• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Shi Qing, Shi Xiaoying, Jiang Ganqing, Tang Dongjie, Wang Xinqiang, 2025. Microbial Silicon Cycling Promoted Shallow-Sea Chert Deposition in Mesoproterozoic Ocean. Earth Science, 50(3): 1082-1104. doi: 10.3799/dqkx.2024.144
    Citation: Shi Qing, Shi Xiaoying, Jiang Ganqing, Tang Dongjie, Wang Xinqiang, 2025. Microbial Silicon Cycling Promoted Shallow-Sea Chert Deposition in Mesoproterozoic Ocean. Earth Science, 50(3): 1082-1104. doi: 10.3799/dqkx.2024.144

    Microbial Silicon Cycling Promoted Shallow-Sea Chert Deposition in Mesoproterozoic Ocean

    doi: 10.3799/dqkx.2024.144
    • Received Date: 2024-11-23
      Available Online: 2025-03-19
    • Publish Date: 2025-03-25
    • To reveal the silicon cycling and potential mechanism of chert deposition in Mesoproterozoic shallow seas, an integrated study of sedimentology, mineralogy, geobiology and geochemistry was conducted on the Wumishan cherts (~1.48 Ga) using multiple techniques. The results show that the cherts are predominated by microquartz (~90%) in composition, with some silica-replaced carbonate (~5%) and minor pyrite (~1%) grains, indicating that the cherts largely originated from primary silica precipitation. High Ge/Si molar ratios (~8.83 μmol/mol) and positive Eu anomalies (~1.41) in the cherts suggest silica largely deriving from seawater (~94%), with a small contribution of thermally derived Si (~6%). Diverse microbial components (e.g., microbial filaments, EPS (extracellular polymeric substances) relics, mat fragments) and picocyanobacterian fossils were closely associated with organominerals, suggesting that microbial activities played important roles in silica precipitation. The Si liberated from degraded EPS and organo-Si complexes locally increased the dissolved Si concentrations and changed the chemical conditions in shallow substrate and pore-waters, promoting silica precipitation. The flourishing picocyanobacteria and certain prokaryotes that can accumulate silica in their cells or EPS may have changed the Si-cycling in Mesoproterozoic ocean, and the biogenic silica released from the microbial biomass may have promoted the silica precipitation in the Mesoproterozoic shallow-sea environments.

       

    • loading
    • Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055
      Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001
      Alibert, C., Kinsley, L., 2016. Ge/Si in Hamersley BIF as Tracer of Hydrothermal Si and Ge Inputs to the Paleoproterozoic Ocean. Geochimica et Cosmochimica Acta, 184: 329-343. https://doi.org/10.1016/j.gca.2016.03.027
      Andrade, C. N., Lapen, T. J., Chafetz, H. S., 2023. Silicon Isotopic Compositions of Dissolved Silicic Acid in Pre- and Post-Diatom Oceans. Geochimica et Cosmochimica Acta, 343: 264-271. https://doi.org/10.1016/j.gca.2022.11.021
      Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5: 886-891. https://doi.org/10.1038/ngeo1641
      Benning, L. G., Phoenix, V. R., Yee, N., et al., 2004. Molecular Characterization of Cyanobacterial Silicification Using Synchrotron Infrared Micro-Spectroscopy. Geochimica et Cosmochimica Acta, 68(4): 729-741. https://doi.org/10.1016/s0016-7037(03)00489-7
      Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761. https://doi.org/10.1111/jpy.12545
      Buick, R., Knoll, A. H., 1999. Acritarchs and Microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. Journal of Paleontology, 73(5): 744-764. https://doi.org/10.1017/s0022336000040634
      Cermeño, P., Falkowski, P. G., Romero, O. E., et al., 2015. Continental Erosion and the Cenozoic Rise of Marine Diatoms. Proceedings of the National Academy of Sciences, 112(14): 4239-4244. https://doi.org/10.1073/pnas.1412883112
      Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397
      Cui, Y. X., Lang, X. G., Li, F. B., et al., 2019. Germanium/Silica Ratio and Rare Earth Element Composition of Silica-Filling in Sheet Cracks of the Doushantuo Cap Carbonates, South China: Constraining Hydrothermal Activity during the Marinoan Snowball Earth Glaciation. Precambrian Research, 332: 105407. https://doi.org/10.1016/j.precamres.2019.105407
      Delvigne, C., Cardinal, D., Hofmann, A., et al., 2012. Stratigraphic Changes of Ge/Si, REE+Y and Silicon Isotopes as Insights into the Deposition of a Mesoarchaean Banded Iron Formation. Earth and Planetary Science Letters, 355: 109-118. https://doi.org/10.1016/j.epsl.2012.07.035
      Ding, T. P., Gao, J. F., Tian, S. H., et al., 2017. The δ30Si Peak Value Discovered in Middle Proterozoic Chert and Its Implication for Environmental Variations in the Ancient Ocean. Scientific Reports, 7: 44000. https://doi.org/10.1038/srep44000
      Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran-Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014GC005595
      Egan, K. E., Rickaby, R. E. M., Hendry, K. R., et al., 2013. Opening the Gateways for Diatoms Primes Earth for Antarctic Glaciation. Earth and Planetary Science Letters, 375: 34-43. https://doi.org/10.1016/j.epsl.2013.04.030
      Escario, S., Nightingale, M., Humez, P., et al., 2020. The Contribution of Aqueous Catechol-Silica Complexes to Silicification during Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 280: 185-201. https://doi.org/10.1016/j.gca.2020.04.016
      Escoube, R., Rouxel, O. J., Edwards, K., et al., 2015. Coupled Ge/Si and Ge Isotope Ratios as Geochemical Tracers of Seafloor Hydrothermal Systems: Case Studies at Loihi Seamount and East Pacific Rise 9°50'N. Geochimica et Cosmochimica Acta, 167: 93-112. https://doi.org/10.1016/j.gca.2015.06.025
      Froelich, P. N., Blanc, V., Mortlock, R. A., et al., 1992. River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: Ge/Si in Diatoms, Rivers, and Oceans. Paleoceanography, 7(6): 739-767. https://doi.org/10.1029/92PA02090
      Gao, P., He, Z. L., Lash, G. G., et al., 2020. Mixed Seawater and Hydrothermal Sources of Nodular Chert in Middle Permian Limestone on the Eastern Paleo-Tethys Margin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109740. https://doi.org/10.1016/j.palaeo.2020.109740
      Geilert, S., Vroon, P. Z., van Bergen, M. J., 2014. Silicon Isotopes and Trace Elements in Chert Record Early Archean Basin Evolution. Chemical Geology, 386: 133-142. https://doi.org/10.1016/j.chemgeo.2014.07.027
      Gong, J., Myers, K. D., Munoz-Saez, C., et al., 2020. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology, 20(4): 500-524. https://doi.org/10.1089/ast.2019.2025
      Hamade, T., Konhauser, K. O., Raiswell, R., et al., 2003. Using Ge/Si Ratios to Decouple Iron and Silica Fluxes in Precambrian Banded Iron Formations. Geology, 31(1): 35. https://doi.org/10.1130/0091-7613(2003)031<0035: UGSRTD>2.0.CO;2 doi: 10.1130/0091-7613(2003)031<0035:UGSRTD>2.0.CO;2
      Handley, K. M., Turner, S. J., Campbell, K. A., et al., 2008. Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae. Astrobiology, 8(4): 747-770. https://doi.org/10.1089/ast.2007.0172
      Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., et al., 2000. Mineralogical and Textural Changes Accompanying Ageing of Silica Sinter. Mineralium Deposita, 35(1): 48-62. https://doi.org/10.1007/s001260050005
      Hofmann, H. J., Jackson, G. D., 1991. Shelf-Facies Microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65(3): 361-382. https://doi.org/10.1017/S0022336000030353
      Isson, T. T., Planavsky, N. J., Coogan, L. A., et al., 2020. Evolution of the Global Carbon Cycle and Climate Regulation on Earth. Global Biogeochemical Cycles, 34(2): e2018GB006061. https://doi.org/10.1029/2018gb006061
      Jones, B., Renaut, R. W., 2007. Microstructural Changes Accompanying the Opal-A to Opal-CT Transition: New Evidence from the Siliceous Sinters of Geysir, Haukadalur, Iceland. Sedimentology, 54(4): 921-948. https://doi.org/10.1111/j.1365-3091.2007.00866.x
      Jurkowska, A., Świerczewska-Gładysz, E., 2020. New Model of Si Balance in the Late Cretaceous Epicontinental European Basin. Global and Planetary Change, 186: 103108. https://doi.org/10.1016/j.gloplacha.2019.103108
      Jurkowska, A., Świerczewska-Gładysz, E., 2024. The Evolution of the Marine Si Cycle in the Archean-Palaeozoic: An Overlooked Si Source? Earth-Science Reviews, 248: 104629. https://doi.org/10.1016/j.earscirev.2023.104629
      Kastner, M., Siever, R., 1983. Siliceous Sediments of the Guaymas Basin: The Effect of High Thermal Gradients on Diagenesis. The Journal of Geology, 91(6): 629-641. https://doi.org/10.1086/628816
      Kent, A. G., Baer, S. E., Mouginot, C., et al., 2019. Parallel Phylogeography of Prochlorococcus and Synechococcus. The ISME Journal, 13: 430-441. https://doi.org/10.1038/s41396-018-0287-6
      Knauth, L. P., 1994. Petrogenesis of Chert. Reviews in Mineralogy & Geochemistry, 29: 233-258. https://doi.org/10.1515/9781501509698-012
      Knoll, A. H., 1982. Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56: 755-790.
      Knoll, A. H., Nowak, M. A., 2017. The Timetable of Evolution. Science Advances, 3(5): e1603076. https://doi.org/10.1126/sciadv.1603076
      Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., et al., 2001. Microbial-Silica Interactions in Icelandic Hot Spring Sinter: Possible Analogues for Some Precambrian Siliceous Stromatolites. Sedimentology, 48(2): 415-433. https://doi.org/10.1046/j.1365-3091.2001.00372.x
      Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017GB005619
      Kremer, B., 2020. Entrapment and Transformation of Post-Bloom Radiolarians in Cyanobacterial Mats as a Factor Enhancing the Formation of Black Cherts in the Early Silurian Sea. Journal of Sedimentary Research, 90(2): 151-164. https://doi.org/10.2110/jsr.2020.7
      Li, C. Q., Dong, L., Ma, H. R., et al., 2022b. Formation of the Massive Bedded Chert and Coupled Silicon and Iron Cycles during the Ediacaran-Cambrian Transition. Earth and Planetary Science Letters, 594: 117721. https://doi.org/10.1016/j.epsl.2022.117721
      Li, J., Liu, P., Menguy, N., et al., 2022a. Intracellular Silicification by Early-Branching Magnetotactic Bacteria. Science Advances, 8(19): eabn6045. https://doi.org/10.1126/sciadv.abn6045
      Maliva, R. G., Knoll, A. H., Simonson, B. M., 2005. Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology. Geological Society of America Bulletin, 117(7): 835. https://doi.org/10.1130/b25555.1
      Manning-Berg, A. R., Kah, L. C., 2017. Proterozoic Microbial Mats and Their Constraints on Environments of Silicification. Geobiology, 15(4): 469-483. https://doi.org/10.1111/gbi.12238
      Marron, A. O., Ratcliffe, S., Wheeler, G. L., et al., 2016. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33(12): 3226-3248. https://doi.org/10.1093/molbev/msw209
      Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic-Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019
      Moore, K. R., Gong, J., Pajusalu, M., et al., 2021. A New Model for Silicification of Cyanobacteria in Proterozoic Tidal Flats. Geobiology, 19(5): 438-449. https://doi.org/10.1111/gbi.12447
      Mortlock, R. A., Froelich, P. N., Feely, R. A., et al., 1993. Silica and Germanium in Pacific Ocean Hydrothermal Vents and Plumes. Earth and Planetary Science Letters, 119(3): 365-378. https://doi.org/10.1016/0012-821X(93)90144-X
      Ohnemus, D. C., Krause, J. W., Brzezinski, M. A., et al., 2018. The Chemical Form of Silicon in Marine Synechococcus. Marine Chemistry, 206: 44-51. https://doi.org/10.1016/j.marchem.2018.08.004
      Perri, E., Tucker, M. E., Słowakiewicz, M., et al., 2018. Carbonate and Silicate Biomineralization in a Hypersaline Microbial Mat (Mesaieed Sabkha, Qatar): Roles of Bacteria, Extracellular Polymeric Substances and Viruses. Sedimentology, 65(4): 1213-1245. https://doi.org/10.1111/sed.12419
      Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485
      Rodgers, K. A., Browne, P. R. L., Buddle, T. F., et al., 2004. Silica Phases in Sinters and Residues from Geothermal Fields of New Zealand. Earth-Science Reviews, 66(1-2): 1-61. https://doi.org/10.1016/j.earscirev.2003.10.001
      Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D., et al., 2022. Cyanobacteria and Biogeochemical Cycles through Earth History. Trends in Microbiology, 30(2): 143-157. https://doi.org/10.1016/j.tim.2021.05.008
      Shen, B., Ma, H. R., Ye, H. Q., et al., 2018. Hydrothermal Origin of Syndepositional Chert Bands and Nodules in the Mesoproterozoic Wumishan Formation: Implications for the Evolution of Mesoproterozoic Cratonic Basin, North China. Precambrian Research, 310: 213-228. https://doi.org/10.1016/j.precamres.2018.03.007
      Shi, M., Feng, Q. L., Khan, M. Z., et al., 2017. An Eukaryote-Bearing Microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and Its Significance. Precambrian Research, 303: 709-726. https://doi.org/10.1016/j.precamres.2017.09.013
      Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio-Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the Ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050
      Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-Z
      Stefurak, E. J. T., Lowe, D. R., Zentner, D., et al., 2015. Sedimentology and Geochemistry of Archean Silica Granules. Geological Society of America Bulletin, : B31181.1. https://doi.org/10.1130/b31181.1
      Stolper, D. A., Love, G. D., Bates, S., et al., 2017. Paleoecology and Paleoceanography of the Athel Silicilyte, Ediacaran-Cambrian Boundary, Sultanate of Oman. Geobiology, 15(3): 401-426. https://doi.org/10.1111/gbi.12236
      Su, W. B., Li, H. K., Huff, W. D., et al., 2010. SHRIMP U-Pb Dating for a K-Bentonite Bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434-010-4007-5
      Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2018. Stratiform Siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and Environmental Implications. Gondwana Research, 58: 1-15. https://doi.org/10.1016/j.gr.2018.01.013
      Tang, D. J., Shi, X. Y., Shi, Q., et al., 2015. Organomineralization in Mesoproterozoic Giant Ooids. Journal of Asian Earth Sciences, 107: 195-211. https://doi.org/10.1016/j.jseaes.2015.04.034
      Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143
      Tostevin, R., Snow, J. T., Zhang, Q., et al., 2021. The Influence of Elevated SiO2 (Aq) on Intracellular Silica Uptake and Microbial Metabolism. Geobiology, 19(4): 421-433. https://doi.org/10.1111/gbi.12442
      Tostevin, R., Wood, R. A., Shields, G. A., et al., 2016. Low-Oxygen Waters Limited Habitable Space for Early Animals. Nature Communications, 7: 12818. https://doi.org/10.1038/ncomms12818
      Tréguer, P. J., Sutton, J. N., Brzezinski, M., et al., 2021. Reviews and Syntheses: The Biogeochemical Cycle of Silicon in the Modern Ocean. Biogeosciences, 18(4): 1269-1289. https://doi.org/10.5194/bg-18-1269-2021
      Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009
      Trower, E. J., Strauss, J. V., Sperling, E. A., et al., 2021. Isotopic Analyses of Ordovician-Silurian Siliceous Skeletons Indicate Silica-Depleted Paleozoic Oceans. Geobiology, 19(5): 460-472. https://doi.org/10.1111/gbi.12449
      Wallace, M. W., Hood, A. V., Shuster, A., et al., 2017. Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants. Earth and Planetary Science Letters, 466: 12-19. https://doi.org/10.1016/j.epsl.2017.02.046
      Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
      Wen, H. J., Fan, H. F., Tian, S. H., et al., 2016. The Formation Conditions of the Early Ediacaran Cherts, South China. Chemical Geology, 430: 45-69. https://doi.org/10.1016/j.chemgeo.2016.03.005
      Wheat, C. G., McManus, J., 2005. The Potential Role of Ridge-Flank Hydrothermal Systems on Oceanic Germanium and Silicon Balances. Geochimica et Cosmochimica Acta, 69(8): 2021-2029. https://doi.org/10.1016/j.gca.2004.05.046
      Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Sensors (Basel, Switzerland), 272(5265): 1155-1158. https://doi.org/10.1126/science.272.5265.1155
      Williams, L. A., Pasts, G. A., Crerrar, D. A., 1985. Silica Diagenesis, Ⅰ. Solubility Controls. SEPM Journal of Sedimentary Research, Vol. 55: 301-311. https://doi.org/10.1306/212f86ac-2b24-11d7-8648000102c1865d
      Xing, C. C., Liu, P. J., Wang, R. M., et al., 2022. Tracing the Evolution of Dissolved Organic Carbon (DOC) Pool in the Ediacaran Ocean by Germanium/Silica (Ge/Si) Ratios of Diagenetic Chert Nodules from the Doushantuo Formation, South China. Precambrian Research, 374: 106639. https://doi.org/10.1016/j.precamres.2022.106639
      Ye, Y., Frings, P. J., von Blanckenburg, F., et al., 2021. Silicon Isotopes Reveal a Decline in Oceanic Dissolved Silicon Driven by Biosilicification: A Prerequisite for the Cambrian Explosion? Earth and Planetary Science Letters, 566: 116959. https://doi.org/10.1016/j.epsl.2021.116959
      Yuan, Y. L., Shi, X. Y., Tang, D. J., et al., 2022. Microfabrics and Organominerals as Indicator of Microbial Dolomite in Deep Time: An Example from the Mesoproterozoic of North China. Precambrian Research, 382: 106881. https://doi.org/10.1016/j.precamres.2022.106881
      Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034
      Zheng, X. Y., Beard, B. L., Reddy, T. R., et al., 2016. Abiologic Silicon Isotope Fractionation between Aqueous Si and Fe(Ⅲ)-Si Gel in Simulated Archean Seawater: Implications for Si Isotope Records in Precambrian Sedimentary Rocks. Geochimica et Cosmochimica Acta, 187: 102-122. https://doi.org/10.1016/j.gca.2016.05.012
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)  / Tables(1)

      Article views (182) PDF downloads(48) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return