Citation: | Yuan Aihua, Wan Junyu, Zhao Kui, Ma Xuefeng, Feng Qinshuang, Yu Jianxin, Feng Qinglai, 2025. Differential Response of Ostracod Ontogeny after the End Permian Mass Extinction. Earth Science, 50(3): 1023-1036. doi: 10.3799/dqkx.2024.145 |
Anderson⁃Teixeira, K. J., Savage, V. M., Allen, A. P., et al., 2009. Allometry and Metabolic Scaling in Ecology. John Wiley & Sons, Chichester. https://doi.org/10.1002/9780470015902.a0021222
|
Baud, A., Richoz, S., Pruss, S., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1-3): 81-89. https://doi.org/10.1016/j.gloplacha.2006.06.008
|
Bertholon, L., 1997. Les Hétérochronies du Développement chez les Ostracodes, Indicateurs de Stratégies Adaptatives. Geobios, 30: 277-285. https://doi.org/10.1016/S0016⁃6995(97)80103⁃9
|
Brayard, A., Meier, M., Escarguel, G., et al., 2015. Early Triassic Gulliver Gastropods: Spatio⁃Temporal Distribution and Significance for Biotic Recovery after the End⁃Permian Mass Extinction. Earth⁃Science Reviews, 146: 31-64. https://doi.org/10.1016/j.earscirev.2015.03.005
|
Brooks, W. K., 1886. Report on the Stomatopoda Collected by H. M. S. Challenger during the Years 1873-1876. W. K. Brooks, London.
|
Cantine, M. D., Fournier, G. P., 2018. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. Origins of Life and Evolution of the Biosphere, 48(1): 35-54. https://doi.org/10.1007/s11084⁃017⁃9542⁃5
|
Chen, J., Song, H. J., He, W. H., et al., 2019. Size Variation of Brachiopods from the Late Permian through the Middle Triassic in South China: Evidence for the Lilliput Effect Following the Permian⁃Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 248-257. https://doi.org/10.1016/j.palaeo.2018.07.013
|
Chu, D. L., Tong, J. N., Song, H. J., et al., 2015. Lilliput Effect in Freshwater Ostracods during the Permian⁃Triassic Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 38-52. https://doi.org/10.1016/j.palaeo.2015.06.003
|
Cohen, A. C., Morin, J. G., 1990. Patterns of Reproduction in Ostracodes: A Review. Journal of Crustacean Biology, 10(2): 184-212. https://doi.org/10.1163/193724090X00023
|
D'Ambrosio, D. S., García, A., Díaz, A. R., et al., 2017. Distribution of Ostracods in West⁃Central Argentina Related to Host⁃Water Chemistry and Climate: Implications for Paleolimnology. Journal of Paleolimnology, 58(2): 101-117. https://doi.org/10.1007/s10933⁃017⁃9963⁃1
|
Danielopol, D. L., Baltanás, A., Namiotko, T., et al., 2008. Developmental Trajectories in Geographically Separated Populations of Non⁃Marine Ostracods: Morphometric Applications for Palaeoecological Studies. Senckenbergiana Lethaea, 88(1): 183-193. https://doi.org/10.1007/BF03043988
|
Forel, M. B., 2015. Heterochronic Growth of Ostracods (Crustacea) from Microbial Deposits in the Aftermath of the End⁃Permian Extinction. Journal of Systematic Palaeontology, 13(4): 315-349. https://doi.org/10.1080/14772019.2014.902400
|
Forel, M. B., Crasquin, S., 2015. Comment on the Chu et al., Paper "Lilliput Effect in Freshwater Ostracods during the Permian⁃Triassic Extinction" [Palaeogeography, Palaeoclimatology, Palaeoecology 435 (2015): 38-52. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 860-862.
|
Forel, M. B., Crasquin, S., Chitnarin, A., et al., 2015. Precocious Sexual Dimorphism and the Lilliput Effect in Neo⁃Tethyan Ostracoda (Crustacea) through the Permian⁃Triassic Boundary. Palaeontology, 58(3): 409-454. https://doi.org/10.1111/pala.12151
|
Foster, W. J., Ayzel, G., Münchmeyer, J., et al., 2022. Machine Learning Identifies Ecological Selectivity Patterns across the End⁃Permian Mass Extinction. Paleobiology, 48(3): 357-371. https://doi.org/10.1017/pab.2022.1
|
Fox, C. W., Czesak, M. E., 2000. Evolutionary Ecology of Progeny Size in Arthropods. Annual Review of Entomology, 45(1): 341-369. https://doi.org/10.1146/annurev.ento.45.1.341
|
Fraiser, M. L., Twitchett, R. J., Frederickson, J. A., et al., 2011. Gastropod Evidence Against the Early Triassic Lilliput Effect: Comment. Geology, 39(1): e232. https://doi.org/10.1130/G31614C.1
|
Gliwa, J., Forel, M. B., Crasquin, S., et al., 2021. Ostracods from the End⁃Permian Mass Extinction in the Aras Valley Section (North⁃West Iran). Papers in Palaeontology, 7(2): 1003-1042. https://doi.org/10.1002/spp2.1330
|
Gliwa, J., Ghaderi, A., Leda, L., et al., 2020. Aras Valley (Northwest Iran): High⁃Resolution Stratigraphy of a Continuous Central Tethyan Permian⁃Triassic Boundary Section. Fossil Record, 23(1): 33-69. https://doi.org/10.5194/fr⁃23⁃33⁃2020
|
Harries, P. J., Kauffman, E. G., Hansen, T. A., 1997. Models for Biotic Survival Following Mass Extinction. Geological Society, London, Special Publications, 102(1): 41-60. https://doi.org/10.1144/gsl.sp.1996.001.01.03
|
Horne, D. J., Martens, K., 2000. Evolutionary Biology and Ecology of Ostracoda. In: Dumont, H. J., ed., Developments in Hydrobiology 148. Springer, Berlin.
|
Jablonski, D., 1986. Evolutionary Consequences of Mass Extinctions. In: Raup, D. M., Jablonski, D., eds., Patterns and Processes in the History of Life. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃70831⁃2_17
|
Jablonski, D., 1996. Body Size and Macroevolution. In: Jablonski, D., Erwin, D. H., Lipps, J. H., eds., Evolutionary Paleobiology. The University of Chicago Press, Chicago.
|
Kershaw, S., Guo, L., Swift, A., et al., 2002. Microbialites in the Permian⁃Triassic Boundary Interval in Central China: Structure, Age and Distribution. Facies, 47: 83-89. https://doi.org/10.1007/BF02667707
|
Lehrmann, D. J., 1999. Early Triassic Calcimicrobial Mounds and Biostromes of the Nanpanjiang Basin, South China. Geology, 27(4): 359-362. https://doi.org/10.1130/ 0091⁃7613(1999)027<0359: etcmab>2.3.co;2 doi: 10.1130/0091⁃7613(1999)027<0359:etcmab>2.3.co;2
|
Lika, K., Kooijman, S. A. L. M., 2003. Life History Implications of Allocation to Growth Versus Reproduction in Dynamic Energy Budgets. Bulletin of Mathematical Biology, 65(5): 809-834. https://doi.org/10.1016/S0092⁃8240(03)00039⁃9
|
Luo, G. M., Lai, X. L., Jiang, H. S., et al., 2006. Size Variation of the End Permian Conodont Neogondolella at Meishan Section, Changxing, Zhejiang and Its Significance. Science in China Series D, 49(4): 337-347. https://doi.org/10.1007/s11430⁃006⁃0337⁃1
|
Mezquita, F., Roca, J. R., Reed, J. M., et al., 2005. Quantifying Species⁃Environment Relationships in Non⁃Marine Ostracoda for Ecological and Palaeoecological Studies: Examples Using Iberian Data. Palaeogeography, Palaeoclimatology, Palaeoecology, 225(1-4): 93-117. https://doi.org/10.1016/j.palaeo.2004.02.052
|
Morales⁃Ramírez, A., Jakob, J., 2008. Seasonal Vertical Distribution, Abundance, Biomass, and Biometrical Relationships of Ostracods in Golfo Dulce, Pacific Coast of Costa Rica. Revista de Biología Tropical, 56(Suppl. 4): 125-147. https://doi.org/10.15517/RBT.V56I4.27217
|
Nätscher, P. S., Gliwa, J., De Baets, K., et al., 2023. Exceptions to the Temperature⁃Size Rule: No Lilliput Effect in End⁃Permian Ostracods (Crustacea) from Aras Valley (Northwest Iran). Palaeontology, 66(4): e12667. https://doi.org/10.1111/pala.12667
|
Orcutt, J. D. Jr, Porter, K. G., 1983. Diel Vertical Migration by Zooplankton: Constant and Fluctuating Temperature Effects on Life History Parameters of Daphnia1. Limnology and Oceanography, 28(4): 720-730. https://doi.org/10.4319/lo.1983.28.4.0720
|
Ozawa, H., Kamiya, T., 2005. The Effects of Glacio⁃Eustatic Sea⁃Level Change on Pleistocene Cold⁃Water Ostracod Assemblages from the Japan Sea. Marine Micropaleontology, 54(3-4): 167-189. https://doi.org/10.1016/j.marmicro.2004.10.002
|
Pereira, J. D., Schneider, D. I. D., da Rocha, C. E. F., et al., 2017. Carapace Ontogeny of the Bromeliad Dwelling Ostracod Elpidium bromeliarum Müller, 1880 (Crustacea: Ostracoda). Journal of Natural History, 51(35-36): 2185-2196. https://doi.org/10.1080/00222933.2017.1360529
|
Reilly, S. M., Wiley, E. O., Meinhardt, D. J., 1997. An Integrative Approach to Heterochrony: The Distinction between Interspecific and Intraspecific Phenomena. Biological Journal of the Linnean Society, 60(1): 119-143. https://doi.org/10.1111/j.1095⁃8312.1997.tb01487.x
|
Scotese, C. R., 2014. Atlas of Permo⁃Triassic Paleogeographic Maps (Mollweide Projection), Maps 43⁃52, Volumes 3 & 4 of the PALEOMAP Atlas for ArcGIS. PALEOMAP Project, Evanston.
|
Sentis, A., Bazin, S., Boukal, D. S., et al., 2024. Ecological Consequences of Body Size Reduction under Warming. Proceedings Biological Sciences, 291(2029): 20241250. https://doi.org/10.1098/rspb.2024.1250
|
Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions? Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese with English abstract). doi: 10.1360/N972017-00013
|
Song, H. J., Kemp, D. B., Tian, L., et al., 2021. Thresholds of Temperature Change for Mass Extinctions. Nature Communications, 12: 4694. https://doi.org/10.1038/s41467⁃021⁃25019⁃2
|
Song, H. J., Tong, J. N., Chen, Z. Q., 2011. Evolutionary Dynamics of the Permian⁃Triassic Foraminifer Size: Evidence for Lilliput Effect in the End⁃Permian Mass Extinction and Its Aftermath. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 98-110. https://doi.org/10.1016/j.palaeo.2010.10.036
|
Urbanek, A., 1993. Biotic Crises in the History of Upper Silurian Graptoloids: A Palaeobiological Model. Historical Biology, 7(1): 29-50. https://doi.org/10.1080/10292389309380442
|
Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High⁃Resolution Variation in Ostracod Assemblages from Microbialites near the Permian⁃Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349
|
Wan, J. Y., Yuan, A. H., Ye, Q., et al., 2023. Ostracod Fauna and Its Palaeoecological Significance from the Permian⁃Triassic Microbialites in Pojue, Guangxi. Acta Micropalaeontologica Sinica, 40(2): 107-119 (in Chinese with English abstract).
|
Wang, C., 2019. The Research of Living Species Life Cycle and Environmental Significance on the Ostracod Limnocythere inopinata in Tibetan Plateau (Dissertation). Chinese Academy of Geological Science, Beijing (in Chinese with English abstract).
|
Wang, Y. B., Tong, J. N., Wang, J. S., et al., 2005. Calcimicrobialite after End⁃Permian Mass Extinction in South China and Its Palaeoenvironmental Significance. Chinese Science Bulletin, 50(6): 552-558 (in Chinese). doi: 10.1360/972004-323
|
Watabe, K., Kaesler, R. L., 2004. Ontogeny of a New Species of Paraparchites (Ostracoda) from the Lower Permian Speiser Shale in Kansas. Journal of Paleontology, 78(3): 603-611. https://doi.org/10.1666/0022⁃3360(2004)0780603: ooanso>2.0.co;2 doi: 10.1666/0022⁃3360(2004)0780603:ooanso>2.0.co;2
|
Wickstrom, C. E., Castenholz, R. W., 1985. Dynamics of Cyanobacterial and Ostracod Interactions in an Oregon Hot Spring. Ecology, 66(3): 1024-1041. https://doi.org/10.2307/1940563
|
Wootton, R. J., 1993. The Evolution of Life Histories: Theory and Analysis. Reviews in Fish Biology and Fisheries, 3(4): 384-385. https://doi.org/10.1007/BF00043394
|
Worner, S. P., 1992. Performance of Phenological Models under Variable Temperature Regimes: Consequences of the Kaufmann or Rate Summation Effect. Environmental Entomology, 21(4): 689-699. https://doi.org/10.1093/ee/21.4.689
|
Wu, Y. S., Jiang, H. X., Yang, W., et al., 2007. Microbialite of Anoxic Condition from Permian⁃Triassic Transition in Guizhou, China. Science in China (Series D), 37(5): 618-628 (in Chinese).
|
Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
|
Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx199901001
|
沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
|
万俊雨, 袁爱华, 叶茜, 等, 2023. 广西坡决二叠纪‒三叠纪之交含微生物岩剖面介形虫及其古生态意义. 微体古生物学报, 40(2): 107-119.
|
王灿, 2019. 青藏高原现生意外湖花介属种生命周期和环境指示意义研究(硕士学位论文). 北京: 中国地质科学院.
|
王永标, 童金南, 王家生, 等, 2005. 华南二叠纪末大绝灭后的钙质微生物岩及古环境意义. 科学通报, 50(6): 552-558.
|
吴亚生, 姜红霞, Yang, W., 等, 2007. 二叠纪‒三叠纪之交缺氧环境的微生物和微生物岩. 中国科学(D辑), 37(5): 618-628.
|
殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749
|
![]() |
![]() |