• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 11
    Nov.  2025
    Turn off MathJax
    Article Contents
    Wang Kun, Zhang Jiawei, Xiang Lu, Shi Lei, Ye Taiping, Li Haibo, Chen Jianshu, Dai Yaran, Zhang Tingting, Zhu Yuhua, 2025. Demarcation of North Boundary for Western Jiangnan Orogen: Evidence from Granitic Xenolith in Daping Area, East Guizhou. Earth Science, 50(11): 4370-4386. doi: 10.3799/dqkx.2024.126
    Citation: Wang Kun, Zhang Jiawei, Xiang Lu, Shi Lei, Ye Taiping, Li Haibo, Chen Jianshu, Dai Yaran, Zhang Tingting, Zhu Yuhua, 2025. Demarcation of North Boundary for Western Jiangnan Orogen: Evidence from Granitic Xenolith in Daping Area, East Guizhou. Earth Science, 50(11): 4370-4386. doi: 10.3799/dqkx.2024.126

    Demarcation of North Boundary for Western Jiangnan Orogen: Evidence from Granitic Xenolith in Daping Area, East Guizhou

    doi: 10.3799/dqkx.2024.126
    • Received Date: 2025-07-26
    • Publish Date: 2025-11-25
    • Mantle-derived magmas can serve as a "lithoprobe" for acquiring information about deep Earth materials. In this study, a newly discovered granite xenolith from the Late Ordovician (449 Ma) lamproite at Daping, East Guizhou, was investigated. Zircon U-Pb geochronology, Lu-Hf isotope, and trace element analyses were conducted on the granite xenolith. The results indicate that the concordant zircon U-Pb age of the granite xenolith is (833±2.6) Ma (MSWD=1.3, n=26). The εHf(t) values range from -11.4 to -2.30, and the depleted mantle model ages (TDM) vary from 2 457 to 1 893 Ma. The trace element compositions of zircon, including REEs, U, Th, Pb, Nb, and Hf, suggest that the granite xenolith is an S-type granite related to orogenic processes. The similarity in crystallization ages and Hf isotopic compositions between this granite xenolith and the Neoproterozoic granites exposed in the Fanjingshan region implies that they may collectively form a large granitic batholith at depth. This batholith provides crucial evidence for delineating the northern boundary of the western segment of the Jiangnan Orogen. It is proposed that the boundary between the northern side of the western Jiangnan Orogen and the Yangtze Block should be defined by the Zhangjiajie-Guiyang fault.

       

    • loading
    • Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early- Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. https://doi.org/10.1016/S0016-7037(00)00493-2
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Boyd, F. R., Gurney, J. J., 1986. Diamonds and the African Lithosphere. Science, 232(4749): 472-477. https://doi.org/10.1126/science.232.4749.472
      Carley, T. L., Bell, E. A., Miller, C. F., et al., 2022. Zircon-Modeled Melts Shed Light on the Formation of Earth's Crust from the Hadean to the Archean. Geology, 50(9): 1028-1032. https://doi.org/10.1130/g50017.1
      Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1-2): 14-32. https://doi.org/10.1130/b30722.1
      Cawood, P. A., Krner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/SP318.1
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Chen, C. X., Lü, Q. T., Chen, L., et al., 2022. Crustal Thickness and Composition in the South China Block: Constraints from Earthquake Receiver Function. Science China (Earth Sciences), 65(4): 698-713 (in Chinese). doi: 10.1007/s11430-021-9858-x
      Chen, G. X., Kusky, T., Luo, L., et al., 2023. Hadean Tectonics: Insights from Machine Learning. Geology, 51(8): 718-722. https://doi.org/10.1130/g51095.1
      Chen, L., Wang, Z. Q., Yan, Z., et al., 2018. Zircon and Cassiterite U-Pb Ages, Petrogeochemistry and Metallogenesis of Sn Deposits in the Sibao Area, Northern Guangxi: Constraints on the Neoproterozoic Granitic Magmatism and Related Sn Mineralization in the Western Jiangnan Orogen, South China. Mineralogy and Petrology, 112(4): 437-463. https://doi.org/10.1007/s00710-018-0554-2
      Chu, N. C., Taylor, R. N., Chavagnac, V., et al., 2002. Hf Isotope Ratio Analysis Using Multi-Collector Inductively Coupled Plasma Mass Spectrometry: An Evaluation of Isobaric Interference Corrections. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. https://doi.org/10.1039/b206707b
      Collins, W. J., 2002. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535. https://doi.org/10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2 doi: 10.1130/0091-7613(2002)0300535:hotsac>2.0.co;2
      Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7): 559-562. https://doi.org/10.1130/G24658A.1
      Dai, C. G., Qin, S. R., Chen, J. S., et al., 2013. Characteristics of Deep Concealed Faults in Guizhou. Geological Science and Technology Information, 32(6): 1-6, 13 (in Chinese with English abstract).
      Deng, T., Xu, D., Chi, G., et al., 2018. Revisiting the Ca. 845-820-Ma S-Type Granitic Magmatism in the Jiangnan Orogen: New Insights on the Neoproterozoic Tectono-Magmatic Evolution of South China. International Geology Review, 61(4): 383-403. https://doi.org/10.1080/00206814.2018.1426054
      Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China: Evidence from Seismic-Reflection Profiling. Precambrian Research, 264: 1-10. https://doi.org/10.1016/j.precamres.2015.04.003
      Downes, P. J., Griffin, B. J., Griffin, W. L., 2007. Mineral Chemistry and Zircon Geochronology of Xenocrysts and Altered Mantle and Crustal Xenoliths from the Aries Micaceous Kimberlite: Constraints on the Composition and Age of the Central Kimberley Craton, Western Australia. Lithos, 93(1-2): 175-198. https://doi.org/10.1016/j.lithos.2006.06.005
      Drabon, N., Byerly, B. L., Byerly, G. R., et al., 2022. Destabilization of Long-Lived Hadean Protocrust and the Onset of Pervasive Hydrous Melting at 3.8 Ga. AGU Advances, 3(2): e2021AV000520. https://doi.org/10.1029/2021AV000520
      Gao, J., Klemd, R., Long, L. L., et al., 2009. Adakitic Signature Formed by Fractional Crystallization: An Interpretation for the Neo-Proterozoic Meta-Plagiogranites of the NE Jiangxi Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. https://doi.org/10.1016/j.lithos.2009.01.009
      Gao, L. Z., Dai, C. G., Ding, X. Z., et al., 2011. SHRIMP U-Pb Dating of Intrusive Alaskite in the Fanjingshan Group and Alaskite Basal Conglomerates: Constraints on the Deposition of the Xiajiang Group. Geology in China, 38(6): 1413-1420 (in Chinese with English abstract).
      Gardiner, N. J., Kirkland, C. L., Hollis, J. A., et al., 2020. North Atlantic Craton Architecture Revealed by Kimberlite-Hosted Crustal Zircons. Earth and Planetary Science Letters, 534: 116091. https://doi.org/10.1016/j.epsl.2020.116091
      Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643. https://doi.org/10.1130/G23603A.1
      Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
      Guo, L. H., Gao, R., 2018. Potential-Field Evidence for the Tectonic Boundaries of the Central and Western Jiangnan Belt in South China. Precambrian Research, 309: 45-55. https://doi.org/10.1016/j.precamres.2017.01.028
      Han, R. B., Yang, D. H., Li, Q. S., et al., 2023. Structural Boundary and Deep Contact Relationship between the Yangtze and Cathaysia Blocks from Crustal Thickness Gradients. Frontiers in Earth Science, 10: 1065782. https://doi.org/10.3389/feart.2022.1065782
      He, C. S., Dong, S. W., Santosh, M., et al., 2013. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China. Scientific Reports, 3: 2200. https://doi.org/10.1038/srep02200
      Hou, Z. Q., Wang, T., 2018. Isotopic Mapping and Deep Material Probing (Ⅱ): Imaging Crustal Architecture and Its Control on Mineral Systems. Earth Science Frontiers, 25(6): 20-41 (in Chinese with English abstract).
      Hu, Z. C., Li, X. H., Luo, T., et al., 2021. Tanz Zircon Megacrysts: A New Zircon Reference Material for the Microbeam Determination of U-Pb Ages and Zr-O Isotopes. Journal of Analytical Atomic Spectrometry, 36(12): 2715-2734. https://doi.org/10.1039/D1JA00311A
      Huang, S. F., 2021. The Formation and Evolution of the Jiangnan Orogen: Implication from the Neoproterozoic Magmatic Rock (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Huang, S. F., Wang, W., Zhao, J. H., et al., 2018. Petrogenesis and Geodynamic Significance of the ~850 Ma Dongling A-Type Granites in South China. Lithos, 318: 176-193. https://doi.org/10.1016/j.lithos.2018.08.016
      Li, Q. W., Zhao, J. H., Dong, Y. L., et al., 2024. Large Granitoid Batholith Formed by Episodic Reworking of the Continental Basement. Precambrian Research, 413: 107568. https://doi.org/10.1016/j.precamres.2024.107568
      Li, X. H., Li, Z. X., Ge, W. C., et al., 2001. U-Pb Zircon Ages of the Neoproterozoic Granitoids in South China and Their Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 271-273 (in Chinese with English abstract).
      Li, X. L., Li, Z. W., Xia, X., et al., 2023. Crustal Structure and Tectonic Boundary Characteristics in South China: Constraints from Joint Tomography of Ambient Noise and Gravity. Chinese Science Bulletin, 68(24): 3221-3236 (in Chinese). doi: 10.1360/TB-2023-0417
      Ling, X. X., Li, Q. L., Yang, C. A., et al., 2022. Zircon ZS-A Homogenous Natural Reference Material for U-Pb Age and O-Hf Isotope Microanalyses. Atomic Spectroscopy, 43(2): 134-144. https://doi.org/10.46770/as.2022.033
      Liu, H., Zhao, J. H., 2018. Neoproterozoic Peraluminous Granitoids in the Jiangnan Fold Belt: Implications for Lithospheric Differentiation and Crustal Growth. Precambrian Research, 309: 152-165. https://doi.org/10.1016/j.precamres.2017.05.001
      Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      Lv, Z. H., Chen, J., Zhang, H., et al., 2021. Petrogenesis of Neoproterozoic Rare Metal Granite-Pegmatite Suite in Jiangnan Orogen and Its Implications for Rare Metal Mineralization of Peraluminous Rock in South China. Ore Geology Reviews, 128: 103923. https://doi.org/10.1016/j.oregeorev.2020.103923
      Ma, T. Q., Chen, L. X., Bai, D. Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeastern Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract).
      Miao, Z., Zhao, Z. D., Lei, H. S., et al., 2020. Genesis of LREE-Enriched Zircons and Their Highly Radiogenic Hf Compositions: A Case Study from Zhuopan Alkaline Complex in Western Yunnan. Acta Petrologica Sinica, 36(9): 2765-2784 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.09.10
      Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pearson, D. G., Canil, D., Shirey, S. B., 2003. Mantle Samples Included in Volcanic Rocks: Xenoliths and Diamonds. Treatise on Geochemistry, 2: 568. https://doi.org/10.1016/B0-08-043751-6/02005-3
      Pearson, D. G., Wittig, N., 2014. The Formation and Evolution of Cratonic Mantle Lithosphere-Evidence from Mantle Xenoliths. Treatise on Geochemistry. Elsevier, Amsterdam, 255-292. https://doi.org/10.1016/b978-0-08-095975-7.00205-9 doi: 10.1016/b978-0-08-095975-7.00205-9
      Rong, W., Zhang, S. B., Zheng, Y. F., et al., 2018. Mixing of Felsic Magmas in Granite Petrogenesis: Geochemical Records of Zircon and Garnet in Peraluminous Granitoids from South China. Journal of Geophysical Research: Solid Earth, 123(4): 2738-2769. https://doi.org/10.1002/2017JB014022
      Rubatto, D., 2002. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2): 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005
      Su, J. B., Dong, S. W., Zhang, Y. Q., et al., 2017. Orogeny Processes of the Western Jiangnan Orogen, South China: Insights from Neoproterozoic Igneous Rocks and a Deep Seismic Profile. Journal of Geodynamics, 103: 42-56. https://doi.org/10.1016/j.jog.2016.12.004
      Su, J. B., Zhang, Y. Q., Dong, S. W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. Journal of Earth Science, 25(4): 619-629. https://doi.org/10.1007/s12583-014-0469-8
      Sun, J. J., Shu, L. S., Santosh, M., et al., 2017. Neoproterozoic Tectonic Evolution of the Jiuling Terrane in the Central Jiangnan Orogenic Belt (South China): Constraints from Magmatic Suites. Precambrian Research, 302: 279-297. https://doi.org/10.1016/j.precamres.2017.10.003
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tang, Y. W., Chen, L., Zhao, Z. F., et al., 2020. Geochemical Evidence for the Production of Granitoids through Reworking of the Juvenile Mafic Arc Crust in the Gangdese Orogen, Southern Tibet. GSA Bulletin, 132(7-8): 1347-1364. https://doi.org/10.1130/b35304.1
      Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001
      Vervoort, J., 2014. Lu-Hf Dating: The Lu-Hf Isotope System. Encyclopedia of Scientific Dating Methods. Springer Netherlands, Dordrecht, 1-20. https://doi.org/10.1007/978-94-007-6326-5_46-1 doi: 10.1007/978-94-007-6326-5_46-1
      Vervoort, J. D., Patchett, P. J., Gehrels, G. E., et al., 1996. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes. Nature, 379(6566): 624-627. https://doi.org/10.1038/379624a0
      Wang, D., Wang, X. L., 2021. Dual Mixing for the Formation of Neoproterozoic Granitic Intrusions within the Composite Jiuling Batholith, South China. Contributions to Mineralogy and Petrology, 176(1): 7. https://doi.org/10.1007/s00410-020-01757-2
      Wang, L., Zhang, J. W., Chen, G. Y., et al., 2020. Delineation of Concealed Intermediate-Acidic Pluton and Significance of Mineral Prospecting in Guizhou Province. Geology and Exploration, 56(2): 387-402 (in Chinese with English abstract).
      Wang, L. J., Zhang, K. X., Lin, S. F., et al., 2022. Origin and Age of the Shenshan Tectonic Mélange in the Jiangshan-Shaoxing-Pingxiang Fault and Late Early Paleozoic Juxtaposition of the Yangtze Block and the West Cathaysia Terrane, South China. GSA Bulletin, 134(1/2): 113-129. https://doi.org/10.1130/b35963.1
      Wang, M., Dai, C. G., Wang, X. H., et al., 2011. In-Situ Zircon Geochronology and Hf Isotope of Muscovite-Bearing Leucogranites from Fanjingshan, Guizhou Province, and Constraints on Continental Growth of the Southern China Block. Earth Science Frontiers, 18(5): 213-223 (in Chinese with English abstract).
      Wang, Q., Zhu, D. C., Zhao, Z. D., et al., 2012a. Magmatic Zircons from I-, S- and A-Type Granitoids in Tibet: Trace Element Characteristics and Their Application to Detrital Zircon Provenance Study. Journal of Asian Earth Sciences, 53: 59-66. https://doi.org/10.1016/j.jseaes.2011.07.027
      Wang, X. L., Shu, L. S., Xing, G. F., et al., 2012b. Post-Orogenic Extension in the Eastern Part of the Jiangnan Orogen: Evidence from ca 800-760 Ma Volcanic Rocks. Precambrian Research, 222: 404-423. https://doi.org/10.1016/j.precamres.2011.07.003
      Wang, T., Huang, H., Yang, L. Q., et al., 2022. The Methodological Framework for Deciphering 3-Demensional Material Architecture of the Lithosphere. Acta Geologica Sinica, 96(10): 3589-3618 (in Chinese with English abstract).
      Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735, 696 (in Chinese with English abstract).
      Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2014. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Research, 242: 154-171. https://doi.org/10.1016/j.precamres.2013.12.023
      Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1-2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014
      Wang, X. L., Zhou, J. C., Wan, Y. S., et al., 2013. Magmatic Evolution and Crustal Recycling for Neoproterozoic Strongly Peraluminous Granitoids from Southern China: Hf and O Isotopes in Zircon. Earth and Planetary Science Letters, 366: 71-82. https://doi.org/10.1016/j.epsl.2013.02.011
      Wei, S. D., Liu, H., Zhao, J. H., 2018. Tectonic Evolution of the Western Jiangnan Orogen: Constraints from the Neoproterozoic Igneous Rocks in the Fanjingshan Region, South China. Precambrian Research, 318: 89-102. https://doi.org/10.1016/j.precamres.2018.10.006
      Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x
      Windley, B., 1992. Chapter 11 Proterozoic Collisional and Accretionary Orogens. Proterozoic Crustal Evolution. Elsevier, Amsterdam, 419-446. https://doi.org/10.1016/s0166-2635(08)70125-7 doi: 10.1016/s0166-2635(08)70125-7
      Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
      Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006a. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003
      Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006b. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3-4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
      Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020
      Xiang, L., Wang, R. C., Romer, R. L., et al., 2020. Neoproterozoic Nb-Ta-W-Sn Bearing Tourmaline Leucogranite in the Western Part of Jiangnan Orogen: Implications for Episodic Mineralization in South China. Lithos, 360: 105450. https://doi.org/10.1016/j.lithos.2020.105450
      Xiang, L., Zheng, J. P., Siebel, W., et al., 2018. Unexposed Archean Components and Complex Post-Archean Accretion/Reworking Processes beneath the Southern Yangtze Block Revealed by Zircon Xenocrysts from the Paleozoic Lamproites, South China. Precambrian Research, 316: 174-196. https://doi.org/10.1016/j.precamres.2018.08.003
      Xiang, L., Zheng, J. P., Zhai, M. G., 2022. Archean to Paleoproterozoic Crustal Evolution of the Southern Yangtze Block (South China): U-Pb Age and Hf-Isotope of Zircon Xenocrysts from the Paleozoic Diamondiferous Kimberlites. Precambrian Research, 374: 106651. https://doi.org/10.1016/j.precamres.2022.106651
      Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294: 91-110. https://doi.org/10.1016/j.precamres.2017.03.018
      Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      Xu, X. S., Wang, X. L., Zhao, K., et al., 2020. Progresses and Tendencies of Granite Researches in Last Decade: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 39(5): 899-911, 1069 (in Chinese with English abstract).
      Xue, H. M., Ma, F., Song, Y. Q., et al., 2010. Geochronology and Geochemisty of the Neoproterozoic Granitoid Association from Eastern Segment of the Jiangnan Orogen, China: Constraints on the Timing and Process of Amalgamation between the Yangtze and Cathaysia Blocks. Acta Petrologica Sinica, 26(11): 3215-3244 (in Chinese with English abstract).
      Yan, C. L., Shu, L. S., Chen, Y., et al., 2021. The Construction Mechanism of the Neoproterozoic S-Type Sanfang-Yuanbaoshan Granitic Plutons in the Jiangnan Orogenic Belt, South China: Insights from Geological Observation, Geochronology, AMS and Bouguer Gravity Modeling. Precambrian Research, 354: 106054. https://doi.org/10.1016/j.precamres.2020.106054
      Yan, J. Y., Lu, Q. T., Zhang, Y. Q., et al., 2022. The Deep Boundaries of Jiangnan Orogenic Belt and Its Constraints on Metallogenic: From the Understanding of Integrated Geophysics. Acta Petrologica Sinica, 38(2): 544-558 (in Chinese with English abstract). doi: 10.18654/1000-0569/2022.02.16
      Yang, G. Z., Li, Y. G., Zhang, Y. L., et al., 2019. Distribution-Controlling Factors and Emplacement Mode of Lamproite in Southeastern Guizhou Province. Geological Bulletin of China, 38(1): 27-35 (in Chinese with English abstract).
      Yang, J. H., Cawood, P. A., Du, Y. S., et al., 2012. Large Igneous Province and Magmatic Arc Sourced Permian-Triassic Volcanogenic Sediments in China. Sedimentary Geology, 261: 120-131. https://doi.org/10.1016/j.sedgeo.2012.03.018
      Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      Yao, J. L., Shu, L. S., Cawood, P. A., et al., 2016. Delineating and Characterizing the Boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China. Precambrian Research, 275: 265-277. https://doi.org/10.1016/j.precamres.2016.01.023
      Yao, J. L., Shu, L. S., Santosh, M., et al., 2014. Neoproterozoic Arc-Related Mafic-Ultramafic Rocks and Syn-Collision Granite from the Western Segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 243: 39-62. https://doi.org/10.1016/j.precamres.2013.12.027
      Yao, J. L., Shu, L. S., Zhao, G. C., et al., 2021. Ca. 835-823 Ma Doming Extensional Tectonics in the West Jiangnan Accretionary Orogenic Belt, South China: Implication for a Slab Roll-back Event. Journal of Geodynamics, 148: 101879. https://doi.org/10.1016/j.jog.2021.101879
      Ye, T. Z., Huang, C. K., Deng, Z. Q., 2017. Spatial Database of 1: 2 500 000 Digital Geologic Map of People's Republic of China. Geology in China, 44(S1): 19-24, 139-146 (in Chinese with English abstract).
      Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      Yu, Y., Huang, X. L., He, P. L., et al., 2016. Ⅰ-Type Granitoids Associated with the Early Paleozoic Intracontinental Orogenic Collapse along Pre-Existing Block Boundary in South China. Lithos, 248: 353-365. https://doi.org/10.1016/j.lithos.2016.02.002
      Zhai, M. G., Zhang, Q., Chen, G. N., et al., 2016. Adventure on the Research of Continental Evolution and Related Granite Geochemistry. Chinese Science Bulletin, 61(13): 1414-1420 (in Chinese). doi: 10.1360/N972015-01272
      Zhang, H. F., Gao, S., 2012. Geochemistry. Geological Publishing House, Beijing (in Chinese).
      Zhang, J. W., Liao, M. Y., Santosh, M., et al., 2020. Middle Tonian Calc-Alkaline Picrites, Basalts, and Basaltic Andesites from the Jiangnan Orogen: Evidence for Rear-Arc Magmatism. Precambrian Research, 350: 105943. https://doi.org/10.1016/j.precamres.2020.105943
      Zhang, J. W., Santosh, M., Zhu, Y. H., et al., 2023a. Constraining the Timing of Deep Magmatic Pulses from Diamondiferous Kimberlite and Related Rocks in the South China Continent and Implications for Diamond Exploration. Ore Geology Reviews, 154: 105328. https://doi.org/10.1016/j.oregeorev.2023.105328
      Zhang, Z. Y., Hou, Z. Q., Lü, Q. T., et al., 2023b. Crustal Architectural Controls on Critical Metal Ore Systems in South China Based on Hf Isotopic Mapping. Geology, 51(8): 738-742. https://doi.org/10.1130/g51203.1
      Zhang, J. W., Ye, T. P., Dai, Y. R., et al., 2019. Provenance and Tectonic Setting Transition as Recorded in the Neoproterozoic Strata, Western Jiangnan Orogen: Implications for South China within Rodinia. Geoscience Frontiers, 10(5): 1823-1839. https://doi.org/10.1016/j.gsf.2018.10.009
      Zhang, S. B., Zheng, Y. F., Wu, Y. B., et al., 2006. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34. https://doi.org/10.1016/j.precamres.2006.01.002
      Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. https://doi.org/10.1130/G31701.1
      Zhao, J. H., Zhou, M. F., Zheng, J. P., 2013. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contributions to Mineralogy and Petrology, 166(5): 1505-1519. https://doi.org/10.1007/s00410-013-0940-z
      Zhao, T., Zhu, G., Wu, Q., et al., 2021. Evidence for Discrete Archean Microcontinents in the Yangtze Craton. Precambrian Research, 361: 106259. https://doi.org/10.1016/j.precamres.2021.106259
      Zhao, Z. D., Liu, D., Wang, Q., et al., 2018. Zircon Trace Elements and Their Use in Probing Deep Processes. Earth Science Frontiers, 25(6): 124-135 (in Chinese with English abstract).
      Zhao, Z. H., 2016. Discrimination of Tectonic Settings Based on Trace Elements in Igneous Minerals. Geotectonica et Metallogenia, 40(5): 986-995 (in Chinese with English abstract).
      Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417. https://doi.org/10.1130/g22282.1
      Zheng, Y. F., 2022. Does the Mantle Contribute to Granite Petrogenesis?. Earth Science, 47(10): 3765 (in Chinese with English abstract).
      Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402: 106232. https://doi.org/10.1016/j.lithos.2021.106232
      Zheng, Y. F., Xiao, W. J., Zhao, G. C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. https://doi.org/10.1016/j.gr.2012.10.001
      Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003
      Zhu, D. C., Wang, Q., Weinberg, R. F., et al., 2023a. Continental Crustal Growth Processes Recorded in the Gangdese Batholith, Southern Tibet. Annual Review of Earth and Planetary Sciences, 51: 155-188. https://doi.org/10.1146/annurev-earth-032320-110452
      Zhu, Q. B., Zhao, X. L., Hong, W. T., et al., 2023b. Geochronology, Hf Isotope and Trace Element of Zircon and Apatite for Neoproterozoic Granodiorites in the Eastern Jiangnan Orogen: Implications for the Neoproterozoic Tectonic Evolution. Lithos, 446: 107134. https://doi.org/10.1016/j.lithos.2023.107134
      陈昌昕, 吕庆田, 陈凌, 等, 2022. 华南陆块地壳厚度与物质组成: 基于天然地震接收函数研究. 中国科学: 地球科学, 52(4): 760-776.
      戴传固, 秦守荣, 陈建书, 等, 2013. 试论贵州深部隐伏断裂特征. 地质科技情报, 32(6): 1-6, 13.
      高林志, 戴传固, 丁孝忠, 等, 2011. 侵入梵净山群白岗岩锆石U-Pb年龄及白岗岩底砾岩对下江群沉积的制约. 中国地质, 38(6): 1413-1420.
      侯增谦, 王涛, 2018. 同位素填图与深部物质探测(Ⅱ): 揭示地壳三维架构与区域成矿规律. 地学前缘, 25(6): 20-41.
      黄思访, 2021. 江南造山带的形成与演化——来自新元古代岩浆岩的启示(博士学位论文). 武汉: 中国地质大学(武汉).
      李献华, 李正祥, 葛文春, 等, 2001. 华南新元古代花岗岩的锆石U-Pb年龄及其构造意义. 矿物岩石地球化学通报, 20(4): 271-273.
      李雪垒, 李志伟, 夏鑫, 等, 2023. 华南地壳结构与构造边界特征: 来自地震背景噪声和重力联合成像模型的约束. 科学通报, 68(24): 3221-3236.
      马铁球, 陈立新, 柏道远, 等, 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73.
      苗壮, 赵志丹, 雷杭山, 等, 2020. 锆石轻稀土富集与Hf同位素异常成因: 以滇西卓潘碱性杂岩体为例. 岩石学报, 36(9): 2765-2784.
      王亮, 张嘉玮, 陈国勇, 等, 2020. 贵州中酸性隐伏岩体圈定与找矿意义. 地质与勘探, 56(2): 387-402.
      王敏, 戴传固, 王雪华, 等, 2011. 贵州梵净山白云母花岗岩锆石年代、铪同位素及对华南地壳生长的制约. 地学前缘, 18(5): 213-223.
      王涛, 黄河, 杨立强, 等, 2022. 揭示三维岩石圈物质架构的技术方法体系框架. 地质学报, 96(10): 3589-3618.
      王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化. 矿物岩石地球化学通报, 36(5): 714-735, 696.
      吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
      徐夕生, 王孝磊, 赵凯, 等, 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39(5): 899-911, 1069.
      薛怀民, 马芳, 宋永勤, 等, 2010. 江南造山带东段新元古代花岗岩组合的年代学和地球化学: 对扬子与华夏地块拼合时间与过程的约束. 岩石学报, 26(11): 3215-3244.
      严加永, 吕庆田, 张永谦, 等, 2022. 江南造山带深部边界及成矿制约: 来自综合地球物理的认识. 岩石学报, 38(2): 544-558.
      杨光忠, 李永刚, 张与伦, 等, 2019. 黔东钾镁煌斑岩分布控制因素及其侵位模式. 地质通报, 38(1): 27-35.
      叶天竺, 黄崇轲, 邓志奇, 2017.1∶250万中华人民共和国数字地质图空间数据库. 中国地质, 44(S1): 19-24, 139-146.
      翟明国, 张旗, 陈国能, 等, 2016. 大陆演化与花岗岩研究的变革. 科学通报, 61(13): 1414-1420.
      张宏飞, 高山, 2012. 地球化学. 北京: 地质出版社.
      赵志丹, 刘栋, 王青, 等, 2018. 锆石微量元素及其揭示的深部过程. 地学前缘, 25(6): 124-135.
      赵振华, 2016. 矿物微量元素组成用于火成岩构造背景判别. 大地构造与成矿学, 40(5): 986-995.
      郑永飞, 2022. 地幔是否对花岗岩的形成有贡献?. 地球科学, 47(10): 3765. doi: 10.3799/dqkx.2022.800
    • 王坤 附表.docx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (75) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return