Citation: | Jiang Haishui, Chen Yan, 2025. Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic. Earth Science, 50(3): 1037-1047. doi: 10.3799/dqkx.2024.118 |
Ahlberg, A., Arndorff, L., Guy-Ohlson, D., 2002. Onshore Climate Change during the Late Triassic Marine Inundation of the Central European Basin. Terra Nova, 14(4): 241-248. https://doi.org/10.1046/j.1365-3121.2002.00416.x
|
Bahr, A., Kolber, G., Kaboth-Bahr, S., et al., 2020. Mega-Monsoon Variability during the Late Triassic: Re-Assessing the Role of Orbital Forcing in the Deposition of Playa Sediments in the Germanic Basin. Sedimentology, 67(2): 951-970. https://doi.org/10.1111/sed.12668
|
Baranyi, V., Reichgelt, T., Olsen, P. E., et al., 2018. Norian Vegetation History and Related Environmental Changes: New Data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). GSA Bulletin, 130(5-6): 775-795. https://doi.org/10.1130/b31673.1
|
Berra, F., Jadoul, F., Anelli, A., 2010. Environmental Control on the End of the Dolomia Principale/Hauptdolomit Depositional System in the Central Alps: Coupling Sea-Level and Climate Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 138-150. https://doi.org/10.1016/j.palaeo.2009.06.037
|
Bottjer, D. J., 2004. The Beginning of the Mesozoic: 70 Million Years of Environmental Stress and Extinction. In: Taylor, P. D., ed., Extinctions in the History of Life. Cambridge University Press, Cambridge, 99-118.
|
Boucot, A. J., Xu, C., Scotese, C. R., et al., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Society for Sedimentary Geology, Claremore.
|
Callegaro, S., Rigo, M., Chiaradia, M., Marzoli, A., 2012. Latest Triassic marine Sr Isotopic Variations, Possible Causes and Implications. Terra Nova, 24(2): 130-135. https://doi.org/10.1111/j.1365-3121.2011.01046.x
|
Chen, Y., Zeng, W., Joachimski, M. M., et al., 2024. Late Triassic (Norian) Strontium and Oxygen Isotopes from the Baoshan Block, Southwestern China: Possible Causes and Implications for Climate Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112378. https://doi.org/10.1016/j.palaeo.2024.112378
|
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475
|
Clutson, M. J., Brown, D. E., Tanner, L. H., 2018. Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin.
|
Cramer, B. D., Jarvis, I., 2020. Chapter 11-Carbon Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York.
|
Dal Corso, J., Bernardi, M., Sun, Y. D., et al., 2020. Extinction and Dawn of the Modern World in the Carnian (Late Triassic). Science Advances, 6(38): eaba0099. https://doi.org/10.1126/sciadv.aba0099
|
Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2022. Background Earth System State Amplified Carnian (Late Triassic) Environmental Changes. Earth and Planetary Science Letters, 578: 117321. https://doi.org/10.1016/j.epsl.2021.117321
|
Davies, J. H. F. L., Marzoli, A., Bertrand, H., et al., 2017. End-Triassic Mass Extinction Started by Intrusive CAMP Activity. Nature Communications, 8: 15596. https://doi.org/10.1038/ncomms15596
|
Demangel, I., Kovács, Z., Richoz, S., et al., 2020. Development of Early Calcareous Nannoplankton in the Late Triassic (Northern Calcareous Alps, Austria). Global and Planetary Change, 193: 103254. https://doi.org/10.1016/j.gloplacha.2020.103254
|
Dong, Z. Z., Wang, W., 2006. Yunnan Conodont Fauna: A Study on Related Biostratigraphy and Biogeography. Yunnan Science and Technology Press, Kunming (in Chinese).
|
Du, Y. X., Bertinelli, A., Jin, X., et al., 2020. Integrated Conodont and Radiolarian Biostratigraphy of the Upper Norian in Baoshan Block, Southwestern China. Lethaia, 53(4): 533-545. https://doi.org/10.1111/let.12374
|
Du, Y. X., Onoue, T., Karádi, V., et al., 2021. Evolutionary Process from Mockina Bidentata to Parvigondolella Andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583-020-1362-2
|
Dunne, E. M., Farnsworth, A., Greene, S. E., et al., 2021. Climatic Drivers of Latitudinal Variation in Late Triassic Tetrapod Diversity. Palaeontology, 64(1): 101-117. https://doi.org/10.1111/pala.12514
|
Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York.
|
Fijałkowska-Mader, A., 2015. A Record of Climatic Changes in the Triassic Palynological Spectra from Poland. Geological Quarterly, 59(4): 615-653. https://doi.org/10.7306/gq.1239
|
Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift-Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. https://doi.org/10.1016/j.gr.2009.04.010
|
Fu, X. G., Wang, J., Zeng, Y. H., et al., 2020. Oceanic Anoxic Events in the Mesozoic Qiangtang Basin and Global Comparison. Geological Review, 66(5): 1130-1142 (in Chinese with English abstract).
|
Goddéris, Y., Donnadieu, Y., de Vargas, C., et al., 2008. Causal or Casual Link between the Rise of Nannoplankton Calcification and a Tectonically-Driven Massive Decrease in Late Triassic Atmospheric CO2? Earth and Planetary Science Letters, 267(1-2): 247-255. https://doi.org/10.1016/j.epsl.2007.11.051
|
Golonka, J., 2007. Late Triassic and Early Jurassic Palaeogeography of the World. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4): 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041
|
Golonka, J., Embry, A., Krobicki, M., 2018. Late Triassic Global Plate Tectonics. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin.
|
Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1
|
Grossman, E. L., Joachimski, M. M., 2022. Ocean Temperatures through the Phanerozoic Reassessed. Scientific Reports, 12(1): 8938. https://doi.org/10.1038/s41598-022-11493-1
|
Haas, J., Budai, T., Raucsik, B., 2012. Climatic Controls on Sedimentary Environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 31-44. https://doi.org/10.1016/j.palaeo.2012.06.031
|
Haas, J., Hips, K., Budai, T., et al., 2017. Processes and Controlling Factors of Polygenetic Dolomite Formation in the Transdanubian Range, Hungary: A Synopsis. International Journal of Earth Sciences, 106(3): 991-1021. https://doi.org/10.1007/s00531-016-1347-7
|
Hayes, R. F., Puggioni, G., Parker, W. G., et al., 2020. Modeling the Dynamics of a Late Triassic Vertebrate Extinction: The Adamanian/Revueltian Faunal Turnover, Petrified Forest National Park, Arizona, USA. Geology, 48(4): 318-322. https://doi.org/10.1130/g47037.1
|
Hornung, T., 2005. Palaeoclimate Background and Stratigraphic Evidence of Late Norian / Early Rhaetian Polyphase Synsedimentary Tectonics in the Hallstatt Limestones of Berchtesgaden (Rappoltstein, Southern Germany). Austrian Journal of Earth Science, 98: 106-119.
|
Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004
|
Jia, E. H., Preto, N., Corso, J. D., et al., 2024. Dwarfing of Calcareous Nannofossils during the Norian Warming Event in the Palaeo-Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 648: 112305. https://doi.org/10.1016/j.palaeo.2024.112305
|
Jin, X., Du, Y. X., Bertinelli, A., et al., 2022a. Carbon-Isotope Excursions in the Norian Stage (Upper Triassic) of the Baoshan Terrane, Western Yunnan, China. Journal of Asian Earth Sciences, 230: 105215. https://doi.org/10.1016/j.jseaes.2022.105215
|
Jin, X., Ogg, J. G., Lu, S., et al., 2022b. Terrestrial Record of Carbon-Isotope Shifts across the Norian/Rhaetian Boundary: A High-Resolution Study from Northwestern Sichuan Basin, South China. Global and Planetary Change, 210: 103754. https://doi.org/10.1016/j.gloplacha.2022.103754
|
Karádi, V., Virág, A., Kolar-Jurkovšek, T., et al., 2020. Stress-Related Evolution in Triassic Conodonts and the Middle Norian Juvenile Mortality. In: Guex, J., Torday, J. S., Miller, W. B., eds., Morphogenesis, Environmental Stress and Reverse Evolution. Springer International Publishing, Cham.
|
Kent, D. V., Clemmensen, L. B., 2021. Northward Dispersal of Dinosaurs from Gondwana to Greenland at the Mid-Norian (215-212 Ma, Late Triassic) Dip in Atmospheric pCO2 Proceedings of the National Academy of Sciences of the United States of America, 118(8): e2020778118. https://doi.org/10.1073/pnas.2020778118
|
Kent, D. V., Olsen, P. E., 2000. Magnetic Polarity Stratigraphy and Paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic Tropical Climate Gradients. Earth and Planetary Science Letters, 179(2): 311-324. https://doi.org/10.1016/S0012-821X(00)00117-5
|
Kent, D. V., Olsen, P. E., Lepre, C., et al., 2019. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochemistry, Geophysics, Geosystems, 20(11): 4654-4664. https://doi.org/10.1029/2019GC008474
|
Knobbe, T. K., Schaller, M. F., 2018. A Tight Coupling between Atmospheric pCO2 and Sea-Surface Temperature in the Late Triassic. Geology, 46(1): 43-46. https://doi.org/10.1130/g39405.1
|
Kuroda, J., Hori, R. S., Suzuki, K., et al., 2010. Marine Osmium Isotope Record across the Triassic-Jurassic Boundary from a Pacific Pelagic Site. Geology, 38(12): 1095-1098. https://doi.org/10.1130/g31223.1
|
Lepre, C. J., Olsen, P. E., 2021. Hematite Reconstruction of Late Triassic Hydroclimate over the Colorado Plateau. Proceedings of the National Academy of Sciences, 118(7): e2004343118. https://doi.org/10.1073/pnas.2004343118
|
Lucas, S. G., 2018a. Late Triassic Ammonoids: Distribution, Biostratigraphy and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham.
|
Lucas, S. G., 2018b. Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham.
|
Lucas, S. G., Tanner, L. H., 2004. Late Triassic Extinction Events. Albertiana, (31): 31-40.
|
Martínez-Pérez, C., Plasencia, P., Cascales-Miñana, B., et al., 2014. New Insights into the Diversity Dynamics of Triassic Conodonts. Historical Biology, 26(5): 591-602. https://doi.org/10.1080/08912963.2013.808632
|
Marzoli, A., Callegaro, S., Dal Corso, J., et al., 2018. The Central Atlantic Magmatic Province (CAMP): A Review. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin.
|
Marzoli, A., Jourdan, F., Puffer, J. H., et al., 2011. Timing and Duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, Eastern U. S. A. Lithos, 122(3-4): 175-188. https://doi.org/10.1016/j.lithos.2010.12.013
|
Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200-Million-Year-Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616-618. https://doi.org/10.1126/science.284.5414.616
|
McRoberts, C. A., 2007. Diversity Dynamics and Evolutionary Ecology of Middle and Late Triassic Halobiid and Monotid Bivalves. New Mexico Museum of Natural History and Science Bulletin, 41: 272.
|
McRoberts, C. A., 2010. Biochronology of Triassic Bivalves. Geological Society, London, Special Publications, 334(1): 201-219. https://doi.org/10.1144/sp334.9
|
Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012
|
Nordt, L., Atchley, S., Dworkin, S., 2015. Collapse of the Late Triassic Megamonsoon in Western Equatorial Pangea, Present-Day American Southwest. Geological Society of America Bulletin, 127(11/12): 1798-1815. https://doi.org/10.1130/B31186.1
|
O'Dogherty, L., Carter, E. S., Goričan, Š., et al., 2010. Triassic Radiolarian Biostratigraphy. Geological Society, London, Special Publications, 334(1): 163-200. https://doi.org/10.1144/sp334.8
|
Ogg, J. G., Chen, Z. Q., Orchard, M. J., et al., 2020. The Triassic Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York.
|
Onoue, T., Sato, H., Nakamura, T., et al., 2012. Deep-Sea Record of Impact Apparently Unrelated to Mass Extinction in the Late Triassic. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19134-19139. https://doi.org/10.1073/pnas.1209486109
|
Onoue, T., Sato, H., Yamashita, D., et al., 2016. Bolide Impact Triggered the Late Triassic Extinction Event in Equatorial Panthalassa. Scientific Reports, 6: 29609. https://doi.org/10.1038/srep29609
|
Onoue, T., Yamashita, K., Fukuda, C., et al., 2018. Sr Isotope Variations in the Upper Triassic Succession at Pizzo Mondello, Sicily: Constraints on the Timing of the Cimmerian Orogeny. Palaeogeography, Palaeoclimatology, Palaeoecology, 499: 131-137. https://doi.org/10.1016/j.palaeo.2018.03.025
|
Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End-Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023
|
Preto, N., Agnini, C., Rigo, M., et al., 2013. The Calcareous Nannofossil Prinsiosphaera Achieved Rock-Forming Abundances in the Latest Triassic of Western Tethys: Consequences for the δ13C of Bulk Carbonate. Biogeosciences, 10(9): 6053-6068. https://doi.org/10.5194/bg-10-6053-2013
|
Preto, N., Kustatscher, E., Wignall, P. B., 2010. Triassic Climates—State of the Art and Perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 1-10. https://doi.org/10.1016/j.palaeo.2010.03.015
|
Prokoph, A., El Bilali, H., Ernst, R., 2013. Periodicities in the Emplacement of Large Igneous Provinces through the Phanerozoic: Relations to Ocean Chemistry and Marine Biodiversity Evolution. Geoscience Frontiers, 4(3): 263-276. https://doi.org/10.1016/j.gsf.2012.08.001
|
Racki, G., Lucas, S. G., 2020. Timing of Dicynodont Extinction in Light of an Unusual Late Triassic Polish Fauna and Cuvier's Approach to Extinction. Historical Biology, 32(4): 452-461. https://doi.org/10.1080/08912963.2018.1499734
|
Ramezani, J., Bowring, S. A., Pringle, M. S., et al., 2005. The Manicouagan impact melt rock: A Proposed Standard for the Intercalibration of U-Pb and 40Ar/39Ar Isotopic Systems. 2005 Goldschmidt Conference, Moscow.
|
Rigo, M., Onoue, T., Tanner, L. H., et al., 2020. The Late Triassic Extinction at the Norian/Rhaetian Boundary: Biotic Evidence and Geochemical Signature. Earth-Science Reviews, 204: 103180. https://doi.org/10.1016/j.earscirev.2020.103180
|
Sato, H., Nozaki, T., Onoue, T., et al., 2023. Rhenium-Osmium Isotope Evidence for the Onset of Volcanism in the Central Panthalassa Ocean during the Norian "Chaotic Carbon Episode". Global and Planetary Change, 229: 104239. https://doi.org/10.1016/j.gloplacha.2023.104239
|
Sato, H., Takaya, Y., Yasukawa, K., et al., 2020. Biotic and Environmental Changes in the Panthalassa Ocean across the Norian (Late Triassic) Impact Event. Progress in Earth and Planetary Science, 7(1): 61. https://doi.org/10.1186/s40645-020-00371-x
|
Schoepfer, S. D., Algeo, T. J., van de Schootbrugge, B., et al., 2022. The Triassic-Jurassic Transition: A Review of Environmental Change at the Dawn of Modern Life. Earth-Science Reviews, 232: 104099. https://doi.org/10.1016/j.earscirev.2022.104099
|
Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev-earth-081320-064052
|
Şengör, A. M. C., Altıner, D., Zabcı, C., et al., 2023. On the Nature of the Cimmerian Continent. Earth-Science Reviews, 247: 104520. https://doi.org/10.1016/j.earscirev.2023.104520
|
Simms, M. J., Ruffell, A. H., 1990. Climatic and Biotic Change in the Late Triassic. Journal of the Geological Society, 147(2): 321-327. https://doi.org/10.1144/gsjgs.147.2.0321
|
Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583-018-1002-2
|
Spielmann, J. A., Lucas, S. G., Hunt, A. P., 2013. The First Norian (Revueltian) Rhynchosaur: Bull Canyon Formation, New Mexico, USA. New Mexico Museum of Natural History and Science Bulletin, 61: 562-566.
|
Spray, J. G., Thompson, L. M., Biren, M. B., et al., 2010. The Manicouagan Impact Structure as a Terrestrial Analogue Site for Lunar and Martian Planetary Science. Planetary and Space Science, 58(4): 538-551. https://doi.org/10.1016/j.pss.2009.09.010
|
Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1-19. https://doi.org/10.1016/J.TECTO.2013.02.037
|
Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian-Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082
|
Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444: 88-100. https://doi.org/10.1016/j.epsl.2016.03.037
|
Tanner, L. H., 2018. Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin.
|
Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth-Science Reviews, 65(1-2): 103-139. https://doi.org/10.1016/S0012-8252(03)00082-5
|
Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
|
van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U-Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): 1-8. https://doi.org/10.1029/2010gc003465
|
Wang, D., Kang, H., Chen, Y. L., et al., 2024. Timeframe of Eastern Paleo-Tethys Closure: Constraint on the Songpan-Ganzi Complex by Big Data-Based Multiproxy Provenance Analysis. Lithos, 466-467: 107457. https://doi.org/10.1016/j.lithos.2023.107457
|
Wang, J., Fu, X. G., Chen, W. X., et al., 2008. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic-Sedimentary Events. Science China Earth Sciences, 51(2): 194-205. https://doi.org/10.1007/s11430-008-0010-y
|
Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth-Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013
|
Whiteside, J. H., Ward, P. D., 2011. Ammonoid Diversity and Disparity Track Episodes of Chaotic Carbon Cycling during the Early Mesozoic. Geology, 39(2): 99-102. https://doi.org/10.1130/G31401.1
|
Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract).
|
Wu, Q. W., Jin, X., Karádi, V., et al., 2024. Norian (Upper Triassic) Carbon Isotopic Perturbations and Conodont Biostratigraphy from the Simao Terrane, Eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112380. https://doi.org/10.1016/j.palaeo.2024.112380
|
Xie, X. L., Niu, M. L., Wu, Q., et al., 2015. Petrological Characteristics of Triassic Magmatic Rocks from the Conjunction of Qinling, Qilian and Kunlun Orogens and Their Tectonic Environment. Journal of Earth Sciences and Environment, 37(6): 72-81 (in Chinese with English abstract).
|
Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo-Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021GL096902. https://doi.org/10.1029/2021GL096902
|
Zaffani, M., Agnini, C., Concheri, G., et al., 2017. The Norian "Chaotic Carbon Interval": New Clues from the δ13Corg Record of the Lagonegro Basin (Southern Italy). Geosphere, : GES01459.1. https://doi.org/10.1130/ges01459.1
|
Zeng, W. P., Jiang, H. S., Chen, Y., et al., 2023. Upper Norian Conodonts from the Baoshan Block, Western Yunnan, Southwestern China, and Implications for Conodont Turnover. PeerJ, 11: e14517. https://doi.org/10.7717/peerj.14517
|
Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583-021-1459-2
|
Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2018. Constructing the Eastern Margin of the Tibetan Plateau during the Late Triassic. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459. https://doi.org/10.1029/2018jb016353
|
Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2021. Imaging the Late Triassic Lithospheric Architecture of the Yidun Terrane, Eastern Tibetan Plateau: Observations and Interpretations. GSA Bulletin, 2279-2290. https://doi.org/10.1130/b35778.1
|
Zhu, R. X., Zhao, P., Zhao, L., 2022. Evolution and Dynamic Process of NeoTethys Ocean. Science in China (Series D), 52(1): 1-25 (in Chinese).
|
董致中, 王伟, 2006. 云南牙形类动物群: 相关生物地层及生物地理区研究. 昆明: 云南科技出版社.
|
付修根, 王剑, 曾玉红, 等, 2020. 羌塘中生代盆地大洋缺氧事件及全球对比. 地质论评, 66(5): 1130-1142.
|
吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
|
解小龙, 牛漫兰, 吴齐, 等, 2015. 秦祁昆结合部三叠纪岩浆岩岩石学特征及其构造环境. 地球科学与环境学报, 37(6): 72-81.
|
朱日祥, 赵盼, 赵亮, 2022. 新特提斯洋演化与动力过程. 中国科学(D辑), 52(1): 1-25.
|