• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Han Yabo, Sun Jun, 2025. A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24. Earth Science, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146
    Citation: Han Yabo, Sun Jun, 2025. A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24. Earth Science, 50(6): 2444-2451. doi: 10.3799/dqkx.2024.146

    A Gene Suspected to be Silicon Transporter was Found in Synechococcus sp. XM24

    doi: 10.3799/dqkx.2024.146
    • Received Date: 2024-10-07
      Available Online: 2025-07-11
    • Publish Date: 2025-06-25
    • Silicate serves as a crucial nutrient for diatoms, which are capable of absorbing dissolved silicon from their surroundings through Silicon Transporter (SIT), thus playing a significant role in the global ocean's silicon cycle. Recent studies have indicated that marine single-celled Synechococcus also has the ability to accumulate silicon. Given that the evolution of Synechococcus predates that of diatoms, it is postulated that Synechococcus may utilize transporters such as SIT found in diatoms, to absorb dissolved silicon in the ocean. This research delves into the silicon accumulation in Synechococcus sp. XM24, particularly focusing on two key aspects. Firstly, the study investigates the potential presence of SIT in Synechococcus sp. XM24 under the condition of Depleted-Repleted silicate. Subsequently, two gene sequences suspected to encode SIT, were identified, and their protein sequences and functions were successfully predicted, shedding light on their involvement in membrane transport processes. Finally, AutoDock4 software was used to predict the active site of the protein.

       

    • loading
    • Alverson, A. J., 2007. Strong Purifying Selection in the Silicon Transporters of Marine and Freshwater Diatoms. Limnology and Oceanography, 52(4): 1420-1429. https://doi.org/10.4319/lo.2007.52.4.1420
      Amo, Y. D., Brzezinski, M. A., 1999. The Chemical Form of Dissolved Si Taken up by Marine Diatoms. Journal of Phycology, 35(6): 1162-1170. https://doi.org/10.1046/j.1529⁃8817.1999.3561162.x
      Armbrust, E. V., Berges, J. A., Bowler, C., et al., 2004. The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism. Science, 306(5693): 79-86. https://doi.org/10.1126/science.1101156
      Azam, F., Hemmingsen, B. B., Volcani, B. E., 1974. Role of Silicon in Diatom Metabolism: V. Silicic Acid Transport and Metabolism in the Heterotrophic Diatom Nitzschia Alba. Archives of Microbiology, 97(1): 103-114. https://doi.org/10.1007/bf00403050
      Bai, Y. L., Wang, J. L., Sun, H. T., et al., 2019. Determination of Silicon in Beryllium⁃Aluminium Alloy with High Content of Beryllium by Silicon Molybdenum Blue Spectrophotometry. Metallurgical Analysis, 39(9): 81-85 (in Chinese with English abstract).
      Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5(12): 886-891. https://doi.org/10.1038/ngeo1641
      Bäuerlein, E., 2000. Silicic Acid Transport and Its Control during Cell Wall Silicification in Diatoms. In: Hildebrand, M., ed., Biomineralization: From Biology to Biotechnology and Medical Application. Wiley‐VCH Verlag GmbH & Co. KGaA, New Jersey, 159-173.
      Bhattacharyya, P., Volcani, B. E., 1980. Sodium⁃Dependent Silicate Transport in the Apochlorotic Marine Diatom Nitzschia Alba. Proceedings of the National Academy of Sciences of the United States of America, 77(11): 6386-6390. https://doi.org/10.1073/pnas.77.11.6386
      Binder, B. J., Chisholm, S. W., Olson, R. J., et al., 1996. Dynamics of Picophytoplankton, Ultraphytoplankton and Bacteria in the Central Equatorial Pacific. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 43(4-6): 907-931. https://doi.org/10.1016/0967-0645(96)00023⁃9
      Brasier, M. D., Green, O. R., Jephcoat, A. P., et al., 2002. Questioning the Evidence for Earth's Oldest Fossils. Nature, 416(6876): 76-81. https://doi.org/10.1038/416076a
      Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761. https://doi.org/10.1111/jpy.12545
      Buick, R., 1992. The Antiquity of Oxygenic Photosynthesis: Evidence from Stromatolites in Sulphate⁃Deficient Archaean Lakes. Science, 255(5040): 74-77. https://doi.org/10.1126/science.11536492
      Chen, C. J., Wu, Y., Li, J. W., et al., 2023. TBtools⁃Ⅱ: A "One for All, All for One" Bioinformatics Platform for Biological Big⁃Data Mining. Molecular Plant, 16(11): 1733-1742. https://doi.org/10.1016/j.molp.2023.09.010
      Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397
      Curnow, P., Senior, L., Knight, M. J., et al., 2012. Expression, Purification, and Reconstitution of a Diatom Silicon Transporter. Biochemistry, 51(18): 3776-3785. https://doi.org/10.1021/bi3000484
      Deng, W., Monks, L., Neuer, S., 2015. Effects of Clay Minerals on the Aggregation and Subsequent Settling of Marine Synechococcus. Limnology and Oceanography, 60(3): 805-816. https://doi.org/10.1002/lno.10059
      Guidi, L., Chaffron, S., Bittner, L., et al., 2016. Plankton Networks Driving Carbon Export in the Oligotrophic Ocean. Nature, 532: 465-470. https://doi.org/10.1038/nature16942
      Hildebrand, M., Dahlin, K., Volcani, B. E., 1998. Characterization of a Silicon Transporter Gene Family in Cylindrotheca Fusiformis: Sequences, Expression Analysis, and Identification of Homologs in Other Diatoms. Molecular and General Genetics MGG, 260(5): 480-486. https://doi.org/10.1007/s004380050920
      Hildebrand, M., Volcani, B. E., Gassmann, W., et al., 1997. A Gene Family of Silicon Transporters. Nature, 385: 688-689. https://doi.org/10.1038/385688b0
      Johnson, P. W., Sieburth, J. M., 1979. Chroococcoid Cyanobacteria in the Sea: A Ubiquitous and Diverse Phototrophic Biomass. Limnology and Oceanography, 24(5): 928-935. https://doi.org/10.4319/lo.1979.24.5.0928
      Kang, L., Feng, C. C., Chang, J., et al., 2015. Diversity and Expression of Diatom Silicon Transporter Genes during a Flood Event in the East China Sea. Marine Biology, 162(7): 1511-1522. https://doi.org/10.1007/s00227⁃015⁃2687⁃8
      Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017gb005619
      Krauskopf, K. B., 1956. Dissolution and Precipitation of Silica at Low Temperatures. Geochimica et Cosmochimica Acta, 10(1-2): 1-26. https://doi.org/10.1016/0016⁃7037(56)90009⁃6
      Leblanc, K., Hutchins, D. A., 2005. New Applications of a Biogenic Silica Deposition Fluorophore in the Study of Oceanic Diatoms. Limnology and Oceanography: Methods, 3(10): 462-476. https://doi.org/10.4319/lom.2005.3.462
      Lomas, M. W., Moran, S. B., 2011. Evidence for Aggregation and Export of Cyanobacteria and Nano⁃Eukaryotes from the Sargasso Sea Euphotic Zone. Biogeosciences, 8(1): 203-216. https://doi.org/10.5194/bg-8-203-201110.5194/bgd⁃7⁃7173⁃2010
      Lupas, A., Van Dyke, M., Stock, J., 1991. Predicting Coiled Coils from Protein Sequences. Science, 252(5009): 1162-1164. https://doi.org/10.1126/science.252.5009.1162
      Mann, D. G., 1999. The Species Concept in Diatoms. Phycologia, 38(6): 437-495. https://doi.org/10.2216/i0031⁃8884⁃38⁃6⁃437.1
      Marchenkov, A. M., Bondar, A. A., Petrova, D. P., et al., 2016. Unique Configuration of Genes of Silicon Transporter in the Freshwater Pennate Diatom Synedra Acus Subsp. Radians. Doklady Biochemistry and Biophysics, 471(1): 407-409. https://doi.org/10.1134/S1607672916060089
      Marchenkov, A. M., Petrova, D. P., Morozov, A. A., et al., 2018. A Family of Silicon Transporter Structural Genes in a Pennate Diatom Synedra Ulna Subsp. Danica (KÜTZ. ) Skabitsch. PLoS One, 13(8): e0203161. https://doi.org/10.1371/journal.pone.0203161
      Milligan, A. J., Morel, F. M. M., 2002. A Proton Buffering Role for Silica in Diatoms. Science, 297(5588): 1848-1850. https://doi.org/10.1126/science.1074958
      Morris, G. M., Huey, R., Lindstrom, W., et al., 2009. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. Journal of Computational Chemistry, 30(16): 2785-2791. https://doi.org/10.1002/jcc.21256
      Ohnemus, D. C., Rauschenberg, S., Krause, J. W., et al., 2016. Silicon Content of Individual Cells of Synechococcus from the North Atlantic Ocean. Marine Chemistry, 187: 16-24. https://doi.org/10.1016/j.marchem.2016.10.003
      Richardson, T. L., Jackson, G. A., 2007. Small Phytoplankton and Carbon Export from the Surface Ocean. Science, 315(5813): 838-840. https://doi.org/10.1126/science.1133471
      Sapriel, G., Quinet, M., Heijde, M., et al., 2009. Genome⁃Wide Transcriptome Analyses of Silicon Metabolism in Phaeodactylum Tricornutum Reveal the Multilevel Regulation of Silicic Acid Transporters. PLoS One, 4(10): e7458. https://doi.org/10.1371/journal.pone.0007458
      Shen, W., Le, S., Li, Y., et al., 2016. SeqKit: A Cross⁃Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS One, 11(10): e0163962. https://doi.org/10.1371/journal.pone.0163962
      Struyf, E., Smis, A., Van Damme, S., et al., 2009. The Global Biogeochemical Silicon Cycle. Silicon, 1(4): 207-213. https://doi.org/10.1007/s12633⁃010⁃9035⁃x
      Sun, J., Li, X. Q., Chen, J. F., et al., 2016. Progress in Oceanic Biological Pump. Haiyang Xuebao, 38(4): 1-21 (in Chinese with English abstract).
      Sun, J., Wei, Y. Q., 2018. Preliminary Thoughts on Silicon Accumulation in Synechococcus. Acta Ecologica Sinica, 38(14): 5234-5243 (in Chinese with English abstract).
      Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143
      Thamatrakoln, K., Alverson, A. J., Hildebrand, M., 2006. Comparative Sequence Analysis of Diatom Silicon Transporters: Toward a Mechanistic Model of Silicon Transport. Journal of Phycology, 42(4): 822-834. https://doi.org/10.1111/j.1529⁃8817.2006.00233.x
      Wang, G. X., Fang, X. M., Wu, Z. H., et al., 2022. HelixFold: An Efficient Implementation of AlphaFold2 Using PaddlePaddle. ArXiv. https://doi.org/10.48550/arXiv.2207.05477
      Waterbury, J. B., Watson, S. W., Guillard, R. R. L., et al., 1979. Widespread Occurrence of a Unicellular, Marine, Planktonic, Cyanobacterium. Nature, 277: 293-294. https://doi.org/10.1038/277293a0
      Wei, Y. Q., Sun, J., Li, L. Y., et al., 2022. Synechococcus Silicon Accumulation in Oligotrophic Oceans. Limnology and Oceanography, 67(3): 552-566. https://doi.org/10.1002/lno.12015
      Werner, D., 1977. The Biology of Diatoms. In: Werner, D., ed., Silicate Metabolism, University of California Press, Berkeley, 498.
      Zheng, Q., Wang, Y., Xie, R., et al., 2018. Dynamics of Heterotrophic Bacterial Assemblages within Synechococcus Cultures. Applied and Environmental Microbiology, 84(3): e01517-17. https://doi.org/10.1128/aem.01517⁃17
      白英丽, 王佳丽, 孙洪涛, 等, 2019. 硅钼蓝分光光度法测定高铍铍铝合金中硅. 冶金分析, 39(9): 81-85.
      孙军, 李晓倩, 陈建芳, 等, 2016. 海洋生物泵研究进展. 海洋学报, 38(4): 1-21.
      孙军, 魏玉秋, 2018. 聚球藻硅质化作用初探. 生态学报, 38(14), 5234-5243.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(3)  / Tables(2)

      Article views (86) PDF downloads(7) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return