• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Wang Jiasheng, Song Qiang, Lin Qi, Xu Liyuan, Chen Can, Wang Zhou, Geng Kunlong, 2025. Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event. Earth Science, 50(3): 908-917. doi: 10.3799/dqkx.2024.132
    Citation: Wang Jiasheng, Song Qiang, Lin Qi, Xu Liyuan, Chen Can, Wang Zhou, Geng Kunlong, 2025. Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event. Earth Science, 50(3): 908-917. doi: 10.3799/dqkx.2024.132

    Enlargement of Pyrite Framboid Size in Sulfate-Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event

    doi: 10.3799/dqkx.2024.132
    • Received Date: 2024-11-22
    • Publish Date: 2025-03-25
    • Single framboid size and deviation of pyrites in marine sediments or strata have been widely used as a useful proxy to indicate the seawater redox environment. However, our recent data about pyrite framboid size from the modern sediments bearing nature gas hydrate show a tremendous increasing trend in pyrite framboid size within the sulfate-methane transition zone (SMTZ), indicating the anaerobic oxidation of methane (AOM) dominated in SMTZ might play a key role to enhance the enlargement of pyrite framboid size. In case of large methane release caused by dissociation of gas hydrate (so called methane event), the rising SMTZ position would move up to shallow sediment or near seafloor and even into bottom seawater, most likely resulting into some anaerobic and acid environmental changes in bottom seawater. Meanwhile, the enhancing AOM coupled with the methane event will still greatly enlarge the pyrite framboid size in sediments. So in this situation, the traditional critical relationship between the pyrite framboid size and seawater redox environment will be no longer functional and need to be modified. It is proposed that the coupling of average framboid size > 20 μm or core size > 12 μm and deviation > 3 μm might be used as a critical proxy to indicate the environment of marine methane event.

       

    • loading
    • Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
      Bond, D. P., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1
      Borowski, W. S., Paull, C. K., Ussler, W., 1996. Marine Pore-Water Sulfate Profiles Indicate in Situ Methane Flux from Underlying Gas Hydrate. Geology, 24(7): 655. https://doi.org/10.1130/0091-7613(1996)0240655: mpwspi>2.3.co;2 doi: 10.1130/0091-7613(1996)0240655:mpwspi>2.3.co;2
      Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (Ⅱ) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. https://doi.org/10.1016/S0016-7037(00)00387-2
      Chang, X. L., Huang, Y. G., Chen, Z. Q., et al., 2020. The Microscopic Analysis of Pyrite Framboids and Application in Paleo-Oceanography. Acta Sedimentologica Sinica, 38(1): 150-165 (in Chinese with English abstract).
      Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate-Driven Anaerobic Oxidation of Methane Inferred from Trace-Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002
      Chen, C., Wang, J. S., Algeo, T. J., et al., 2025. Trace Elements of Pyrite in the Ediacaran Doushantuo Formation Reveal Ancient Methane Release Events. Precambrian Research, 416: 107627. https://doi.org/10.1016/j.precamres.2024.107627
      Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane-Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010
      Dickens, G. R., 2004. Hydrocarbon-Driven Warming. Nature, 429: 513-515. https://doi.org/10.1038/429513a
      Dickens, G. R., Castillo, M. M., Walker, J. C., 1997. A Blast of Gas in the Latest Paleocene: Simulating First-Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25(3): 259-262. https://doi.org/10.1130/0091-7613(1997)025<0259: abogit>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0259:abogit>2.3.co;2
      Dickens, G. R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene-Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. In: Wing, S. L., Gingerich, P. D., Schmitz, B., et al., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Boulder. https://doi.org/10.1130/0-8137-2369-8.11
      Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021
      Han, X. Q., Suess, E., Huang, Y. Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. https://doi.org/10.1016/j.margeo.2007.11.012
      Heilig, G. K., 1994. The Greenhouse Gas Methane (CH4): Sources and Sinks, the Impact of Population Growth, Possible Interventions. Population and Environment, 16(2): 109-137. https://doi.org/10.1007/BF02208779
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
      Kim, B., Zhang, Y. G., 2022. Methane Hydrate Dissociation across the Oligocene-Miocene Boundary. Nature Geoscience, 15: 203-209. https://doi.org/10.1038/s41561-022-00895-5
      Lin, Q., 2016. Characteristics of Authigenic Minerals in Sediments of Natural Gas Hydrate Occurrence Area in the Northern South China Sea and Its Indication Significance of Sulfate-Methane Transition Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016a. Enhanced Framboidal Pyrite Formation Related to Anaerobic Oxidation of Methane in the Sulfate-Methane Transition Zone of the Northern South China Sea. Marine Geology, 379: 100-108. https://doi.org/10.1016/j.margeo.2016.05.016
      Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016b. Formation Mechanism of Authigenic Gypsum in Marine Methane Hydrate Settings: Evidence from the Northern South China Sea. Deep Sea Research Part Ⅰ: Oceanographic Research, 115: 210-220. https://doi.org/10.1016/j.dsr.2016.06.010
      Lin, Q., Wang, J. S., Taladay, K., et al., 2016c. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate-Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. https://doi.org/10.1016/j.jseaes.2015.11.001
      Liu, J. R., Izon, G., Wang, J. S., et al., 2018. Vivianite Formation in Methane-Rich Deep-Sea Sediments from the South China Sea. Biogeosciences, 15(20): 6329-6348. https://doi.org/10.5194/bg-15-6329-2018
      Miao, X. M., Feng, X. L., Liu, X. T., et al., 2021. Effects of Methane Seepage Activity on the Morphology and Geochemistry of Authigenic Pyrite. Marine and Petroleum Geology, 133: 105231. https://doi.org/10.1016/j.marpetgeo.2021.105231
      Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth-Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001
      Rust, G. W., 1935. Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri. Journal of Geology, 43(4): 398-426. https://doi.org/10.1086/624318
      Wang, B., Lei, H. Y., Huang, F. F., 2022. Impacts of Sulfate-Driven Anaerobic Oxidation of Methane on the Morphology, Sulfur Isotope, and Trace Element Content of Authigenic Pyrite in Marine Sediments of the Northern South China Sea. Marine and Petroleum Geology, 139: 105578. https://doi.org/10.1016/j.marpetgeo.2022.105578
      Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/G24513A.1
      Wang, J. S., Lin, Q., Li, Q., et al., 2015. AOM-Derived Authigenic Minerals in Marine Sediments and Implication for Ancient Methane Events in Deep Earth. Quaternary Sciences, 35(6): 1383-1392 (in Chinese with English abstract).
      Wang, J. S., Suess, E., 2002. Indicators of δ13C and δ18O of Gas Hydrate-Associated Sediments. Chinese Science Bulletin, 47(19): 1659-1663. https://doi.org/10.1007/BF03184118
      Wang, J. S., Wang, Z., Chen, C., et al., 2024. Authigenic Minerals in Sediments at Marine Gas Hydrate Geosystem. China University of Geosciences Press, Wuhan (in Chinese).
      Wang, J., Suess, E., Rickert, D., 2003. Authigenic Gypsum Found in Gas Hydrate-Associated Sediments from Hydrate Ridge, the Eastern North Pacific. Science China: Earth Science, 47(3): 280-288. https://doi.org/10.1360/02yd0069
      Wang, Z., Chen, C., Wang, J. S., et al., 2020. Wide but not Ubiquitous Distribution of Glendonite in the Doushantuo Formation, South China: Implications for Ediacaran Climate. Precambrian Research, 338: 105586. https://doi.org/10.1016/j.precamres.2019.105586
      Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115-118. https://doi.org/10.1130/g38613.1
      Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al., 2010. An 80 Million Year Oceanic Redox History from Permian to Jurassic Pelagic Sediments of the Mino-Tamba Terrane, SW Japan, and the Origin of Four Mass Extinctions. Global and Planetary Change, 71(1-2): 109-123. https://doi.org/10.1016/j.gloplacha.2010.01.022
      Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537
      Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite Framboid Evidence for Oxygen-Poor Deposition during the Permian-Triassic Crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188. https://doi.org/10.1016/j.palaeo.2004.10.009
      Wilkin, R. T., Arthur, M. A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2-H2S Redox Transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. https://doi.org/10.1016/S0016-7037(01)00552-X
      Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of Water-Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3/4): 517-525. https://doi.org/10.1016/S0012-821X(97)00053-8
      Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
      Xu, L. Y., 2020. Framboid Size and Microcrystalline Characteristics of Framboidal Pyrite in Sediments from the Northern South China Sea and Their Implications for Sedimentary Environment (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308(5728): 1611-1615. https://doi.org/10.1126/science.1109004
      常晓琳, 黄元耕, 陈中强, 等, 2020. 沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用. 沉积学报, 38(1): 150-165.
      林杞, 2016. 南海北部天然气水合物赋存区沉积物中自生矿物特征及其硫酸盐‒甲烷转换带指示意义(博士学位论文). 武汉: 中国地质大学.
      王家生, 林杞, 李清, 等, 2015. 海洋沉积物中AOM成因的自生矿物及其对深时地球古海洋甲烷事件的启示. 第四纪研究, 35(6): 1383-1392.
      王家生, 王舟, 陈粲, 等, 2024. 海洋天然气水合物地质系统沉积物中自生矿物. 武汉: 中国地质大学出版社.
      许力源, 2022. 南海北部沉积物中草莓状黄铁矿的莓球粒径和微晶特征及其沉积环境指示意义(硕士学位论文). 武汉: 中国地质大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (159) PDF downloads(34) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return