• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Jiang Hongchen, Wang Beichen, 2025. Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai-Xizang Plateau. Earth Science, 50(3): 877-886. doi: 10.3799/dqkx.2024.138
    Citation: Jiang Hongchen, Wang Beichen, 2025. Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai-Xizang Plateau. Earth Science, 50(3): 877-886. doi: 10.3799/dqkx.2024.138

    Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai-Xizang Plateau

    doi: 10.3799/dqkx.2024.138
    • Received Date: 2024-11-25
    • Publish Date: 2025-03-25
    • Exploring the mechanisms of microbial regulation of carbon and nitrogen cycling in saline lakes and their response to salinity is of great scientific importance for understanding the global carbon and nitrogen cycles. In response to cutting-edge scientific questions related to the carbon and nitrogen cycle in saline lakes, the authors conducted a comprehensive study on the impact mechanism and environmental effects of climate and environmental changes such as increased organic matter input, increased temperature, and reduced salinity on the microbial activity of the carbon and nitrogen cycles in saline lakes, and obtained a series of research findings. Finally, a summary of the microbial effects on carbon and nitrogen cycling in lakes is presented, and prospects for future development directions are proposed.

       

    • loading
    • Anderson, N. J., Stedmon, C. A., 2007. The Effect of Evapoconcentration on Dissolved Organic Carbon Concentration and Quality in Lakes of SW Greenland. Freshwater Biology, 52(2): 280-289. https://doi.org/10.1111/j.1365-2427.2006.01688.x
      Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., et al., 2011. Riverine Coupling of Biogeochemical Cycles between Land, Oceans, and Atmosphere. Frontiers in Ecology and the Environment, 9(1): 53-60. https://doi.org/10.1890/100014
      Battin, T. J., Kaplan, L. A., Findlay, S., et al., 2008. Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nature Geoscience, 1: 95-100. https://doi.org/10.1038/ngeo101
      Battin, T. J., Luyssaert, S., Kaplan, L. A., et al., 2009. The Boundless Carbon Cycle. Nature Geoscience, 2: 598-600. https://doi.org/10.1038/ngeo618
      Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost Is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467-018-08240-4
      Canadell, J. G., Le Quéré, C., Raupach, M. R., et al., 2007. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47): 18866-18870. https://doi.org/10.1073/pnas.0702737104
      Chen, Y. L., Liu, F. T., Kang, L. Y., et al., 2021. Large-Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27(14): 3218-3229. https://doi.org/10.1111/gcb.15487
      Cleveland, C. C., Neff, J. C., Townsend, A. R., et al., 2004. Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment. Ecosystems, 7(3): 175-285. https://doi.org/10.1007/s10021-003-0236-7
      Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172-185. https://doi.org/10.1007/s10021-006-9013-8
      Dobiński, W., 2020. Permafrost Active Layer. Earth-Science Reviews, 208: 103301. https://doi.org/10.1016/j.earscirev.2020.103301
      Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. Journal of Geophysical Research: Biogeosciences, 113(G4): G04041. https://doi.org/10.1029/2007JG000637
      Fang, Y., Liu, J., Yang, J., et al., 2022. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems, 7(4): e0033522. https://doi.org/10.1128/msystems.00335-22
      Fang, Y., Yuan, Y., Liu, J., et al., 2021. Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota. mBio, 12(2): e00350-21. https://doi.org/10.1128/mBio.00350-21
      Fellman, J. B., D'Amore, D. V., Hood, E., et al., 2008. Fluorescence Characteristics and Biodegradability of Dissolved Organic Matter in Forest and Wetland Soils from Coastal Temperate Watersheds in Southeast Alaska. Biogeochemistry, 88(2): 169-184. https://doi.org/10.1007/s10533-008-9203-x
      Fellman, J. B., Hood, E., D'Amore, D. V., et al., 2009a. Seasonal Changes in the Chemical Quality and Biodegradability of Dissolved Organic Matter Exported from Soils to Streams in Coastal Temperate Rainforest Watersheds. Biogeochemistry, 95(2): 277-293. https://doi.org/10.1007/s10533-009-9336-6
      Fellman, J. B., Hood, E., Edwards, R. T., et al., 2009b. Changes in the Concentration, Biodegradability, and Fluorescent Properties of Dissolved Organic Matter during Stormflows in Coastal Temperate Watersheds. Journal of Geophysical Research: Biogeosciences, 114(G1): G01021. https://doi.org/10.1029/2008JG000790
      Feng, L., An, Y. Q., Xu, J. Z., et al., 2018. Characteristics and Sources of Dissolved Organic Matter in a Glacier in the Northern Tibetan Plateau: Differences between Different Snow Categories. Annals of Glaciology, 59(77): 31-40. https://doi.org/10.1017/aog.2018.20
      Gudasz, C., Bastviken, D., Steger, K., et al., 2010. Temperature-Controlled Organic Carbon Mineralization in Lake Sediments. Nature, 466(7305): 478-481. https://doi.org/10.1038/nature09186
      Hood, E., Battin, T. J., Fellman, J., et al., 2015. Storage and Release of Organic Carbon from Glaciers and Ice Sheets. Nature Geoscience, 8: 91-96. https://doi.org/10.1038/ngeo2331
      Huang, J. R., Yang, J., Han, M. X., et al., 2023. Microbial Carbon Fixation and Its Influencing Factors in Saline Lake Water. Science of the Total Environment, 877: 162922. https://doi.org/10.1016/j.scitotenv.2023.162922
      Huang, L. Q., Yu, Q., Liu, W., et al., 2021. Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Technology, 55(10): 7123-7134. https://doi.org/10.1021/acs.est.0c08407
      Jiang, H. C., 2007. Geomicrobiological Studies of Saline Lakes on the Tibetan Plateau, NW China: Linking Geological and Microbial Processes (Dissertation). Miami University, Miami.
      Jiang, H. C., Huang, J. R., Yang, J., 2018. Halotolerant and Halophilic Microbes and Their Environmental Implications in Saline and Hypersaline Lakes in Qinghai Province, China. In: Egamberdieva, D., Birkeland, N. K., Panosyan, H., et al., eds. Microorganisms for Sustainability. Springer, Singapore, 299-316. https://doi.org/10.1007/978-981-13-0329-6_10
      Jiang, H. C., Lü, Q. Y., Yang, J., et al., 2022. Molecular Composition of Dissolved Organic Matter in Saline Lakes of the Qing-Tibetan Plateau. Organic Geochemistry, 167: 104400. https://doi.org/10.1016/j.orggeochem.2022.104400
      Keiluweit, M., Bougoure, J. J., Zeglin, L. H., et al., 2012. Nano-Scale Investigation of the Association of Microbial Nitrogen Residues with Iron (Hydr) Oxides in a Forest Soil O-Horizon. Geochimica et Cosmochimica Acta, 95: 213-226. https://doi.org/10.1016/j.gca.2012.07.001
      Kleber, M., Eusterhues, K., Keiluweit, M., et al., 2015. Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy. Elsevier, Amsterdam. https://doi.org/10.1016/bs.agron.2014.10.005
      Kuang, X. X., Jiao, J. J., 2016. Review on Climate Change on the Tibetan Plateau during the Last Half Century. Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007. https://doi.org/10.1002/2015jd024728
      Liu, D., Shi, K., Chen, P., et al., 2024. Substantial Increase of Organic Carbon Storage in Chinese Lakes. Nature Communications, 15(1): 8049. https://doi.org/10.1038/s41467-024-52387-2
      Liu, W., Jiang, H. C., Yang, J., et al., 2018. Gammaproteobacterial Diversity and Carbon Utilization in Response to Salinity in the Lakes on the Qinghai-Tibetan Plateau. Geomicrobiology Journal, 35(5): 392-403. https://doi.org/10.1080/01490451.2017.1378951
      Liu, Y. M., Xu, J. Z., Kang, S. C., et al., 2016. Storage of Dissolved Organic Carbon in Chinese Glaciers. Journal of Glaciology, 62(232): 402-406. https://doi.org/10.1017/jog.2016.47
      Mu, C. C., Abbott, B. W., Norris, A. J., et al., 2020. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Science Reviews, 211: 103433. https://doi.org/10.1016/j.earscirev.2020.103433
      Oren, A., 2011. Thermodynamic Limits to Microbial Life at High Salt Concentrations. Environmental Microbiology, 13(8): 1908-1923. https://doi.org/10.1111/j.1462-2920.2010.02365.x
      Raymond, P. A., Hartmann, J., Lauerwald, R., et al., 2013. Global Carbon Dioxide Emissions from Inland Waters. Nature, 503(7476): 355-359. https://doi.org/10.1038/nature12760
      Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al., 2008. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 58(8): 701-714. https://doi.org/10.1641/B580807
      Sun, X. X., Tan, E. H., Wang, B. C., et al., 2023. Salinity Change Induces Distinct Climate Feedbacks of Nitrogen Removal in Saline Lakes. Water Research, 245: 120668. https://doi.org/10.1016/j.watres.2023.120668
      Sun, X. X., Yang, J., Jiang, H. C., et al., 2022. Nitrite- and N2O-Reducing Bacteria Respond Differently to Ecological Factors in Saline Lakes. FEMS Microbiology Ecology, 98(2): fiac007. https://doi.org/10.1093/femsec/fiac007
      Tang, Y., Liu, Y. C., Yang, J., et al., 2018. Gene Diversity Involved in Kalvin Pathway of Carbon Fixation and Its Response to Environmental Variables in Surface Sediments of the Northern Qinghai-Tibetan Plateau Lakes. Earth Science, 43(S1): 31-41 (in Chinese with English abstract).
      Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6): 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
      Turetsky, M. R., Abbott, B. W., Jones, M. C., et al., 2020. Carbon Release through Abrupt Permafrost Thaw. Nature Geoscience, 13: 138-143. https://doi.org/10.1038/s41561-019-0526-0
      Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641
      Wan, W., Zhao, L., Xie, H., et al., 2018. Lake Surface Water Temperature Change over the Tibetan Plateau from 2001 to 2015: A Sensitive Indicator of the Warming Climate. Geophysical Research Letters, 45(20): 11177-111186. https://doi.org/10.1029/2018gl078601
      Wang, B. C., Huang, J. R., Yang, J., et al., 2021. Bicarbonate Uptake Rates and Diversity of RuBisCO Genes in Saline Lake Sediments. FEMS Microbiology Ecology, 97(4): fiab037. https://doi.org/10.1093/femsec/fiab037
      Wang, S. M., Dou, H. S., 1998. Chinese Lakes Records. Science Press, Beijing (in Chinese).
      Wang, Y. H., Spencer, R. G. M., Podgorski, D. C., et al., 2018. Spatiotemporal Transformation of Dissolved Organic Matter along an Alpine Stream Flow Path on the Qinghai-Tibet Plateau: Importance of Source and Permafrost Degradation. Biogeosciences, 15(21): 6637-6648. https://doi.org/10.5194/bg-15-6637-2018
      Wickland, K. P., Neff, J. C., 2008. Decomposition of Soil Organic Matter from Boreal Black Spruce Forest: Environmental and Chemical Controls. Biogeochemistry, 87(1): 29-47. https://doi.org/10.1007/s10533-007-9166-3
      Wurtsbaugh, W. A., Miller, C., Null, S. E., et al., 2017. Decline of the World's Saline Lakes. Nature Geoscience, 10: 816-821. https://doi.org/10.1038/ngeo3052
      Yang, J., Yao, B. F., Cai, M., et al., 2024. Salinity Change Overrides Nitrogen Increase in Affecting Microbial Abundance, Diversity, Community Composition and Organic Carbon Mineralization in Saline Lakes. Journal of Earth Science, Online. https://doi.org/10.1007/s12583-024-0139-4
      Yang, J., Chen, Y., She, W. Y., et al., 2020a. Deciphering Linkages between Microbial Communities and Priming Effects in Lake Sediments with Different Salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611. https://doi.org/10.1029/2019jg005611
      Yang, J., Han, M. X., Wang, B. C., et al., 2023. Predominance of Positive Priming Effects Induced by Algal and Terrestrial Organic Matter Input in Saline Lake Sediments. Geochimica et Cosmochimica Acta, 349: 126-134. https://doi.org/10.1016/j.gca.2023.04.005
      Yang, J., Han, M. X., Zhao, Z. L., et al., 2022. Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments with Different Salinity. Geophysical Research Letters, 49(5): e2021GL096133. https://doi.org/10.1029/2021GL096133
      Yang, J., Jiang, H. C., Liu, W., et al., 2020b. Potential Utilization of Terrestrially Derived Dissolved Organic Matter by Aquatic Microbial Communities in Saline Lakes. The ISME Journal, 14(9): 2313-2324. https://doi.org/10.1038/s41396-020-0689-0
      Yao, F. F., Livneh, B., Rajagopalan, B., et al., 2023. Satellites Reveal Widespread Decline in Global Lake Water Storage. Science, 380(6646): 743-749. https://doi.org/10.1126/science.abo2812
      You, Q. L., Chen, D. L., Wu, F. Y., et al., 2020. Elevation Dependent Warming over the Tibetan Plateau: Patterns, Mechanisms and Perspectives. Earth-Science Reviews, 210: 103349. https://doi.org/10.1016/j.earscirev.2020.103349
      Zhang, G. Q., Chen, W. F., Xie, H. J., 2019. Tibetan Plateau's Lake Level and Volume Changes from NASA's ICESat/ICESat-2 and Landsat Missions. Geophysical Research Letters, 46(22): 13107-13118. https://doi.org/10.1029/2019gl085032
      Zhang, G. Q., Yao, T. D., Xie, H. J., et al., 2020. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth-Science Reviews, 208: 103269. https://doi.org/10.1016/j.earscirev.2020.103269
      Zhang, Y. L., Yin, Y., Liu, X. H., et al., 2011. Spatial-Seasonal Dynamics of Chromophoric Dissolved Organic Matter in Lake Taihu, a Large Eutrophic, Shallow Lake in China. Organic Geochemistry, 42(5): 510-519. https://doi.org/10.1016/j.orggeochem.2011.03.007
      Zheng, M. P., 1997. An Introduction to Saline Lakes on the Qinghai-Tibet Plateau. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5458-1 doi: 10.1007/978-94-011-5458-1
      Zhou, Y. Q., Zhou, L., He, X. T., et al., 2019. Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau. Environmental Science & Technology, 53(21): 12207-12217. https://doi.org/10.1021/acs.est.9b03348
      Ziervogel, K., McKay, L., Rhodes, B., et al., 2012. Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site. PLoS One, 7(4): e34816. https://doi.org/10.1371/journal.pone.0034816
      唐阳, 刘永超, 杨渐, 等, 2018. 青藏高原北部湖泊表层沉积物参与卡尔文循环的固碳基因多样性及其影响因素. 地球科学, 43(S1): 19-30. doi: 10.3799/dqkx.2018.511
      王苏民, 窦鸿身, 1998. 中国湖泊志. 北京: 科学出版社.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (216) PDF downloads(63) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return