• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    He Weihong, Wu Youyou, Zhang Kexin, Suzuki Noritoshi, Xiao Yifan, Yang Tinglu, Wu Chen, Huang Yafei, 2025. Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia. Earth Science, 50(3): 983-999. doi: 10.3799/dqkx.2024.140
    Citation: He Weihong, Wu Youyou, Zhang Kexin, Suzuki Noritoshi, Xiao Yifan, Yang Tinglu, Wu Chen, Huang Yafei, 2025. Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia. Earth Science, 50(3): 983-999. doi: 10.3799/dqkx.2024.140

    Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia

    doi: 10.3799/dqkx.2024.140
    • Received Date: 2024-11-29
    • Publish Date: 2025-03-25
    • The duration for the End-Permian mass extinction has been estimated as about 30 to 60 kyr. However, an ever-expanding body of papers has revealed that the evolution of Late Permian ecosystems possibly involved some yet under-studied 'early warning signals' prior to the End-Permian mass extinction. The study on the pre-extinction 'warning signals' is still limited. In order to understand the process of marine ecosystem collapse specifically the 'early warning signals' pointing to the approaching of a global ecosystem regime shift (tipping point), 30 marine Permian-Triassic Boundary sections from different palaeogeographic settings were selected globally to investigate the spatiotemporal biodiversity changes of different taxa and the spatiotemporal redox conditions. The results reveal that: (1) The marine ecosystem collapsed first in deep waters and then in shallow waters (first in offshore pelagic settings, then in moderately deep waters and deep-water basins and shelves and finally in shallow water environments); (2) in the same environments (in deep or moderately deep waters), a similar differential temporal pattern is also apparent in that the planktonic ecosystems were devastated earlier than benthic ecosystems. To account for the spatiotemporal and ecological (taxonomic) differences in extinction timing, we propose that the formation and expansion of an OMZ (oxygen minimum zone) and the related anoxia (or oxygen depletion), were most likely responsible for the differential temporal patterns of marine ecosystem collapses between deep and shallow waters, and between planktonic and benthic communities during the Late Permian.

       

    • loading
    • Algeo, T. J., Hannigan, R., Rowe, H., et al., 2007. Sequencing Events across the Permian‒Triassic Boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 328-346. https://doi.org/10.1016/j.palaeo.2006.11.050
      Algeo, T. J., Henderson, C. M., Ellwood, B., et al., 2012. Evidence for a Diachronous Late Permian Marine Crisis from the Canadian Arctic Region. Geological Society of America Bulletin, 124(9-10): 1424-1448. https://doi.org/10.1130/B30505.1
      Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian‒Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
      Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian‒Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7: 43630. https://doi.org/10.1038/srep43630
      Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High‒Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
      Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End‒Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467‒017‒00083‒9
      Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo‒Tethys Ocean during the Permian‒Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534
      Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian‒Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in English with Chinese abstract).
      Chen, Z. Q., Tong, J. N., Zhang, K. X., et al., 2009. Environmental and Biotic Turnover across the Permian‒Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 56(6): 775-797. https://doi.org/10.1080/08120090903002607
      Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End‒Permian Mass Extinction and Recovery. Nature Communications, 7: 12236. https://doi.org/10.1038/ncomms12236
      Davydov, V. I., Karasev, E. V., Nurgalieva, N. G., et al., 2021. Climate and Biotic Evolution during the Permian‒Triassic Transition in the Temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110432. https://doi.org/10.1016/j.palaeo.2021.110432
      Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High‒Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      Fang, Y. H., 2021. Late Permian to Early Triassic Redox Variations of South China and Unusual Biosedimentary Responses (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Fang, Z. Y., He, X. Q., Zhang, G. J., et al., 2021. Ocean Redox Changes from the Latest Permian to Early Triassic Recorded by Chromium Isotopes. Earth and Planetary Science Letters, 570: 117050. https://doi.org/10.1016/j.epsl.2021.117050
      Feng, Q. L., He, W. H., Gu, S. Z., et al., 2007. Radiolarian Evolution during the Latest Permian in South China. Global and Planetary Change, 55(1-3): 177-192. https://doi.org/10.1016/j.gloplacha.2006.06.012
      Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High‒Latitude Continental End‒Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10: 385. https://doi.org/10.1038/s41467‒018‒07934‒z
      Grasby, S. E., Bond, D. P. G., Wignall, P. B., et al., 2021. Transient Permian‒Triassic Euxinia in the Southern Panthalassa Deep Ocean. Geology, 49 (8): 889-893. https://doi.org/10.1130/g48928.1
      He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U‒Pb Dating of Silicic Ignimbrites, Post‒Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021
      He, W. H., Feng, Q. L., Gu, S. Z., et al., 2005. Changxingian (Upper Permian) Radiolarian Fauna from Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. Journal of Paleontology, 79(2): 209-218. https://doi.org/10.1666/0022‒3360(2005)0790209: cuprff>2.0.co;2 doi: 10.1666/0022‒3360(2005)0790209:cuprff>2.0.co;2
      He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119
      He, W. H., Shi, G. R., Yu, J. X., et al., 2023. Stratigraphy around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒99‒9350‒5
      He, W. H., Shi, G. R., Zhang, K. X., et al., 2019. Brachiopods around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒13‒1041‒6
      He, W. H., Shi, G. R., Zhang, K. X., et al., 2025. The Deterioration and Collapse of Late Permian Marine Ecosystems and the End‒Permian Mass Extinction: A Global View. Earth‒Science Reviews, 261: 104971. https://doi.org/10.1016/j.earscirev.2024.104971
      He, W. H., Weldon, E. A., Yang, T. L., et al., 2024. An End‒Permian Two‒Stage Extinction Pattern in the Deep‒Water Dongpan Section, and Its Relationship to the Migration and Vertical Expansion of the Oxygen Minimum Zone in the South China Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 649: 112307. https://doi.org/10.1016/j.palaeo.2024.112307
      He, W. H., Zhang, Y., Zhang, Q., et al., 2011. A Latest Permian Radiolarian Fauna from Hushan, South China, and Its Geological Implications. Alcheringa: An Australasian Journal of Palaeontology, 35(4): 471-496. https://doi.org/10.1080/03115518.2010.536649
      Huang, Y. F., He, W. H., Liao, W., et al., 2022. Two Pulses of Increasing Terrestrial Input to Marine Environment during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110753. https://doi.org/10.1016/j.palaeo.2021.110753
      Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian‒Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End‒Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583‒014‒0444‒4
      Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian‒Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      Joachimski, M. M., Lai, X. L., Shen, S. Z., et al., 2012. Climate Warming in the Latest Permian and the Permian‒Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
      Kajiwara, Y., Ishida, K., Tanikura, Y., et al., 1993a. Sulfur Isotope Data from the Permian‒Triassic Boundary at Sasayama in the Tanba Terrane in Southwestern Honshu, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 67-72.
      Kajiwara, Y., Yamakita, S., Kobayashi, D., et al., 1993b. Sulfur Isotope Data from the Permian‒Triassic Boundary at Tenjinmaru in the Chichibu Terrane in Eastern Shikoku, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 59-66.
      Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182(1): 15-34. https://doi.org/10.1016/S0009‒2541(01)00273‒X
      Li, G. S., 2016. Fluctuations of Redox Conditions and Ecological Responses across the Permian‒Triassic Boundary in Different Paleogeographic Settings of Middle & Lower Yangtze Region (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Li, G. S., Wang, Y. B., Shi, G. R., et al., 2016. Fluctuations of Redox Conditions across the Permian‒Triassic Boundary—New Evidence from the GSSP Section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48-58. https://doi.org/10.1016/j.palaeo.2015.09.050
      Li, X. G., Song, J. M., Yuan, H. M., et al., 2017. The Oxygen Minimum Zones (OMZs) and Its Eco‒Environmental Effects in Ocean. Marine Sciences, 41(12): 127-138 (in Chinese with English abstract).
      Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian‒Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
      Liao, W., 2020. Palaeoenvironment Change in Shallow‒ Marine Carbonate Platform across the Permian‒Triassic Boundary in South China and Its Possible Cause (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Liao, W., Bond, D. P. G., Wang, Y. B., et al., 2017. An Extensive Anoxic Event in the Triassic of the South China Block: A Pyrite Framboid Study from Dajiang and Its Implications for the Cause(s) of Oxygen Depletion. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 86-95. https://doi.org/10.1016/j.palaeo.2016.11.012
      Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian‒Triassic Crisis in South China. Earth‒Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329
      Mays, C., Vajda, V., Frank, T. D., et al., 2020. Refined Permian‒Triassic Floristic Timeline Reveals Early Collapse and Delayed Recovery of South Polar Terrestrial Ecosystems. GSA Bulletin, 132(7-8): 1489-1513. https://doi.org/10.1130/b35355.1
      Nabbefeld, B., Grice, K., Twitchett, R. J., et al., 2010. An Integrated Biomarker, Isotopic and Palaeoenvironmental Study through the Late Permian Event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84-96. https://doi.org/10.1016/j.epsl.2009.12.053
      Nie, X. M., Lei, Y., Feng, Q. L., et al., 2012. Evolution and Its Control Factors of the Changhsingian Radiolarian Fauna at the Shangsi Section in Jiange County, Guangyuan City, Sichuan Province. Geological Review, 58(5): 809-815 (in English with Chinese abstract).
      Posenato, R., 2009. Survival Patterns of Macrobenthic Marine Assemblages during the End‒Permian Mass Extinction in the Western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2): 150-167. https://doi.org/10.1016/j.palaeo.2009.06.009
      Posenato, R., 2019. The End‒Permian Mass Extinction (EPME) and the Early Triassic Biotic Recovery in the Western Dolomites (Italy): State of the Art. Bollettino Della Società Paleontologica Italiana, 58(1): 11-34.
      Qiu, X. C., Tian, L., Wu, K., et al., 2019. Diverse Earliest Triassic Ostracod Fauna of the Non‒Microbialite‒ Bearing Shallow Marine Carbonates of the Yangou Section, South China. Lethaia, 52(4): 583-596. https://doi.org/10.1111/let.12332
      Retallack, G. J., 2021. Multiple Permian‒Triassic Life Crises on Land and at Sea. Global and Planetary Change, 198: 103415. https://doi.org/10.1016/j.gloplacha.2020.103415
      Rodríguez‒Tovar, F. J., Dorador, J., Zuchuat, V., et al., 2021. Response of Macrobenthic Trace Maker Community to the End‒Permian Mass Extinction in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 581: 110637. https://doi.org/10.1016/j.palaeo.2021.110637
      Sano, H., Kuwahara, K., Yao, A., et al., 2010. Panthalassan Seamount‒Associated Permian‒Triassic Boundary Siliceous Rocks, Mino Terrane, Central Japan. Paleontological Research, 14(4): 293-314. https://doi.org/10.2517/1342‒8144‒14.4.293
      Sano, H., Wada, T., Naraoka, H., 2012. Late Permian to Early Triassic Environmental Changes in the Panthalassic Ocean: Record from the Seamount‒Associated Deep‒Marine Siliceous Rocks, Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 1-10. https://doi.org/10.1016/j.palaeo.2012.07.018
      Sashida, K., Sardsud, A., Igo, H., et al., 1998. Occurrence of Dienerian (Lower Triassic) Radiolarians from the Phatthalung Area of Peninsular Thailand and Radiolarian Biostratigraphy around the Permian/Triassic (P/T) Boundary. News of Osaka Micropaleontologists, 11: 59-70.
      Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. https://doi.org/10.1111/j.1472‒4669.2011.00306.x
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2019b. Evidence for a Prolonged Permian‒Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10: 1563. https://doi.org/10.1038/s41467‒ 019‒09620‒0 doi: 10.1038/s41467‒019‒09620‒0
      Shen, J., Feng, Q. L., Algeo, T. J., et al., 2016. Two Pulses of Oceanic Environmental Disturbance during the Permian‒Triassic Boundary Crisis. Earth and Planetary Science Letters, 443: 139-152. https://doi.org/10.1016/j.epsl.2016.03.030
      Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End‒Permian Mass Extinction Pattern in the Northern Peri‒Gondwanan Region. Palaeoworld, 15(1): 3-30. https://doi.org/10.1016/j.palwor.2006.03.005
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End‒Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., He, X. L., 1991. Changxingian Brachiopod Assemblage Sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy, 15(3): 189-196 (in Chinese).
      Shen, S. Z., Ramezani, J., Chen, J., et al., 2019a. A Sudden End‒Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
      Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian‒Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765-773. https://doi.org/10.1080/08120090903002599
      Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583‒018‒1002‒2
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian‒Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649
      Song, H. Y., Tong, J. N., Tian, L., et al., 2014. Paleo‒Redox Conditions across the Permian‒Triassic Boundary in Shallow Carbonate Platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57(5): 1030-1038. https://doi.org/10.1007/s11430‒014‒4843‒2
      Takahashi, S., Hori, R. S., Yamakita, S., et al., 2021. Progressive Development of Ocean Anoxia in the End‒Permian Pelagic Panthalassa. Global and Planetary Change, 207: 103650. https://doi.org/10.1016/j.gloplacha.2021.103650
      Tian, L., Tong, J. N., Song, H. J., et al., 2014. Foraminferal Evolution and Formation of Oolitic Limestone near Permian‒Triassic Boundary at Yangou Section, Jiangxi Province. Earth Science, 39(11): 1573-1586 (in Chinese with English abstract).
      Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End‒Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875
      Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High‒Resolution Variation in Ostracod Assemblages from Microbialites near the Permian‒Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349
      Wang, H., He, W. H., Xiao, Y. F., et al., 2023. Stagewise Collapse of Biotic Communities and Its Relations to Oxygen Depletion along the North Margin of Nanpanjiang Basin during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111569. https://doi.org/10.1016/j.palaeo.2023.111569
      Wang, Q. X., Tong, J. N., Song, H. J., et al., 2009. Ecosystem Evolution at the Turn of Permian‒Triassic in Kangjiaping Section of Cili, Hunan Province. Science in China (Series D), 39(9): 1239-1247 (in Chinese with English abstract).
      Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian‒Triassic Boundary, South China: Constraints from Trace Elements and Hf‒Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011
      Wu, B. J., Luo, G. M., Joachimski, M. M., et al., 2022. Carbon and Nitrogen Isotope Evidence for Widespread Presence of Anoxic Intermediate Waters before and during the Permian‒Triassic Mass Extinction. Geological Society of America Bulletin, 134(5-6): 1397-1413. https://doi.org/10.1130/B36005.1
      Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High‒Precision U‒Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/g48051.1
      Wu, Q., Zhang, H., Ramezani, J., et al., 2024. The Terrestrial End‒Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284
      Xiao, Y. F., Wang, K. Y., He, W. H., et al., 2024. Changhsingian (Lopingian, Permian) Radiolarian Paleobiogeography on and around the Yangtze Platform. Palaeoworld, 33(5): 1409-1424. https://doi.org/10.1016/j.palwor.2022.07.001
      Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth‒Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846
      Yang, F., Sun, Y. D., Frings, P. J., et al., 2022. Collapse of Late Permian Chert Factories in the Equatorial Tethys and the Nature of the Early Triassic Chert Gap. Earth and Planetary Science Letters, 600: 117861. https://doi.org/10.1016/j.epsl.2022.117861
      Yang, L. R., Song, H. J., Tong, J. N., et al., 2013. The Extinction Pattern of Fusulinids during the Permian‒ Triassic Crisis at the Kangjiaping Section, Cili, Hunan Province. Micropalaeontologica Sinica, 30(4): 353-366 (in Chinese with English abstract).
      Yuan, D. X., Shen, S. Z., 2011. Conodont Succession across the Permian‒Triassic Boundary of the Liangfengya Section, Chongqing, South China. Acta Palaeontologica Sinica, 50(4): 420-438 (in Chinese with English abstract).
      Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont‒Based Integrated High‒Resolution Timescale for the Changhsingian Stage and End‒ Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026
      Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth‒Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End‒Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      Zhang, L. J., Zhang, X., Buatois, L. A., et al., 2020. Periodic Fluctuations of Marine Oxygen Content during the Latest Permian. Global and Planetary Change, 195: 103326. https://doi.org/10.1016/j.gloplacha.2020.103326
      Zhang, M. H., Gu, S. Z., 2015. Latest Permian Deep‒ Water Foraminifers from Daxiakou, Hubei, South China. Journal of Paleontology, 89(3): 448-464. https://doi.org/10.1017/jpa.2015.19
      Zhang, Y., He, W. H., Shi, G. R., et al., 2015. A New Changhsingian (Late Permian) Brachiopod Fauna from the Zhongzhai Section (South China) Part 3: Productida. Alcheringa: An Australasian Journal of Palaeontology, 39(3): 295-314. https://doi.org/10.1080/03115518.2015.1001186
      Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12‒107r
      Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian‒Triassic Boundary Strata, South China: Constraints from Inherited and Syn‒Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002
      Zuchuat, V., Sleveland, A. R. N., Twitchett, R. J., et al., 2020. A New High‒Resolution Stratig11raphic and Palaeoenvironmental Record Spanning the End‒Permian Mass Extinction and Its Aftermath in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109732. https://doi.org/10.1016/j.palaeo.2020.109732
      陈军, Henderson, C. M., 沈树忠, 2008. 浙江黄芝山剖面二叠‒三叠系界线附近的牙形类序列及其地层对比. 古生物学报, 47(1): 91-114.
      方宇恒, 2021. 华南地区晚二叠世‒早三叠世海洋古氧相特征与异常生物沉积的响应(博士学位论文). 武汉: 中国地质大学.
      李国山, 2016. 中下扬子地区二叠纪与三叠纪之交不同相区古氧相演化及生态响应(博士学位论文). 武汉: 中国地质大学.
      李学刚, 宋金明, 袁华茂, 等, 2017. 深海大洋最小含氧带(OMZ)及其生态环境效应. 海洋科学, 41(12): 127-138.
      廖卫, 2020. 二叠纪‒三叠纪之交华南浅水碳酸盐岩台地环境变化过程及其成因研究(博士学位论文). 武汉: 中国地质大学.
      聂小妹, 雷勇, 冯庆来, 等, 2012. 四川广元上寺剖面长兴阶放射虫动物群演变及控制因素. 58(5): 809-815.
      沈树忠, 何锡麟, 1991. 重庆中梁山长兴组腕足动物组合层序. 地层学杂志, 15(3): 189-196.
      田力, 童金南, 宋海军, 等, 2014. 江西乐平沿沟二叠纪末有孔虫的演变及对鲕状灰岩的古环境指示意义. 地球科学, 39(11): 1573-1586. doi: 10.3799/dqkx.2014.140
      王钦贤, 童金南, 宋海军, 等, 2009. 湖南慈利康家坪剖面二叠纪‒三叠纪之交的生态系演变. 中国科学(D辑), 39(9): 1239-1247.
      杨利蓉, 宋海军, 童金南, 等, 2013. 湖南慈利康家坪剖面二叠纪末蜓类有孔虫的灭绝过程. 微体古生物学报, 30(4): 353-366.
      袁东勋, 沈树忠, 2011. 重庆中梁山凉风垭二叠‒三叠系界线附近牙形类生物地层研究. 古生物学报, 50(4): 420-438.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (122) PDF downloads(45) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return