Citation: | Ci Qiong, Zheng Youye, Wu Song, Liu Peng, Zhao Yayun, Gong Fuzhi, Du Zezhong, Hou Yitao, 2025. Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang. Earth Science, 50(4): 1305-1318. doi: 10.3799/dqkx.2024.120 |
Ai, Y. M., Xiao, B., Zhao, J. F., et al., 2024. Ages, Petrogenesis and Metallogenesis Implications of the Miocene Adakite-Like Igneous Rocks in the Beimulang Porphyry Cu Deposit, Southern Tibet. Ore Geology Reviews, 173: 106249. https://doi.org/10.1016/j.oregeorev.2024.106249
|
Chen, H. Y., Zhang, S. T., Chu, G. B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.12.04
|
Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006
|
Ding, L. I. N., Kapp, P., Zhong, D., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061
|
Du, Z. Z., Cheng, Z. Z., Yu, X. F., et al., 2023. Geochronology and Petrogeochemistry of Miocene Porphyries from the Beimulang Deposit, Western Gangdese Copper Belt. Ore Geology Reviews, 162: 105682. https://doi.org/10.1016/j.oregeorev.2023.105682
|
Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X
|
Hou, Z. Q., Yang, Z., Lu, Y., et al., 2015. A Genetic Linkage between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/G36362.1
|
Hou, Z. Q., Zheng, Y. C., Lu, Z. W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815(in Chinese with English abstract).
|
Huang, Q., Wu, S., Liu, X. F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638(in Chinese with English abstract).
|
Li, J. Z., Wu, S., Lin, Y. B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244(in Chinese with English abstract).
|
Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. doi: 10.1016/j.oregeorev.2022.104823
|
Lü, F. J., Hao, Y. S., Shi, J., et al., 2009. Alteration Remote Sensing Anomaly Extraction Based on Aster Remote Sensing Data. Acta Geoscientica Sinica, 30(2): 271-276(in Chinese with English abstract). http://www.oalib.com/paper/1558004
|
Mo, X., Niu, Y., Dong, G., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250: 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
|
Pour, A. B., Hashim, M., Marghany, M., 2011. Using Spectral Mapping Techniques on Short Wave Infrared Bands of ASTER Remote Sensing Data for Alteration Mineral Mapping in SE Iran. International Journal of Physical Sciences, 6(4): 917-929.
|
Ren, H., Zheng, Y. Y., Wu, S., et al., 2023. Short-Wavelength Infrared Characteristics and Composition of White Mica in the Demingding Porphyry Cu-Mo Deposit, Gangdese Belt, Tibet: Implications for Mineral Exploration. Ore Geology Reviews, 105833.
|
Sun, X., Zheng, Y. Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406(in Chinese with English abstract).
|
Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7): 1967-2001. https://doi.org/10.2113/econgeo.109.7.1967
|
Wang, R., Luo, C. H., Xia, W., et al., 2021. Role of Alkaline Magmatism in Formation of Porphyry Deposits in Non-arc Settings: Gangdese and Sanjiang Metallogenic Belts. SEG Special Publications, 24: 205-229. https://doi: 10.5382/SP.24.12
|
Wang, R., Richards, J. P., Zhou, L. M., et al., 2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews, 150: 68-94. doi: 10.1016/j.earscirev.2015.07.003
|
Wang, R., Weinberg, R. F., Collins, W. J., et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143. https://doi: 10.1016/j.earscirev.2018.02.019
|
Wang, R., Weinberg, R. F., Zhu, D. C., et al., 2022. The Impact of a Tear in the Subducted Indian Plate on the Miocene Geology of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 134(3-4): 681-690. https://doi.org/10.1130/B36023.1
|
Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023
|
Yang, J. Z., Fang, H. B., Zhang, Y. J., et al., 2003. Remote Sensing Anomaly Extraction in Important Metallogenic Belts of Western China. Remote Sensing for Land & Resources, 15(3): 50-53(in Chinese with English abstract).
|
Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3): 324-336. https://doi.org/10.1007/s00126-005-0479-7
|
Yang, Z. M., Cooke, D. R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 22: 133-187. https://doi.org/10.5382/SP.22.05
|
Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300. https://doi: 10.5382/SP.19.11
|
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211
|
Zhao, Y. Y., Liu, X. F., Liu, Y. C., et al., 2017. Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet. Gansu Geology, 26(4): 28-36(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GSDZ201704005.htm
|
Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004
|
Zheng, Y. Y., Ci, Q., Gao, S. B., et al., 2021. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402(in Chinese with English abstract).
|
Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200604023.htm
|
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012
|
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/J.JSEAES.2013.03.029
|
Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7
|
Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442
|
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005
|
陈华勇, 张世涛, 初高彬, 等, 2019. 鄂东南矿集区典型矽卡岩-斑岩矿床蚀变矿物短波红外(SWIR)光谱研究与勘查应用. 岩石学报, 35(12): 3629-3643.
|
侯增谦, 郑远川, 卢占武, 等, 2020. 青藏高原巨厚地壳: 生长、加厚与演化. 地质学报, 94(10): 2797-2815.
|
黄倩, 吴松, 刘晓峰, 等, 2025. 西藏唐格矽卡岩型铜铅锌矿床成矿时代: 来自石榴子石U-Pb年龄的约束. 地球科学, 50(2): 621-638. doi: 10.3799/dqkx.2024.017
|
黄永高, 韩飞, 康志强, 等, 2024. 西藏南木林盆地林子宗群火山岩年代学和地球化学特征. 地球科学, 49(3): 822-836. doi: 10.3799/dqkx.2022.196
|
李家桢, 吴松, 林毅斌, 等, 2022. 西藏次玛班硕斑岩铜矿蚀变-矿化样式及找矿潜力. 地球科学, 47(6): 2219-2244. doi: 10.3799/dqkx.2021.229
|
吕凤军, 郝跃生, 石静, 等, 2009. ASTER遥感数据蚀变遥感异常提取研究. 地球学报, 30(2): 271-276.
|
孙祥, 郑有业, 吴松, 等, 2013. 冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因. 岩石学报, 29(4): 1392-1406.
|
杨金中, 方洪宾, 张玉君, 等, 2003. 中国西部重要成矿带遥感找矿异常提取的方法研究. 国土资源遥感, 15(3): 50-53.
|
赵亚云, 刘晓峰, 刘远超, 等, 2017. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析. 甘肃地质, 26(4): 28-36.
|
郑有业, 次琼, 高顺宝, 等, 2021. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402.
|
郑有业, 高顺宝, 张大全, 等, 2006. 西藏朱诺斑岩铜矿床发现的重大意义及启示. 地学前缘, 13(4): 233-239.
|