Citation: | Shi Qing, Shi Xiaoying, Jiang Ganqing, Tang Dongjie, Wang Xinqiang, 2025. Microbial Silicon Cycling Promoted Shallow-Sea Chert Deposition in Mesoproterozoic Ocean. Earth Science, 50(3): 1082-1104. doi: 10.3799/dqkx.2024.144 |
Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055
|
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
|
Alibert, C., Kinsley, L., 2016. Ge/Si in Hamersley BIF as Tracer of Hydrothermal Si and Ge Inputs to the Paleoproterozoic Ocean. Geochimica et Cosmochimica Acta, 184: 329-343. https://doi.org/10.1016/j.gca.2016.03.027
|
Andrade, C. N., Lapen, T. J., Chafetz, H. S., 2023. Silicon Isotopic Compositions of Dissolved Silicic Acid in Pre- and Post-Diatom Oceans. Geochimica et Cosmochimica Acta, 343: 264-271. https://doi.org/10.1016/j.gca.2022.11.021
|
Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5: 886-891. https://doi.org/10.1038/ngeo1641
|
Benning, L. G., Phoenix, V. R., Yee, N., et al., 2004. Molecular Characterization of Cyanobacterial Silicification Using Synchrotron Infrared Micro-Spectroscopy. Geochimica et Cosmochimica Acta, 68(4): 729-741. https://doi.org/10.1016/s0016-7037(03)00489-7
|
Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761. https://doi.org/10.1111/jpy.12545
|
Buick, R., Knoll, A. H., 1999. Acritarchs and Microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. Journal of Paleontology, 73(5): 744-764. https://doi.org/10.1017/s0022336000040634
|
Cermeño, P., Falkowski, P. G., Romero, O. E., et al., 2015. Continental Erosion and the Cenozoic Rise of Marine Diatoms. Proceedings of the National Academy of Sciences, 112(14): 4239-4244. https://doi.org/10.1073/pnas.1412883112
|
Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397
|
Cui, Y. X., Lang, X. G., Li, F. B., et al., 2019. Germanium/Silica Ratio and Rare Earth Element Composition of Silica-Filling in Sheet Cracks of the Doushantuo Cap Carbonates, South China: Constraining Hydrothermal Activity during the Marinoan Snowball Earth Glaciation. Precambrian Research, 332: 105407. https://doi.org/10.1016/j.precamres.2019.105407
|
Delvigne, C., Cardinal, D., Hofmann, A., et al., 2012. Stratigraphic Changes of Ge/Si, REE+Y and Silicon Isotopes as Insights into the Deposition of a Mesoarchaean Banded Iron Formation. Earth and Planetary Science Letters, 355: 109-118. https://doi.org/10.1016/j.epsl.2012.07.035
|
Ding, T. P., Gao, J. F., Tian, S. H., et al., 2017. The δ30Si Peak Value Discovered in Middle Proterozoic Chert and Its Implication for Environmental Variations in the Ancient Ocean. Scientific Reports, 7: 44000. https://doi.org/10.1038/srep44000
|
Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran-Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014GC005595
|
Egan, K. E., Rickaby, R. E. M., Hendry, K. R., et al., 2013. Opening the Gateways for Diatoms Primes Earth for Antarctic Glaciation. Earth and Planetary Science Letters, 375: 34-43. https://doi.org/10.1016/j.epsl.2013.04.030
|
Escario, S., Nightingale, M., Humez, P., et al., 2020. The Contribution of Aqueous Catechol-Silica Complexes to Silicification during Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 280: 185-201. https://doi.org/10.1016/j.gca.2020.04.016
|
Escoube, R., Rouxel, O. J., Edwards, K., et al., 2015. Coupled Ge/Si and Ge Isotope Ratios as Geochemical Tracers of Seafloor Hydrothermal Systems: Case Studies at Loihi Seamount and East Pacific Rise 9°50'N. Geochimica et Cosmochimica Acta, 167: 93-112. https://doi.org/10.1016/j.gca.2015.06.025
|
Froelich, P. N., Blanc, V., Mortlock, R. A., et al., 1992. River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: Ge/Si in Diatoms, Rivers, and Oceans. Paleoceanography, 7(6): 739-767. https://doi.org/10.1029/92PA02090
|
Gao, P., He, Z. L., Lash, G. G., et al., 2020. Mixed Seawater and Hydrothermal Sources of Nodular Chert in Middle Permian Limestone on the Eastern Paleo-Tethys Margin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109740. https://doi.org/10.1016/j.palaeo.2020.109740
|
Geilert, S., Vroon, P. Z., van Bergen, M. J., 2014. Silicon Isotopes and Trace Elements in Chert Record Early Archean Basin Evolution. Chemical Geology, 386: 133-142. https://doi.org/10.1016/j.chemgeo.2014.07.027
|
Gong, J., Myers, K. D., Munoz-Saez, C., et al., 2020. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology, 20(4): 500-524. https://doi.org/10.1089/ast.2019.2025
|
Hamade, T., Konhauser, K. O., Raiswell, R., et al., 2003. Using Ge/Si Ratios to Decouple Iron and Silica Fluxes in Precambrian Banded Iron Formations. Geology, 31(1): 35. https://doi.org/10.1130/0091-7613(2003)031<0035: UGSRTD>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0035:UGSRTD>2.0.CO;2
|
Handley, K. M., Turner, S. J., Campbell, K. A., et al., 2008. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae. Astrobiology, 8(4): 747-770. https://doi.org/10.1089/ast.2007.0172
|
Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., et al., 2000. Mineralogical and Textural Changes Accompanying Ageing of Silica Sinter. Mineralium Deposita, 35(1): 48-62. https://doi.org/10.1007/s001260050005
|
Hofmann, H. J., Jackson, G. D., 1991. Shelf-Facies Microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65(3): 361-382. https://doi.org/10.1017/S0022336000030353
|
Isson, T. T., Planavsky, N. J., Coogan, L. A., et al., 2020. Evolution of the Global Carbon Cycle and Climate Regulation on Earth. Global Biogeochemical Cycles, 34(2): e2018GB006061. https://doi.org/10.1029/2018gb006061
|
Jones, B., Renaut, R. W., 2007. Microstructural Changes Accompanying the Opal-A to Opal-CT Transition: New Evidence from the Siliceous Sinters of Geysir, Haukadalur, Iceland. Sedimentology, 54(4): 921-948. https://doi.org/10.1111/j.1365-3091.2007.00866.x
|
Jurkowska, A., Świerczewska-Gładysz, E., 2020. New Model of Si Balance in the Late Cretaceous Epicontinental European Basin. Global and Planetary Change, 186: 103108. https://doi.org/10.1016/j.gloplacha.2019.103108
|
Jurkowska, A., Świerczewska-Gładysz, E., 2024. The Evolution of the Marine Si Cycle in the Archean-Palaeozoic: An Overlooked Si Source? Earth-Science Reviews, 248: 104629. https://doi.org/10.1016/j.earscirev.2023.104629
|
Kastner, M., Siever, R., 1983. Siliceous Sediments of the Guaymas Basin: The Effect of High Thermal Gradients on Diagenesis. The Journal of Geology, 91(6): 629-641. https://doi.org/10.1086/628816
|
Kent, A. G., Baer, S. E., Mouginot, C., et al., 2019. Parallel Phylogeography of Prochlorococcus and Synechococcus. The ISME Journal, 13: 430-441. https://doi.org/10.1038/s41396-018-0287-6
|
Knauth, L. P., 1994. Petrogenesis of Chert. Reviews in Mineralogy & Geochemistry, 29: 233-258. https://doi.org/10.1515/9781501509698-012
|
Knoll, A. H., 1982. Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56: 755-790.
|
Knoll, A. H., Nowak, M. A., 2017. The Timetable of Evolution. Science Advances, 3(5): e1603076. https://doi.org/10.1126/sciadv.1603076
|
Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., et al., 2001. Microbial-Silica Interactions in Icelandic Hot Spring Sinter: Possible Analogues for Some Precambrian Siliceous Stromatolites. Sedimentology, 48(2): 415-433. https://doi.org/10.1046/j.1365-3091.2001.00372.x
|
Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017GB005619
|
Kremer, B., 2020. Entrapment and Transformation of Post-Bloom Radiolarians in Cyanobacterial Mats as a Factor Enhancing the Formation of Black Cherts in the Early Silurian Sea. Journal of Sedimentary Research, 90(2): 151-164. https://doi.org/10.2110/jsr.2020.7
|
Li, C. Q., Dong, L., Ma, H. R., et al., 2022b. Formation of the Massive Bedded Chert and Coupled Silicon and Iron Cycles during the Ediacaran-Cambrian Transition. Earth and Planetary Science Letters, 594: 117721. https://doi.org/10.1016/j.epsl.2022.117721
|
Li, J., Liu, P., Menguy, N., et al., 2022a. Intracellular Silicification by Early-Branching Magnetotactic Bacteria. Science Advances, 8(19): eabn6045. https://doi.org/10.1126/sciadv.abn6045
|
Maliva, R. G., Knoll, A. H., Simonson, B. M., 2005. Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology. Geological Society of America Bulletin, 117(7): 835. https://doi.org/10.1130/b25555.1
|
Manning-Berg, A. R., Kah, L. C., 2017. Proterozoic Microbial Mats and Their Constraints on Environments of Silicification. Geobiology, 15(4): 469-483. https://doi.org/10.1111/gbi.12238
|
Marron, A. O., Ratcliffe, S., Wheeler, G. L., et al., 2016. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33(12): 3226-3248. https://doi.org/10.1093/molbev/msw209
|
Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic-Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019
|
Moore, K. R., Gong, J., Pajusalu, M., et al., 2021. A New Model for Silicification of Cyanobacteria in Proterozoic Tidal Flats. Geobiology, 19(5): 438-449. https://doi.org/10.1111/gbi.12447
|
Mortlock, R. A., Froelich, P. N., Feely, R. A., et al., 1993. Silica and Germanium in Pacific Ocean Hydrothermal Vents and Plumes. Earth and Planetary Science Letters, 119(3): 365-378. https://doi.org/10.1016/0012-821X(93)90144-X
|
Ohnemus, D. C., Krause, J. W., Brzezinski, M. A., et al., 2018. The Chemical Form of Silicon in Marine Synechococcus. Marine Chemistry, 206: 44-51. https://doi.org/10.1016/j.marchem.2018.08.004
|
Perri, E., Tucker, M. E., Słowakiewicz, M., et al., 2018. Carbonate and Silicate Biomineralization in a Hypersaline Microbial Mat (Mesaieed Sabkha, Qatar): Roles of Bacteria, Extracellular Polymeric Substances and Viruses. Sedimentology, 65(4): 1213-1245. https://doi.org/10.1111/sed.12419
|
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485
|
Rodgers, K. A., Browne, P. R. L., Buddle, T. F., et al., 2004. Silica Phases in Sinters and Residues from Geothermal Fields of New Zealand. Earth-Science Reviews, 66(1-2): 1-61. https://doi.org/10.1016/j.earscirev.2003.10.001
|
Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., et al., 2022. Cyanobacteria and Biogeochemical Cycles through Earth History. Trends in Microbiology, 30(2): 143-157. https://doi.org/10.1016/j.tim.2021.05.008
|
Shen, B., Ma, H. R., Ye, H. Q., et al., 2018. Hydrothermal Origin of Syndepositional Chert Bands and Nodules in the Mesoproterozoic Wumishan Formation: Implications for the Evolution of Mesoproterozoic Cratonic Basin, North China. Precambrian Research, 310: 213-228. https://doi.org/10.1016/j.precamres.2018.03.007
|
Shi, M., Feng, Q. L., Khan, M. Z., et al., 2017. An Eukaryote-Bearing Microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and Its Significance. Precambrian Research, 303: 709-726. https://doi.org/10.1016/j.precamres.2017.09.013
|
Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio-Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the Ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050
|
Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-Z
|
Stefurak, E. J. T., Lowe, D. R., Zentner, D., et al., 2015. Sedimentology and Geochemistry of Archean Silica Granules. Geological Society of America Bulletin, : B31181.1. https://doi.org/10.1130/b31181.1
|
Stolper, D. A., Love, G. D., Bates, S., et al., 2017. Paleoecology and Paleoceanography of the Athel Silicilyte, Ediacaran-Cambrian Boundary, Sultanate of Oman. Geobiology, 15(3): 401-426. https://doi.org/10.1111/gbi.12236
|
Su, W. B., Li, H. K., Huff, W. D., et al., 2010. SHRIMP U-Pb Dating for a K-Bentonite Bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434-010-4007-5
|
Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2018. Stratiform Siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and Environmental Implications. Gondwana Research, 58: 1-15. https://doi.org/10.1016/j.gr.2018.01.013
|
Tang, D. J., Shi, X. Y., Shi, Q., et al., 2015. Organomineralization in Mesoproterozoic Giant Ooids. Journal of Asian Earth Sciences, 107: 195-211. https://doi.org/10.1016/j.jseaes.2015.04.034
|
Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143
|
Tostevin, R., Snow, J. T., Zhang, Q., et al., 2021. The Influence of Elevated SiO2 (Aq) on Intracellular Silica Uptake and Microbial Metabolism. Geobiology, 19(4): 421-433. https://doi.org/10.1111/gbi.12442
|
Tostevin, R., Wood, R. A., Shields, G. A., et al., 2016. Low-Oxygen Waters Limited Habitable Space for Early Animals. Nature Communications, 7: 12818. https://doi.org/10.1038/ncomms12818
|
Tréguer, P. J., Sutton, J. N., Brzezinski, M., et al., 2021. Reviews and Syntheses: The Biogeochemical Cycle of Silicon in the Modern Ocean. Biogeosciences, 18(4): 1269-1289. https://doi.org/10.5194/bg-18-1269-2021
|
Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
|
Trower, E. J., Strauss, J. V., Sperling, E. A., et al., 2021. Isotopic Analyses of Ordovician-Silurian Siliceous Skeletons Indicate Silica-Depleted Paleozoic Oceans. Geobiology, 19(5): 460-472. https://doi.org/10.1111/gbi.12449
|
Wallace, M. W., Hood, A. V., Shuster, A., et al., 2017. Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants. Earth and Planetary Science Letters, 466: 12-19. https://doi.org/10.1016/j.epsl.2017.02.046
|
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
|
Wen, H. J., Fan, H. F., Tian, S. H., et al., 2016. The Formation Conditions of the Early Ediacaran Cherts, South China. Chemical Geology, 430: 45-69. https://doi.org/10.1016/j.chemgeo.2016.03.005
|
Wheat, C. G., McManus, J., 2005. The Potential Role of Ridge-Flank Hydrothermal Systems on Oceanic Germanium and Silicon Balances. Geochimica et Cosmochimica Acta, 69(8): 2021-2029. https://doi.org/10.1016/j.gca.2004.05.046
|
Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Sensors (Basel, Switzerland), 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
|
Williams, L. A., Pasts, G. A., Crerrar, D. A., 1985. Silica Diagenesis, Ⅰ. Solubility Controls. SEPM Journal of Sedimentary Research, Vol. 55: 301-311. https://doi.org/10.1306/212f86ac-2b24-11d7-8648000102c1865d
|
Xing, C. C., Liu, P. J., Wang, R. M., et al., 2022. Tracing the Evolution of Dissolved Organic Carbon (DOC) Pool in the Ediacaran Ocean by Germanium/Silica (Ge/Si) Ratios of Diagenetic Chert Nodules from the Doushantuo Formation, South China. Precambrian Research, 374: 106639. https://doi.org/10.1016/j.precamres.2022.106639
|
Ye, Y., Frings, P. J., von Blanckenburg, F., et al., 2021. Silicon Isotopes Reveal a Decline in Oceanic Dissolved Silicon Driven by Biosilicification: A Prerequisite for the Cambrian Explosion? Earth and Planetary Science Letters, 566: 116959. https://doi.org/10.1016/j.epsl.2021.116959
|
Yuan, Y. L., Shi, X. Y., Tang, D. J., et al., 2022. Microfabrics and Organominerals as Indicator of Microbial Dolomite in Deep Time: An Example from the Mesoproterozoic of North China. Precambrian Research, 382: 106881. https://doi.org/10.1016/j.precamres.2022.106881
|
Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034
|
Zheng, X. Y., Beard, B. L., Reddy, T. R., et al., 2016. Abiologic Silicon Isotope Fractionation between Aqueous Si and Fe(Ⅲ)-Si Gel in Simulated Archean Seawater: Implications for Si Isotope Records in Precambrian Sedimentary Rocks. Geochimica et Cosmochimica Acta, 187: 102-122. https://doi.org/10.1016/j.gca.2016.05.012
|