Citation: | Wang Jiasheng, Song Qiang, Lin Qi, Xu Liyuan, Chen Can, Wang Zhou, Geng Kunlong, 2025. Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event. Earth Science, 50(3): 908-917. doi: 10.3799/dqkx.2024.132 |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
|
Bond, D. P., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1
|
Borowski, W. S., Paull, C. K., Ussler, W., 1996. Marine Pore-Water Sulfate Profiles Indicate in Situ Methane Flux from Underlying Gas Hydrate. Geology, 24(7): 655. https://doi.org/10.1130/0091-7613(1996)0240655: mpwspi>2.3.co;2 doi: 10.1130/0091-7613(1996)0240655:mpwspi>2.3.co;2
|
Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (Ⅱ) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. https://doi.org/10.1016/S0016-7037(00)00387-2
|
Chang, X. L., Huang, Y. G., Chen, Z. Q., et al., 2020. The Microscopic Analysis of Pyrite Framboids and Application in Paleo-Oceanography. Acta Sedimentologica Sinica, 38(1): 150-165 (in Chinese with English abstract).
|
Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002
|
Chen, C., Wang, J. S., Algeo, T. J., et al., 2025. Trace Elements of Pyrite in the Ediacaran Doushantuo Formation Reveal Ancient Methane Release Events. Precambrian Research, 416: 107627. https://doi.org/10.1016/j.precamres.2024.107627
|
Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010
|
Dickens, G. R., 2004. Hydrocarbon-Driven Warming. Nature, 429: 513-515. https://doi.org/10.1038/429513a
|
Dickens, G. R., Castillo, M. M., Walker, J. C., 1997. A Blast of Gas in the Latest Paleocene: Simulating First-Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25(3): 259-262. https://doi.org/10.1130/0091-7613(1997)025<0259: abogit>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0259:abogit>2.3.co;2
|
Dickens, G. R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene-Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. In: Wing, S. L., Gingerich, P. D., Schmitz, B., et al., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Boulder.
|
Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021
|
Han, X. Q., Suess, E., Huang, Y. Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. https://doi.org/10.1016/j.margeo.2007.11.012
|
Heilig, G. K., 1994. The Greenhouse Gas Methane (CH4): Sources and Sinks, the Impact of Population Growth, Possible Interventions. Population and Environment, 16(2): 109-137. https://doi.org/10.1007/BF02208779
|
Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
|
Kim, B., Zhang, Y. G., 2022. Methane Hydrate Dissociation across the Oligocene-Miocene Boundary. Nature Geoscience, 15: 203-209. https://doi.org/10.1038/s41561-022-00895-5
|
Lin, Q., 2016. Characteristics of Authigenic Minerals in Sediments of Natural Gas Hydrate Occurrence Area in the Northern South China Sea and Its Indication Significance of Sulfate-Methane Transition Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016a. Enhanced Framboidal Pyrite Formation Related to Anaerobic Oxidation of Methane in the Sulfate-Methane Transition Zone of the Northern South China Sea. Marine Geology, 379: 100-108. https://doi.org/10.1016/j.margeo.2016.05.016
|
Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016b. Formation Mechanism of Authigenic Gypsum in Marine Methane Hydrate Settings: Evidence from the Northern South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research, 115: 210-220. https://doi.org/10.1016/j.dsr.2016.06.010
|
Lin, Q., Wang, J. S., Taladay, K., et al., 2016c. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate-Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. https://doi.org/10.1016/j.jseaes.2015.11.001
|
Liu, J. R., Izon, G., Wang, J. S., et al., 2018. Vivianite Formation in Methane-Rich Deep-Sea Sediments from the South China Sea. Biogeosciences, 15(20): 6329-6348. https://doi.org/10.5194/bg-15-6329-2018
|
Miao, X. M., Feng, X. L., Liu, X. T., et al., 2021. Effects of Methane Seepage Activity on the Morphology and Geochemistry of Authigenic Pyrite. Marine and Petroleum Geology, 133: 105231. https://doi.org/10.1016/j.marpetgeo.2021.105231
|
Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001
|
Rust, G. W., 1935. Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri. Journal of Geology, 43(4): 398-426. https://doi.org/10.1086/624318
|
Wang, B., Lei, H. Y., Huang, F. F., 2022. Impacts of Sulfate-Driven Anaerobic Oxidation of Methane on the Morphology, Sulfur Isotope, and Trace Element Content of Authigenic Pyrite in Marine Sediments of the Northern South China Sea. Marine and Petroleum Geology, 139: 105578. https://doi.org/10.1016/j.marpetgeo.2022.105578
|
Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/G24513A.1
|
Wang, J. S., Lin, Q., Li, Q., et al., 2015. AOM-Derived Authigenic Minerals in Marine Sediments and Implication for Ancient Methane Events in Deep Earth. Quaternary Sciences, 35(6): 1383-1392 (in Chinese with English abstract).
|
Wang, J. S., Suess, E., 2002. Indicators of δ13C and δ18O of Gas Hydrate-Associated Sediments. Chinese Science Bulletin, 47(19): 1659-1663. https://doi.org/10.1007/BF03184118
|
Wang, J. S., Wang, Z., Chen, C., et al., 2024. Authigenic Minerals in Sediments at Marine Gas Hydrate Geosystem. China University of Geosciences Press, Wuhan (in Chinese).
|
Wang, J., Suess, E., Rickert, D., 2003. Authigenic Gypsum Found in Gas Hydrate-Associated Sediments from Hydrate Ridge, the Eastern North Pacific. Science China: Earth Science, 47(3): 280-288. https://doi.org/10.1360/02yd0069
|
Wang, Z., Chen, C., Wang, J. S., et al., 2020. Wide but not Ubiquitous Distribution of Glendonite in the Doushantuo Formation, South China: Implications for Ediacaran Climate. Precambrian Research, 338: 105586. https://doi.org/10.1016/j.precamres.2019.105586
|
Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115-118. https://doi.org/10.1130/g38613.1
|
Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al., 2010. An 80 Million Year Oceanic Redox History from Permian to Jurassic Pelagic Sediments of the Mino-Tamba Terrane, SW Japan, and the Origin of Four Mass Extinctions. Global and Planetary Change, 71(1-2): 109-123. https://doi.org/10.1016/j.gloplacha.2010.01.022
|
Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537
|
Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite Framboid Evidence for Oxygen-Poor Deposition during the Permian-Triassic Crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188. https://doi.org/10.1016/j.palaeo.2004.10.009
|
Wilkin, R. T., Arthur, M. A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2-H2S Redox Transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. https://doi.org/10.1016/S0016-7037(01)00552-X
|
Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of Water-Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3/4): 517-525. https://doi.org/10.1016/S0012-821X(97)00053-8
|
Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
|
Xu, L. Y., 2020. Framboid Size and Microcrystalline Characteristics of Framboidal Pyrite in Sediments from the Northern South China Sea and Their Implications for Sedimentary Environment (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. https://doi.org/10.1126/science.1109004
|
常晓琳, 黄元耕, 陈中强, 等, 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用. 沉积学报, 38(1): 150-165.
|
林杞, 2016. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐‒甲烷转换带指示意义(博士学位论文). 武汉: 中国地质大学.
|
王家生, 林杞, 李清, 等, 2015. 海洋沉积物中AOM成因的自生矿物及其对深时地球古海洋甲烷事件的启示. 第四纪研究, 35(6): 1383-1392.
|
王家生, 王舟, 陈粲, 等, 2024. 海洋天然气水合物地质系统沉积物中自生矿物. 武汉: 中国地质大学出版社.
|
许力源, 2022. 南海北部沉积物中草莓状黄铁矿的莓球粒径和微晶特征及其沉积环境指示意义(硕士学位论文). 武汉: 中国地质大学.
|