Citation: | Huang Xianyu, Zhang Yiming, Xue Jiantao, Yu Xiaofang, 2025. Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock. Earth Science, 50(3): 846-856. doi: 10.3799/dqkx.2024.119 |
Baysinger, M. R., Wilson, R. M., Hanson, P. J., et al., 2022. Compositional Stability of Peat in Ecosystem-Scale Warming Mesocosms. PLoS One, 17(3): e0263994. https://doi.org/10.1371/journal.pone.0263994
|
Blaauw, M., van der Plicht, J., van Geel, B., 2004. Radiocarbon Dating of Bulk Peat Samples from Raised Bogs: Non-Existence of a Previously Reported 'Reservoir Effect'? Quaternary Science Reviews, 23(14-15): 1537-1542. https://doi.org/10.1016/j.quascirev.2004.04.002
|
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., et al., 2013. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19(5): 1325-1346. https://doi.org/10.1111/gcb.12131
|
Campeau, A., Bishop, K. H., Billett, M. F., et al., 2017. Aquatic Export of Young Dissolved and Gaseous Carbon from a Pristine Boreal Fen: Implications for Peat Carbon Stock Stability. Global Change Biology, 23(12): 5523-5536. https://doi.org/10.1111/gcb.13815
|
Chanton, J. P., Glaser, P. H., Chasar, L. S., et al., 2008. Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands. Global Biogeochemical Cycles, 22(4): GB4022. https://doi.org/10.1029/2008GB003274
|
Chen, H. Y., Xu, X., Fang, C. M., et al., 2021. Differences in the Temperature Dependence of Wetland CO2 and CH4 Emissions Vary with Water Table Depth. Nature Climate Change, 11: 766-771. https://doi.org/10.1038/s41558-021-01108-4
|
Clymo, R. S., 1984. The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society B-Biological Sciences, 303: 605-654.
|
Clymo, R. S., Bryant, C. L., 2008. Diffusion and Mass Flow of Dissolved Carbon Dioxide, Methane, and Dissolved Organic Carbon in a 7 m Deep Raised Peat Bog. Geochimica et Cosmochimica Acta, 72(8): 2048-2066. https://doi.org/10.1016/j.gca.2008.01.032
|
Crow, S. E., Wieder, R. K., 2005. Sources of CO2 Emission from a Northern Peatland: Root Respiration, Exudation, and Decomposition. Ecology, 86(7): 1825-1834. https://doi.org/10.1890/04-1575
|
Crump, J., 2017. Smoke on Water-Countering Global Threats From Peatland Loss and Degradation. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID-Arendal, Nairobi and Arendal.
|
Cui, S. H., Liu, P. F., Guo, H. N., et al., 2024. Wetland Hydrological Dynamics and Methane Emissions. Communications Earth & Environment, 5: 470. https://doi.org/10.1038/s43247-024-01635-w
|
Dorodnikov, M., Knorr, K. H., Fan, L., et al., 2022. A Novel Belowground In-Situ Gas Labeling Approach: CH4 Oxidation in Deep Peat Using Passive Diffusion Chambers and 13C Excess. Science of the Total Environment, 806: 150457. https://doi.org/10.1016/j.scitotenv.2021.150457
|
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., et al., 2009. Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature, 460: 616-619. https://doi.org/10.1038/nature08216
|
Duchesneau, K., Defrenne, C. E., Petro, C., et al., 2024. Responses of Vascular Plant Fine Roots and Associated Microbial Communities to Whole-Ecosystem Warming and Elevated CO2 in Northern Peatlands. New Phytologist, 242(3): 1333-1347. https://doi.org/10.1111/nph.19690
|
Evans, C. D., Peacock, M., Baird, A. J., et al., 2021. Overriding Water Table Control on Managed Peatland Greenhouse Gas Emissions. Nature, 593(7860): 548-552. https://doi.org/10.1038/s41586-021-03523-1
|
Fontaine, S., Barot, S., Barré, P., et al., 2007. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450(7167): 277-280. https://doi.org/10.1038/nature06275
|
Garcin, Y., Schefuß, E., Dargie, G. C., et al., 2022. Hydroclimatic Vulnerability of Peat Carbon in the Central Congo Basin. Nature, 612(7939): 277-282. https://doi.org/10.1038/s41586-022-05389-3
|
Garnett, M. H., Hardie, S. M. L., Murray, C., 2012. Radiocarbon Analysis of Methane Emitted from the Surface of a Raised Peat Bog. Soil Biology and Biochemistry, 50: 158-163. https://doi.org/10.1016/j.soilbio.2012.03.018
|
Garnett, M. H., Hardie, S. M. L., Murray, C., 2020. Radiocarbon Analysis Reveals that Vegetation Facilitates the Release of Old Methane in a Temperate Raised Bog. Biogeochemistry, 148(1): 1-17. https://doi.org/10.1007/s10533-020-00638-x
|
Goodrich, J. P., Campbell, D. I., Roulet, N. T., et al., 2015. Overriding Control of Methane Flux Temporal Variability by Water Table Dynamics in a Southern Hemisphere, Raised Bog. Journal of Geophysical Research: Biogeosciences, 120(5): 819-831. https://doi.org/10.1002/2014jg002844
|
Hanson, P. J., Griffiths, N. A., Iversen, C. M., et al., 2020. Rapid Net Carbon Loss from a Whole-Ecosystem Warmed Peatland. AGU Advances, 1(3): e2020AV000163. https://doi.org/10.1029/2020av000163
|
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., et al., 2009. Bomb-14C Analysis of Ecosystem Respiration Reveals that Peatland Vegetation Facilitates Release of Old Carbon. Geoderma, 153: 393-401. https://doi.org/10.1016/j.geoderma.2009.09.002
|
Harris, L. I., Olefeldt, D., Pelletier, N., et al., 2023. Permafrost Thaw Causes Large Carbon Loss in Boreal Peatlands while Changes to Peat Quality Are Limited. Global Change Biology, 29(19): 5720-5735. https://doi.org/10.1111/gcb.16894
|
Hodgkins, S. B., Richardson, C. J., Dommain, R., et al., 2018. Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance. Nature Communications, 9(1): 3640. https://doi.org/10.1038/s41467-018-06050-2
|
Hopple, A. M., Wilson, R. M., Kolton, M., et al., 2020. Massive Peatland Carbon Banks Vulnerable to Rising Temperatures. Nature Communications, 11(1): 2373. https://doi.org/10.1038/s41467-020-16311-8
|
Hu, H., Chen, J., Zhou, F., et al., 2024. Relative Increases in CH4 and CO2 Emissions from Wetlands under Global Warming Dependent on Soil Carbon Substrates. Nature Geoscience, 17: 26-31. https://doi.org/10.1038/s41561-023-01345-6
|
Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
|
Huang, X., Xue, J., Meyers, P. A., et al., 2014. Hydrologic influence on the δ13C variation in Long Chain n-Alkanes in the Dajiuhu Peatland, Central China. Organic Geochemistry, 69: 114-119. https://doi.org/10.1016/j.orggeochem.2014.01.016
|
Huang, X., Xue, J., Zhang, J., et al., 2012. Effect of Different Wetness Conditions on Sphagnum Lipid Composition in the Erxianyan Peatland, Central China. Organic Geochemistry, 44: 1-7. https://doi.org/10.1016/j.orggeochem.2011.12.005
|
IUCN, 2021. Peatlands and Climate Change. https://iucn.org/sites/default/files/2022-04/iucn_issues_brief_peatlands_and_climate_change_final_nov21.pdf
|
Kilian, M. R., Van der Plicht, J., Van Geel, B., 1995. Dating Raised Bogs: New Aspects of AMS 14C Wiggle Matching, a Reservoir Effect and Climatic Change. Quaternary Science Reviews, 14(10): 959-966. https://doi.org/10.1016/0277-3791(95)00081-X
|
Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat-Moss Ecosystems. Nature Geoscience, 3: 617-621. https://doi.org/10.1038/ngeo939
|
Krassovski, M. B., Riggs, J. S., Hook, L. A., et al., 2015. A Comprehensive Data Acquisition and Management System for an Ecosystem-Scale Peatland Warming and Elevated CO2 Experiment. Geoscientific Instrumentation, Methods and Data Systems, 4(2): 203-213. https://doi.org/10.5194/gi-4-203-2015
|
Laine, A. M., Mäkiranta, P., Laiho, R., et al., 2019. Warming Impacts on Boreal Fen CO2 Exchange under Wet and Dry Conditions. Global Change Biology, 25(6): 1995-2008. https://doi.org/10.1111/gcb.14617
|
Lamentowicz, M., Gałka, M., Marcisz, K., et al., 2019. Unveiling Tipping Points in Long-Term Ecological Records from Sphagnum-Dominated Peatlands. Biology Letters, 15(4): 20190043. https://doi.org/10.1098/rsbl.2019.0043[PubMed]
|
Lamentowicz, M., Słowińska, S., Słowiński, M., et al., 2016. Combining Short-Term Manipulative Experiments with Long-Term Palaeoecological Investigations at High Resolution to Assess the Response of Sphagnum Peatlands to Drought, Fire and Warming. Mires and Peat, 18(20): 1-17
|
LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020
|
Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications: A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg-5-1475-2008
|
Lin, X. J., Tfaily, M. M., Steinweg, J. M., et al., 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 80(11): 3518-3530. https://doi.org/10.1128/aem.00205-14
|
Liu, X. F., Wu, L., Wang, H., et al., 2020. Growth and Decomposition Characteristics of Sphagnum in a Subalpine Wetland, Southwestern Hubei, China. Chinese Journal of Plant Ecology, 44(3): 228-235 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0316
|
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., et al., 2021. Expert Assessment of Future Vulnerability of the Global Peatland Carbon Sink. Nature Climate Change, 11: 70-77. https://doi.org/10.1038/s41558-020-00944-0
|
Ma, X. Y., Xu, H., Cao, Z. Y., et al., 2022. Will Climate Change Cause the Global Peatland to Expand or Contract? Evidence from the Habitat Shift Pattern of Sphagnum Mosses. Global Change Biology, 28(21): 6419-6432. https://doi.org/10.1111/gcb.16354
|
Machmuller, M. B., Lynch, L. M., Mosier, S. L., et al., 2024. Arctic Soil Carbon Trajectories Shaped by Plant-Microbe Interactions. Nature Climate Change, 14: 1178-1185. https://doi.org/10.1038/s41558-024-02147-3
|
Malhotra, A., Brice, D. J., Childs, J., et al., 2020. Peatland Warming Strongly Increases Fine-Foot Growth. Proceedings of the National Academy of Sciences, 117 (30): 17627-17634. https://doi.org/10.1073/pnas.200336111
|
Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long-Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. https://doi.org/10.1126/science.aan2874
|
Nichols, J. E., Walcott, M., Bradley, R., et al., 2009. Quantitative Assessment of Precipitation Seasonality and Summer Surface Wetness Using Ombrotrophic Sediments from an Arctic Norwegian Peatland. Quaternary Research, 72: 443-451. https://doi.org/10.1016/j.yqres.2009.07.007
|
Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41: 35-57. https://doi.org/10.1146/annurev-environ-110615-085520
|
Page, S. E., Siegert, F., Rieley, J. O., et al., 2002. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature, 420(6911): 61-65. https://doi.org/10.1038/nature01131
|
Pancost, R. D., 2024. Biomarker Carbon and Hydrogen Isotopes Reveal Changing Peatland Vegetation, Hydroclimate and Biogeochemical Tipping Points. Quaternary Science Reviews, 339: 108828. https://doi.org/10.1016/j.quascirev.2024.108828
|
Pancost, R. D., van Geel, B., Baas, M., et al., 2000. δ13C Values and Radiocarbon Dates of Microbial Biomarkers as Tracers for Carbon Recycling in Peat Deposits. Geology, 28(7): 663-666. https://doi.org/10.1130/0091-7613(2000)0280663: cvardo>2.3.co;2 doi: 10.1130/0091-7613(2000)0280663:cvardo>2.3.co;2
|
Poirier, V., Roumet, C., Munson, A. D., 2018. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biology and Biochemistry, 120: 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016
|
Price, G. D., McKenzie, J. E., Pilcher, J. R., et al., 1997. Carbon-Isotope Variation in Sphagnum from Hummock-Hollow Complexes: Implications for Holocene Climate Reconstruction. The Holocene, 7(2): 229-233. https://doi.org/10.1177/095968369700700211
|
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al., 2005. Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs. Nature, 436(7054): 1153-1156. https://doi.org/10.1038/nature03802
|
Roth, S. W., Griffiths, N. A., Kolka, R. K., et al., 2023. Elevated Temperature Alters Microbial Communities, but not Decomposition Rates, during 3 Years of in Situ peat Decomposition. mSystems, 8(5): e00337-23. https://doi.org/10.1128/msystems.00337-23
|
Salimi, S., Almuktar, S. A. A. A. N., Scholz, M., 2021. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environmental Management, 286: 112160. https://doi.org/10.1016/j.jenvman.2021.112160
|
Smolders, A. J. P., Tomassenm, H. B. M., Pijnappelm, H. W., et al., 2001. Substrate‐Derived CO2 is Important in the Development of Sphagnum spp. New Phytologist, 152: 325-332. https://doi.org/10.1046/j.0028-646X.2001.00261.x
|
Stirling, E., Fitzpatrick, R. W., Mosley, L. M., 2020. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth-Science Reviews, 210: 103387. https://doi.org/10.1016/j.earscirev.2020.103387
|
Stuart, J. E. M., Tucker, C. L., Lilleskov, E. A., et al., 2023. Evidence for Older Carbon Loss with Lowered Water Tables and Changing Plant Functional Groups in Peatlands. Global Change Biology, 29(3): 780-793. https://doi.org/10.1111/gcb.16508
|
Taillardat, P., Bodmer, P., Deblois, C. P., et al., 2022. Carbon Dioxide and Methane Dynamics in a Peatland Headwater Stream: Origins, Processes and Implications. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006855. https://doi.org/10.1029/2022jg006855
|
Turetsky, M. R., Benscoter, B., Page, S., et al., 2015. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nature Geoscience, 8: 11-14. https://doi.org/10.1038/ngeo2325
|
Walker, T. N., Garnett, M. H., Ward, S. E., et al., 2016. Vascular Plants Promote Ancient Peatland Carbon Loss with Climate Warming. Global Change Biology, 22(5): 1880-1889. https://doi.org/10.1111/gcb.13213
|
Ward, S. E., Ostle, N. J., Oakley, S., et al., 2013. Warming Effects on Greenhouse Gas Fluxes in Peatlands Are Modulated by Vegetation Composition. Ecology Letters, 16(10): 1285-1293. https://doi.org/10.1111/ele.12167
|
White, J. R., Shannon, R. D., Weltzin, J. F., et al., 2008. Effects of Soil Warming and Drying on Methane Cycling in a Northern Peatland Mesocosm Study. Journal of Geophysical Research: Biogeosciences, 113(G3): G00A06. https://doi.org/10.1029/2007JG000609
|
Wiggins, E. B., Czimczik, C. I., Santos, G. M., et al., 2018. Smoke Radiocarbon Measurements from Indonesian Fires Provide Evidence for Burning of Millennia-Aged Peat. Proceedings of the National Academy of Sciences, 115(49): 12419-12424. https://doi.org/10.1073/pnas.1806003115
|
Wilson, R. M., Griffiths, N. A., Visser, A., et al., 2021a. Radiocarbon Analyses Quantify Peat Carbon Losses with Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences, 126(11): e2021JG006511. https://doi.org/10.1029/2021JG006511
|
Wilson, R. M., Hopple, A. M., Tfaily, M. M., et al., 2016. Stability of Peatland Carbon to Rising Temperatures. Nature Communications, 7: 13723. https://doi.org/10.1038/ncomms13723
|
Wilson, R. M., Tfaily, M. M., Kolton, M., et al., 2021b. Soil Metabolome Response to Whole-Ecosystem Warming at the Spruce and Peatland Responses under Changing Environments Experiment. Proceedings of the National Academy of Sciences, 118(25): e2004192118. https://doi.org/10.1073/pnas.2004192118
|
Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1
|
Yang, G., Chen, H., Wu, N., et al., 2014. Effects of Soil Warming, Rainfall Reduction and Water Table Level on CH4 Emissions from the Zoigé Peatland in China. Soil Biology & Biochemistry, 78: 83-89. https://doi.org/10.1016/j.soilbio.2014.07.013
|
Yang, T., He, Q., Jiang, J., et al., 2022. Impact of Water Table on Methane Emission Dynamics in Terrestrial Wetlands and Implications on Strategies for Wetland Management and Restoration. Wetlands, 42(8): 120. https://doi.org/10.1007/s13157-022-01634-7
|
Yu, Z. C., 2011. Holocene Carbon Flux Histories of the World's Peatlands. The Holocene, 21(5): 761-774. https://doi.org/10.1177/0959683610386982
|
Zhang, M. M., Huang, X. Y., Chen, X., 2021. Distribution Patterns and Controlling Factors of Peatlands in Subtropical Mountainous Areas of China. Wetland Science, 19(6): 753-761 (in Chinese with English abstract).
|
Zhang, Y. M., Huang, X. Y., Xie, S. C., 2021. Compound-Specific Carbon Isotope Compositions of Microbial Phospholipid Fatty Acids Reveal Carbon Cycling Processes. Quaternary Sciences, 41(4): 877-892 (in Chinese with English abstract).
|
Zhong, Y. H., Jiang, M., Middleton, B. A., 2020. Effects of Water Level Alteration on Carbon Cycling in Peatlands. Ecosystem Health and Sustainability, 6(1): 1806113. https://doi.org/10.1080/20964129.2020.1806113
|
Zhu, B., Chen, Y., 2020. Techniques and Methods for Field Warming Manipulation Experiments in Terrestrial Ecosystems. Chinese Journal of Plant Ecology, 44(4): 330-339 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0179
|
Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114
|
刘雪飞, 吴林, 王涵, 等, 2020. 鄂西南亚高山湿地泥炭藓的生长与分解. 植物生态学报, 44(3): 228-235.
|
张明明, 黄咸雨, 陈旭, 2021. 中国亚热带山区泥炭地分布规律及其控制因素. 湿地科学, 19(6): 753-761.
|
张一鸣, 黄咸雨, 谢树成, 2021. 微生物磷脂脂肪酸单体碳同位素示踪碳循环过程. 第四纪研究, 41(4): 877-892.
|
朱彪, 陈迎, 2020. 陆地生态系统野外增温控制实验的技术与方法. 植物生态学报, 44(4): 330-339.
|