
Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012. Magmatic Zircons from I-S and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
|
Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
|
Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-Km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western KunLun Orogenic Belt, Western China. Economic Geology, 117: 213-236. https://doi.org/10.5382/econgeo.4858
|
Yuan, S. D, Peng, J., Hao, S., et al., 2011. In Situ LA- MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002
|
Yuan, S. D., Peng, J. T., Hu, R. Z., et al., 2008. A Precise U-Pb Age on Cassiterite from the Xianghualing Tin-Polymetallic Deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382. https://doi.org/10.1007/s00126-007-0166-y
|
Zhang, D. L., Peng, J. T., Hu, R. Z., et al., 2011. The Closure of U-Pb Isotope System in Cassiteriteand Its Reliability for Dating. Geological Review, 57(4): 549-554 (in Chinese with English abstract).
|
Zhang, H., Li, Z. H., Tang Y., 2021. A Review of LCT Pegmatite and Its Lithium Ore Genesis. Acta Geologica Sinic, 95(10): 2955-2970 (in Chinese with English abstract).
|
曹亮, 崔森, 胡鹏, 等, 2022. 尼日利亚矿产资源开发现状及投资环境. 地质通报, 41(1): 167-183.
|
李建康, 刘喜方, 王登红, 2014. 中国锂矿成矿规律概要. 地质学报, 88(12): 2269-2283.
|
李乐广, 王连训, 朱煜翔, 等, 2023. 华南幕阜山北缘含稀有金属伟晶岩成矿时代及成矿过程. 地球科学, 48(9): 3221-3244.
|
刘玉平, 李正祥, 李惠民, 等, 2007. 都龙锡锌矿床锡石和锆石U-Pb年代学: 滇东南白垩纪大规模花岗岩成岩-成矿事件. 岩石学报, 23(5): 967-976.
|
张东亮, 彭建堂, 胡瑞忠, 等, 2011. 锡石U-Pb同位素体系的封闭性及其测年的可靠性分析. 地质论评, 57(4): 549-554.
|
张辉, 吕正航, 唐勇, 2021. LCT型伟晶岩及其锂矿床成因概述. 地质学报, 95(10): 2955-2970.
|