• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Lu Jianqi, Wang Yujia, Li Shanyou, Xie Zhinan, Ma Qiang, Tao Dongwang, 2025. An XGBoost-Based Onsite PGV Prediction Model. Earth Science, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142
    Citation: Lu Jianqi, Wang Yujia, Li Shanyou, Xie Zhinan, Ma Qiang, Tao Dongwang, 2025. An XGBoost-Based Onsite PGV Prediction Model. Earth Science, 50(5): 1861-1874. doi: 10.3799/dqkx.2024.142

    An XGBoost-Based Onsite PGV Prediction Model

    doi: 10.3799/dqkx.2024.142
    • Received Date: 2024-08-17
      Available Online: 2025-06-06
    • Publish Date: 2025-05-25
    • Peak Ground Velocity (PGV) is one of the parameter commonly used to measure the damage potential of ground shaking to building structures, and real-time prediction of PGV is a key technology in emergency response to major engineering earthquakes. To further improve the accuracy of PGV prediction, in this paper it proposes an onsite PGV prediction model based on Extreme Gradient Boosting (XGBoost). The model takes five characteristic parameters, including peak acceleration (Pa), peak velocity (Pv), peak displacement (Pd), cumulative absolute velocity (CAV), and predominant period (Tpd) in the first 3 seconds of the P-wave observed at the station as inputs, and the PGV observed at the station as the prediction target. 6 918 sets of acceleration records from 102 earthquakes recorded by the K-NET station network in Japan were used for model training, and 3 430 sets of acceleration records from 89 earthquakes were used to test the generalization ability of the model. The results show that, within the same dataset, the PGV prediction model based on XGBoost has a predictive value that is closer to a 1:1 ratio with the actual measured values compared to the PGV prediction models based on Pd and support vector machines. Additionally, the standard deviation of the prediction errors is smaller, the mean of the prediction residuals is closer to zero, and the model performs well on actual earthquake cases in China. The PGV prediction model based on XGBoost can be used for the prediction of peak ground motion in local earthquake early warning systems.

       

    • loading
    • Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693. https://doi.org/10.1785/gssrl.80.5.682
      Brondi, P., Picozzi, M., Emolo, A., et al., 2015. Predicting the Macroseismic Intensity from Early Radiated P Wave Energy for On-Site Earthquake Early Warning in Italy. Journal of Geophysical Research: Solid Earth, 120(10): 7174-7189. https://doi.org/10.1002/2015jb012367
      Chen, T. Q., Guestrin, C., Chen, T. Q., et al., 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 785-794. https://doi.org/10.1145/2939672.2939785
      Colombelli, S., Caruso, A., Zollo, A., et al., 2015. A P Wave-Based, On-Site Method for Earthquake Early Warning. Geophysical Research Letters, 42(5): 1390-1398. https://doi.org/10.1002/2014gl063002
      Faenza, L., Michelini, A., 2011. Regression Analysis of MCS Intensity and Ground Motion Spectral Accelerations (SAs) in Italy. Geophysical Journal International, 186(3): 1415-1430. https://doi.org/10.1111/j.1365-246X.2011.05125.x
      Hildyard, M. W., Rietbrock, A., 2010. TPD, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698. https://doi.org/10.1785/0120080368
      Hoshiba, M., Kamigaichi, O., Saito, M., et al., 2008. Earthquake Early Warning Starts Nationwide in Japan. EOS, Transactions American Geophysical Union, 89(8): 73-74. https://doi.org/10.1029/2008eo080001
      Hoshiba, M., Ohtake, K., Iwakiri, K., et al., 2010. How Precisely can We Anticipate Seismic Intensities? A Study of Uncertainty of Anticipated Seismic Intensities for the Earthquake Early Warning Method in Japan. Earth, Planets and Space, 62(8): 611-620. https://doi.org/10.5047/eps.2010.07.013
      Hua, S. B., Xu, C. Y., Zhou, J. C., et al., 2024. Source Characteristics and Disaster Mechanisms of the 2023 Gansu Jishishan Mw6.0 Earthquake. Chinese Journal of Geophysics, 67(7): 2625-2636 (in Chinese with English abstract).
      Huang, F. M., Ouyang, W. P., Jiang, S. H., et al., 2024. Landslide Susceptibility Prediction Considering Spatio-Temporal Division Principle of Training/Testing Datasets in Machine Learning Models. Earth Science, 49(5): 1607-1618 (in Chinese with English abstract).
      Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440 (in Chinese with English abstract).
      Iervolino, I., Giorgio, M., Galasso, C., et al., 2009. Uncertainty in Early Warning Predictions of Engineering Ground Motion Parameters: What Really Matters?. Geophysical Research Letters, 36(5): 2008GL036644. https://doi.org/10.1029/2008gl036644
      Jin, X., Zhang, H. C., Li, J., et al., 2012. Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics, 55(3): 925-936 (in Chinese with English abstract).
      Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
      Kohler, M. D., Cochran, E. S., Given, D., et al., 2018. Earthquake Early Warning ShakeAlert System: West Coast Wide Production Prototype. Seismological Research Letters, 89(1): 99-107. https://doi.org/10.1785/0220170140
      Li, T. L., Jiang, P., Jin, Y. X., et al., 2024. Construction and Application of China Earthquake Early Warning Technology Testing Platform. Earthquake Research in China, 40(1): 69-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.006
      Li, Y. Z., Yang, C., 2024. Overall Design of Customized Software for the National Seismic about the National Seismic Intensity Rapid Reporting and Early Warning Project. Earthquake Research in China, 40(1): 85-96 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.007
      Liu, C., Li, X. J., Jing, B. B., et al., 2019. The Distance Segmentation Characters of PGV-Pd Relationship Parameters for Earthquake Early Warning. Chinese Journal of Geophysics, 62(4): 1413-1426 (in Chinese with English abstract).
      Liu, L., Shen, J. K., Zhang, L. X., 2023. A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779 (in Chinese with English abstract).
      Liu, Y. Q., Zhao, Q. X., Wang, Y. W., 2024. Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning with Deep Learning. Scientific Reports, 14(1): 5485. https://doi.org/10.1038/s41598-024-56004-6
      Lu, J. Q., Li, S. Y., Xie, Z. N., et al., 2021. Real-Time Evolutionary Earthquake Location Method and Its Uncertainty Analysis. Journal of Natural Disasters, 30(3): 52-62 (in Chinese with English abstract).
      Lundberg, S. M., Lee, S. I., 2017. A Unified Approach to Interpreting Model Predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems, New York, 21889700. https://doi.org/10.48550/arXiv.1705.07874
      Luo, H. Y., Xu, Q., Jiang, Y. N., et al., 2024. The Prediction Method of Large-Scale Land Subsidence Based on Multi-Temporal InSAR and Machine Learning. Earth Science, 49(5): 1736-1745 (in Chinese with English abstract).
      Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
      Murphy, S., Nielsen, S., 2009. Estimating Earthquake Magnitude with Early Arrivals: A Test Using Dynamic and Kinematic Models. Bulletin of the Seismological Society of America, 99(1): 1-23. https://doi.org/10.1785/0120070246
      Nielsen, D., 2016. Tree Boosting with XGBoost-Why does XGBoost Win "Every" Machine Learning Competition? (Dissertation). Norwegian University of Science and Technology, Norway.
      Olson, E. L., Allen, R. M., 2005. The Deterministic Nature of Earthquake Rupture. Nature, 438(7065): 212-215. https://doi.org/10.1038/nature04214
      Ouyang, L. B., Su, Z. J., Liu, J., et al., 2024. Construction of Decision-Making Platform Fused in China Earthquake Early Warning Network. Earthquake Research in China, 40(1): 24-39 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.003
      Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91(2A): 835-846. https://doi.org/10.1785/0220190101
      Picozzi, M., Zollo, A., Brondi, P., et al., 2015. Exploring the Feasibility of a Nationwide Earthquake Early Warning System in Italy. Journal of Geophysical Research: Solid Earth, 120(4): 2446-2465. https://doi.org/10.1002/2014jb011669
      Song, J. D., Yu, C., Li, S. Y., 2021. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568 (in Chinese with English abstract).
      Wald, D. J., Quitoriano, V., Heaton, T. H., et al., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3): 557-564. https://doi.org/10.1193/1.1586058
      Wu, Y. M., Kanamori, H., 2005. Experiment on an Onsite Early Warning Method for the Taiwan Early Warning System. Bulletin of the Seismological Society of America, 95(1): 347-353. https://doi.org/10.1785/0120040097
      Zhang, H. F., 2023. A Study of Real-Time PGV Prediction Method with Regional and Onsite Integration (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin (in Chinese with English abstract).
      Zhang, J. Y., Xi, N., Xu, T. R., et al., 2024. The Center Technology Platform for National Earthquake Intensity Quick Reporting and Early Warning. Earthquake Research in China, 40(1): 54-68 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.005
      Zhang, Y. Y., Miao, C. L., Chen, J. L., et al., 2024. Design and Construction of the Earthquake Waveform Comprehensive Analysis System for National Seismic Intensity Rapid Reporting and Early Warning Project. Earthquake Research in China, 40(1): 40-53 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4683.2024.01.004
      Zhao, J. X., Zhou, S. L., Gao, P. J., et al., 2015. An Earthquake Classification Scheme Adapted for Japan Determined by the Goodness of Fit for Ground-Motion Prediction Equations. The Bulletin of the Seismological Society of America, 105(5): 2750-2763. https://doi.org/10.1785/0120150013
      Zhu, J. B., Song, J. D., Li, S. Y., 2021. Rapid Magnitude Estimation for Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(7): 126-134 (in Chinese with English abstract).
      华思博, 徐晨雨, 周江诚, 等, 2024.2023年甘肃积石山MW6.0地震震源特征与灾害机理. 地球物理学报, 67(7): 2625-2636.
      黄发明, 欧阳慰平, 蒋水华, 等, 2024. 考虑机器学习建模中训练/测试集时空划分原则的滑坡易发性预测建模. 地球科学, 49(5): 1607-1618. doi: 10.3799/dqkx.2022.357
      黄鑫怀, 李增华, 邓腾, 等, 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 48(12): 4427-4440. doi: 10.3799/dqkx.2022.006
      金星, 张红才, 李军, 等, 2012. 地震预警连续定位方法研究. 地球物理学报, 55(3): 925-936.
      李同林, 江鹏, 晋云霞, 等, 2024. 中国地震预警技术测试平台建设与应用. 中国地震, 40(1): 69-84.
      李雨泽, 杨陈, 2024. 国家地震烈度速报与预警工程定制软件总体设计. 中国地震, 40(1): 85-96.
      刘辰, 李小军, 景冰冰, 等, 2019. 地震预警PGV-Pd关系参数的距离分段特征. 地球物理学报, 62(4): 1413-1426.
      刘丽, 沈俊凯, 张令心, 2023. 基于机器学习的砖砌体房屋震害快速预测方法. 地球科学, 48(5): 1769-1779. doi: 10.3799/dqkx.2022.481
      卢建旗, 李山有, 谢志南, 等, 2021. 实时演化地震定位方法及其不确定性分析. 自然灾害学报, 30(3): 52-62.
      罗袆沅, 许强, 蒋亚楠, 等, 2024. 基于时序InSAR与机器学习的大范围地面沉降预测方法. 地球科学, 49(5): 1736-1745. doi: 10.3799/dqkx.2023.048
      马强, 2008. 地震预警技术研究及应用(博士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      欧阳龙斌, 苏柱金, 刘军, 等, 2024. 国家地震烈度速报与预警工程融合决策平台建设. 中国地震, 40(1): 24-39.
      宋晋东, 余聪, 李山有, 2021. 地震预警现地PGV连续预测的最小二乘支持向量机模型. 地球物理学报, 64(2): 555-568.
      张海峰, 2023. 区域与现地融合的PGV实时预测方法研究(硕士学位论文). 哈尔滨: 中国地震局工程力学研究所.
      张建勇, 席楠, 徐泰然, 等, 2024. 国家中心地震烈度速报与预警技术平台. 中国地震, 40(1): 54-68.
      张莹莹, 苗春兰, 陈经纶, 等. 2024. 国家预警工程综合地震波形分析系统设计与实现. 中国地震, 40(1): 40-53.
      朱景宝, 宋晋东, 李山有, 2021. 基于支持向量机的地震预警震级快速估算研究. 振动与冲击, 40(7): 126-134.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(3)

      Article views (52) PDF downloads(10) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return