Citation: | Gong Yajun, Zhang Kuihua, Wang Jinduo, Wang Qianjun, Wang Jianwei, Zeng Zhiping, Guo Ruichao, Niu Jingjing, Fan Jie, Liu Hui, Min Feiqiong, 2025. Structure, Permeability and Fluid Flow in Sedimentary Clastic Rock Fault Zone. Earth Science, 50(5): 1968-1986. doi: 10.3799/dqkx.2024.154 |
Aydin, A., 1978. Small Faults Formed as Deformation Bands in Sandstone. Pure and Applied Geophysics, 116(4): 913-930. https://doi.org/10.1007/BF00876546
|
Aydin, A., Borja, R. I., Eichhubl, P., 2006. Geological and Mathematical Framework for Failure Modes in Granular Rock. Journal of Structural Geology, 28(1): 83-98. https://doi.org/10.1016/j.jsg.2005.07.008
|
Aydin, A., Johnson, A. M., 1978. Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone. Pure and Applied Geophysics, 116(4): 931-942. https://doi.org/10.1007/BF00876547
|
Balsamo, F., Storti, F., Salvini, F., et al., 2010. Structural and Petrophysical Evolution of Extensional Fault Zones in Low-Porosity, Poorly Lithified Sandstones of the Barreiras Formation, NE Brazil. Journal of Structural Geology, 32(11): 1806-1826. https://doi.org/10.1016/j.jsg.2009.10.010
|
Barton, C. A., Zoback, M. D., Moos, D., 1995. Fluid Flow along Potentially Active Faults in Crystalline Rock. Geology, 23(8): 683. https://doi.org/10.1130/0091-7613(1995)0230683: ffapaf>2.3.co;2 doi: 10.1130/0091-7613(1995)0230683:ffapaf>2.3.co;2
|
Bauer, J. F., Meier, S., Philipp, S. L., 2015. Architecture, Fracture System, Mechanical Properties and Permeability Structure of a Fault Zone in Lower Triassic Sandstone, Upper Rhine Graben. Tectonophysics, 647: 132-145. https://doi.org/10.1016/j.tecto.2015.02.014
|
Beach, A., Welbon, A. I., Brockbank, P. J., et al., 1999. Reservoir Damage around Faults; Outcrop Examples from the Suez Rift. Petroleum Geoscience, 5(2): 109-116. https://doi.org/10.1144/petgeo.5.2.109
|
Bense, V. F., Gleeson, T., Loveless, S. E., et al., 2013. Fault Zone Hydrogeology. Earth-Science Reviews, 127: 171-192. https://doi.org/10.1016/j.earscirev.2013.09.008
|
Berg, S. S., Skar, T., 2005. Controls on Damage Zone Asymmetry of a Normal Fault Zone: Outcrop Analyses of a Segment of the Moab Fault, SE Utah. Journal of Structural Geology, 27(10): 1803-1822. https://doi.org/10.1016/j.jsg.2005.04.012
|
Berkowitz, B., 2002. Characterizing Flow and Transport in Fractured Geological Media: A Review. Advances in Water Resources, 25(8-12): 861-884. https://doi.org/10.1016/S0309-1708(02)00042-8
|
Bonnet, E., Bour, O., Odling, N. E., et al., 2001. Scaling of Fracture Systems in Geological Media. Reviews of Geophysics, 39(3): 347-383. https://doi.org/10.1029/1999rg000074
|
Braathen, A., Tveranger, J., Fossen, H., et al., 2009. Fault Facies and Its Application to Sandstone Reservoirs. AAPG Bulletin, 93(7): 891-917. https://doi.org/10.1306/03230908116
|
Brixel, B., Klepikova, M., Jalali, M. R., et al., 2020. Tracking Fluid Flow in Shallow Crustal Fault Zones: 1. Insights from Single-Hole Permeability Estimates. Journal of Geophysical Research: Solid Earth, 125(4): e2019JB018200. https://doi.org/10.1029/2019jb018200
|
Caine, J. S., Bruhn, R. L., Forster, C. B., 2010. Internal Structure, Fault Rocks, and Inferences Regarding Deformation, Fluid Flow, and Mineralization in the Seismogenic Stillwater Normal Fault, Dixie Valley, Nevada. Journal of Structural Geology, 32(11): 1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004
|
Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11): 1025. https://doi.org/10.1130/0091-7613(1996)0241025: fzaaps>2.3.co;2 doi: 10.1130/0091-7613(1996)0241025:fzaaps>2.3.co;2
|
Caine, J. S., Forster, C. B., 1999. Fault Zone Architecture and Fluid Flow: Insights from Field Data and Numerical Modeling. Faults and Subsurface Fluid Flow in the Shallow Crust. American Geophysical Union, Washington, D. C., 101-127.
|
Cappa, F., Guglielmi, Y., Virieux, J., 2007. Stress and Fluid Transfer in a Fault Zone Due to Overpressures in the Seismogenic Crust. Geophysical Research Letters, 34(5): 2006GL028980. https://doi.org/10.1029/2006gl028980
|
Chen, H. H., 2023. Advances on Relationship between Strike-Slip Structures and Hydrocarbon Accumulations in Large Superimposed Craton Basins, China. Earth Science, 48(6): 2039-2066 (in Chinese with English abstract).
|
Chen, L., Talwani, P., 2001. Mechanism of Initial Seismicity Following Impoundment of the Monticello Reservoir, South Carolina. Bulletin of the Seismological Society of America, 91(6): 1582-1594. https://doi.org/10.1785/0120000293
|
Chester, F. M., Logan, J. M., 1986. Implications for Mechanical Properties of Brittle Faults from Observations of the Punchbowl Fault Zone, California. Pure and Applied Geophysics, 124(1): 79-106. https://doi.org/10.1007/BF00875720
|
Childs, C., Manzocchi, T., Walsh, J. J., et al., 2009. A Geometric Model of Fault Zone and Fault Rock Thickness Variations. Journal of Structural Geology, 31(2): 117-127. https://doi.org/10.1016/j.jsg.2008.08.009
|
Choi, J. H., Edwards, P., Ko, K., et al., 2016. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Science Reviews, 152: 70-87. https://doi.org/10.1016/j.earscirev.2015.11.006
|
Clemenzi, L., Storti, F., Balsamo, F., et al., 2015. Fluid Pressure Cycles, Variations in Permeability, and Weakening Mechanisms along Low-Angle Normal Faults: The Tellaro Detachment, Italy. Geological Society of America Bulletin, 127(11-12): 1689-1710. https://doi.org/10.1130/b31203.1
|
Cowie, P. A., Scholz, C. H., 1992. Physical Explanation for the Displacement-Length Relationship of Faults Using a Post-Yield Fracture Mechanics Model. Journal of Structural Geology, 14(10): 1133-1148. https://doi.org/10.1016/0191-8141(92)90065-5
|
Cowie, P. A., Shipton, Z. K., 1998. Fault Tip Displacement Gradients and Process Zone Dimensions. Journal of Structural Geology, 20(8): 983-997. https://doi.org/10.1016/S0191-8141(98)00029-7
|
Cox, S. F., 2010. The Application of Failure Mode Diagrams for Exploring the Roles of Fluid Pressure and Stress States in Controlling Styles of Fracture‐ Controlled Permeability Enhancement in Faults and Shear Zones. Geofluids, 10(1-2): 217-233. doi: 10.1111/j.1468-8123.2010.00281.x
|
Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
|
Duan, Q. B., Yang, X. S., Chen, J. Y., 2015. Review of Geochemical and Petrophysical Responses to Fluid Processes within Seismogenic Fault Zones. Progress in Geophysics, 30(6): 2448-2462 (in Chinese with English abstract).
|
Eichhubl, P., Davatzes, N. C., Becker, S. P., 2009. Structural and Diagenetic Control of Fluid Migration and Cementation along the Moab Fault, Utah. AAPG Bulletin, 93(5): 653-681. https://doi.org/10.1306/02180908080
|
Evans, J. P., Bradbury, K. K., 2004. Faulting and Fracturing of Nonwelded Bishop Tuff, Eastern California. Vadose Zone Journal, 3(2): 602. https://doi.org/10.2136/vzj2004.0602
|
Evans, J. P., Forster, C. B., Goddard, J. V., 1997. Permeability of Fault-Related Rocks, and Implications for Hydraulic Structure of Fault Zones. Journal of Structural Geology, 19(11): 1393-1404. https://doi.org/10.1016/S0191-8141(97)00057-6
|
Evans, K. F., Genter, A., Sausse, J., 2005. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 1. Borehole Observations. Journal of Geophysical Research: Solid Earth, 110(B4): 2004JB003168. https://doi.org/10.1029/2004jb003168
|
Fan, J., Jiang, Y. L., Liu, J. D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science, 42(10): 1817-1829 (in Chinese with English abstract).
|
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., et al., 2010. A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones. Journal of Structural Geology, 32(11): 1557-1575. https://doi.org/10.1016/j.jsg.2010.06.009
|
Faulkner, D. R., Mitchell, T. M., Jensen, E., et al., 2011. Scaling of Fault Damage Zones with Displacement and the Implications for Fault Growth Processes. Journal of Geophysical Research, 116(B5): B05403. https://doi.org/10.1029/2010jb007788
|
Fischer, T., Matyska, C., Heinicke, J., 2017. Earthquake-Enhanced Permeability-Evidence from Carbon Dioxide Release Following the ML 3.5 Earthquake in West Bohemia. Earth and Planetary Science Letters, 460: 60-67. https://doi.org/10.1016/j.epsl.2016.12.001
|
Fisher, Q. J., Haneef, J., Grattoni, C. A., et al., 2018. Permeability of Fault Rocks in Siliciclastic Reservoirs: Recent Advances. Marine and Petroleum Geology, 91: 29-42. https://doi.org/10.1016/j.marpetgeo.2017.12.019
|
Flodin, E. A., Aydin, A., 2004. Evolution of a Strike-Slip Fault Network, Valley of Fire State Park, Southern Nevada. Geological Society of America Bulletin, 116(1): 42. https://doi.org/10.1130/B25282.1
|
Fossen, H., 2010. Deformation Bands Formed during Soft-Sediment Deformation: Observations from SE Utah. Marine and Petroleum Geology, 27(1): 215-222. https://doi.org/10.1016/j.marpetgeo.2009.06.005
|
Fossen, H., Rotevatn, A., 2016. Fault Linkage and Relay Structures in Extensional Settings—A Review. Earth-Science Reviews, 154: 14-28. https://doi.org/10.1016/j.earscirev.2015.11.014
|
Fossen, H., Schultz, R. A., Shipton, Z. K., et al., 2007. Deformation Bands in Sandstone: A Review. Journal of the Geological Society, 164(4): 755-769. https://doi.org/10.1144/0016-76492006-036
|
Fossen, H., Soliva, R., Ballas, G., et al., 2018. A Review of Deformation Bands in Reservoir Sandstones: Geometries, Mechanisms and Distribution. Geological Society, London, Special Publications, 459(1): 9-33. https://doi.org/10.1144/sp459.4
|
Fu, X., Zhang, D. H., Yin, X. B., 2011. Deformation of Rock, Fluid Pressures and Hydrothermal Deposits. Geological Bulletin of China, 30(4): 595-604 (in Chinese with English abstract). . doi: 10.3969/j.issn.1671-2552.2011.04.017
|
Ghosh, K., Mitra, S., 2009. Structural Controls of Fracture Orientations, Intensity, and Connectivity, Teton Anticline, Sawtooth Range, Montana. AAPG Bulletin, 93(8): 995-1014. https://doi.org/10.1306/04020908115
|
Giger, S. B., Tenthorey, E., Cox, S. F., et al., 2007. Permeability Evolution in Quartz Fault Gouges under Hydrothermal Conditions. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004828. https://doi.org/10.1029/2006jb004828
|
Gong, Y. J., Qin, F., Zhao, L. Q., et al., 2019. Fault Zone Structure and Fluid Flow Model of the Hongyanchi Fault in Southern Junggar Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 38(4): 729-737 (in Chinese with English abstract).
|
Gong, Y. J., Zhang, K. H., Zeng, Z. P., et al., 2021. Origin of Overpressure, Vertical Transfer and Hydrocarbon Accumulation of Jurassic in Fukang Sag, Junggar Basin. Earth Science, 46(10): 3588-3600 (in Chinese with English abstract).
|
Gudmundsson, A., 2001. Fluid Overpressure and Flow in Fault Zones: Field Measurements and Models. Tectonophysics, 336(1-4): 183-197. https://doi.org/10.1016/S0040-1951(01)00101-9
|
Haney, M. M., Snieder, R., Sheiman, J., et al., 2005. A Moving Fluid Pulse in a Fault Zone. Nature, 437: 46. https://doi.org/10.1038/437046a
|
Hao, F., Zhu, W. L., Zou, H. Y., et al., 2015. Factors Controlling Petroleum Accumulation and Leakage in Overpressured Reservoirs. AAPG Bulletin, 99(5): 831-858. https://doi.org/10.1306/01021514145
|
Hao, F., Zou, H. Y., Jiang, J. Q., 2000. Dynamics of Petroleum Accumulation and Its Advances. Earth Science Frontiers, 7(3): 11-21 (in Chinese with English abstract).
|
Hennings, P., Allwardt, P., Paul, P., et al., 2012. Relationship between Fractures, Fault Zones, Stress, and Reservoir Productivity in the Suban Gas Field, Sumatra, Indonesia. AAPG Bulletin, 96(4): 753-772. https://doi.org/10.1306/08161109084
|
Hestir, K., Long, J. C. S., 1990. Analytical Expressions for the Permeability of Random Two-Dimensional Poisson Fracture Networks Based on Regular Lattice Percolation and Equivalent Media Theories. Journal of Geophysical Research: Solid Earth, 95(B13): 21565-21581. https://doi.org/10.1029/jb095ib13p21565
|
Holdsworth, R. E., McCaffrey, K. J. W., Dempsey, E., et al., 2019. Natural Fracture Propping and Earthquake-Induced Oil Migration in Fractured Basement Reservoirs. Geology, 47(8): 700-704. https://doi.org/10.1130/G46280.1
|
Ingebritsen, S. E., Manga, M., 2019. Earthquake Hydrogeology. Water Resources Research, 55(7): 5212-5216. https://doi.org/10.1029/2019wr025341
|
Jolley, S. J., Dijk, H., Lamens, J. H., et al., 2007. Faulting and Fault Sealing in Production Simulation Models: Brent Province, Northern North Sea. Petroleum Geoscience, 13(4): 321-340. https://doi.org/10.1144/1354-079306-733
|
Kang, Y. S., Guo, Q. J., Zhu, J. C., et al., 2003. Light Etched Physical Simulation Experiment on Oil Migration in Fractured Media. Acta Petrolei Sinica, 24(4): 44-47 (in Chinese with English abstract).
|
Kim, Y. S., Peacock, D. C. P., Sanderson, D. J., 2004. Fault Damage Zones. Journal of Structural Geology, 26(3): 503-517. https://doi.org/10.1016/j.jsg.2003.08.002
|
Kim, Y. S., Sanderson, D. J., 2005. The Relationship between Displacement and Length of Faults: A Review. Earth-Science Reviews, 68(3-4): 317-334. https://doi.org/10.1016/j.earscirev.2004.06.003
|
Knott, S. D., Beach, A., Brockbank, P. J., et al., 1996. Spatial and Mechanical Controls on Normal Fault Populations. Journal of Structural Geology, 18(2/3): 359-372. https://doi.org/10.1016/S0191-8141(96)80056-3
|
Kolyukhin, D., Torabi, A., 2012. Statistical Analysis of the Relationships between Faults Attributes. Journal of Geophysical Research (Solid Earth), 117(B5): B05406. https://doi.org/10.1029/2011JB008880
|
Li, S. Y., He, T. M., Yin, X. C., 2010. Introduction of Rock Fracture Mechanics. University of Science and Technology of China Press, Hefei (in Chinese).
|
Li, Y. T., Deng, S., Zhang, J. B., et al., 2023. Fault Zone Architecture of Strike-Slip Faults in Deep, Tight Carbonates and Development of Reservoir Clusters under Fault Control: A Case Study in Shunbei, Tarim Basin. Earth Science Frontiers, 30(6): 80-94 (in Chinese with English abstract).
|
Luo, Q., Wang, Q. J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract).
|
Luo, X. R., 2011. Simulation and Characterization of Pathway Heterogeneity of Secondary Hydrocarbon Migration. AAPG Bulletin, 95(6): 881-898. https://doi.org/10.1306/11191010027
|
Ma, D. B., Wu, G. H., Zhu, Y. F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237 (in Chinese with English abstract).
|
Manzocchi, T., Heath, A. E., Walsh, J. J., et al., 2002. The Representation of Two Phase Fault-Rock Properties in Flow Simulation Models. Petroleum Geoscience, 8(2): 119-132. https://doi.org/10.1144/petgeo.8.2.119
|
Neuzil, C. E., 1994. How Permeable are Clays and Shales? Water Resources Research, 30(2): 145-150. https://doi.org/10.1029/93WR02930
|
Nieto Camargo, J. E., Jensen, J. L., 2012. Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas. Natural Resources Research, 21(3): 395-409. https://doi.org/10.1007/s11053-012-9181-5
|
Pei, Y. W., Paton, D. A., Knipe, R. J., et al., 2015. A Review of Fault Sealing Behaviour and Its Evaluation in Siliciclastic Rocks. Earth-Science Reviews, 150: 121-138. https://doi.org/10.1016/j.earscirev.2015.07.011
|
Rotevatn, A., Bastesen, E., 2014. Fault Linkage and Damage Zone Architecture in Tight Carbonate Rocks in the Suez Rift (Egypt): Implications for Permeability Structure along Segmented Normal Faults. Geological Society, London, Special Publications, 374(1): 79-95. https://doi.org/10.1144/sp374.12
|
Savage, H. M., Brodsky, E. E., 2011. Collateral Damage: Evolution with Displacement of Fracture Distribution and Secondary Fault Strands in Fault Damage Zones. Journal of Geophysical Research, 116(B3): B03405. https://doi.org/10.1029/2010jb007665
|
Seebeck, H., Nicol, A., Walsh, J. J., et al., 2014. Fluid Flow in Fault Zones from an Active Rift. Journal of Structural Geology, 62: 52-64. https://doi.org/10.1016/j.jsg.2014.01.008
|
Shipton, Z. K., Cowie, P. A., 2001. Damage Zone and Slip-Surface Evolution over Μm to Km Scales in High- Porosity Navajo Sandstone, Utah. Journal of Structural Geology, 23(12): 1825-1844. https://doi.org/10.1016/S0191-8141(01)00035-9
|
Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
|
Smeraglia, L., Fabbi, S., Billi, A., et al., 2022. How Hydrocarbons Move along Faults: Evidence from Microstructural Observations of Hydrocarbon-Bearing Carbonate Fault Rocks. Earth and Planetary Science Letters, 584: 117454. https://doi.org/10.1016/j.epsl.2022.117454
|
Song, M. S., Zhao, L. Q., Gong, Y. J., et al., 2016. Quantitative Assessment on Trap Oil-Bearing Property in Ultra-Denudation Zones at the Northwestern Margin of Junggar Basin. Acta Petrolei Sinica, 37(1): 64-72 (in Chinese with English abstract).
|
Sperrevik, S., Færseth, R. B., Gabrielsen, R. H., 2000. Experiments on Clay Smear Formation along Faults. Petroleum Geoscience, 6(2): 113-123. https://doi.org/10.1144/petgeo.6.2.113
|
Sperrevik, S., Gillespie, P. A., Fisher, Q. J., et al., 2002. Empirical Estimation of Fault Rock Properties. Norwegian Petroleum Society Special Publications, 11(3): 109-125. https://doi.org/10.1016/S0928-8937(02)80010-8
|
Storti, F., Holdsworth, R. E., Salvini, F., 2003. Intraplate Strike-Slip Deformation Belts. Geological Society, London, Special Publications, 210(1): 1-14. https://doi.org/10.1144/gsl.sp.2003.210.01.01
|
Su, S. M., Jiang, Y. L., 2021. Fault Zone Structures and Its Relationship with Hydrocarbon Migration and Accumulation in Petroliferous Basin. Journal of China University of Petroleum (Edition of Natural Science), 45(4): 32-41 (in Chinese with English abstract).
|
Sun, T. W., Fu, G., Lü, Y. F., et al., 2012. A Discussion on Fault Conduit Fluid Mechanism and Fault Conduit Form. Geological Review, 58(6): 1081-1090 (in Chinese with English abstract).
|
Talwani, P., Chen, L. Y., Gahalaut, K., 2007. Seismogenic Permeability, ks. Journal of Geophysical Research: Solid Earth, 112(B7): 2006JB004665. https://doi.org/10.1029/2006jb004665
|
Torabi, A., Berg, S. S., 2011. Scaling of Fault Attributes: A Review. Marine and Petroleum Geology, 28(8): 1444-1460. https://doi.org/10.1016/j.marpetgeo.2011.04.003
|
Valoroso, L., Chiaraluce, L., Collettini, C., 2014. Earthquakes and Fault Zone Structure. Geology, 42(4): 343-346. https://doi.org/10.1130/g35071.1
|
Walker, R. J., Holdsworth, R. E., Imber, J., et al., 2013. Fault Zone Architecture and Fluid Flow in Interlayered Basaltic Volcaniclastic-Crystalline Sequences. Journal of Structural Geology, 51: 92-104. https://doi.org/10.1016/j.jsg.2013.03.004
|
Wang, L. C., Cardenas, M. B., 2017. Linear Permeability Evolution of Expanding Conduits Due to Feedback between Flow and Fast Phase Change. Geophysical Research Letters, 44(9): 4116-4123. https://doi.org/10.1002/2017gl073161
|
Wang, Y., Su, B. Y., 2002. Research on the Behavior of Fluid Flow in a Single Fracture and Its Equivalent Hydraulic Aperture. Advances in Water Science, 13(1): 61-68 (in Chinese with English abstract).
|
Wang, Z., Huang, L., Liu, C. Y., et al., 2024. Distribution of Strike-Slip Fault-Fracture Volume and Its Controlling Factors in the Southwestern Ordos Basin. Journal of China University of Mining & Technology, 53(4): 793-807 (in Chinese with English abstract).
|
Warren-Smith, E., Fry, B., Wallace, L., et al., 2019. Episodic Stress and Fluid Pressure Cycling in Subducting Oceanic Crust during Slow Slip. Nature Geoscience, 12: 475-481. https://doi.org/10.1038/s41561-019-0367-x
|
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974
|
Wibberley, C. A., Yielding, G., Di Toro, G., 2008. Recent Advances in the Understanding of Fault Zone Internal Structure: A Review. Geological Society of London Special Publications, 299(1): 5-33. https://doi.org/10.1144/SP299.2
|
Williams, R. T., Goodwin, L. B., Mozley, P. S., 2017. Diagenetic Controls on the Evolution of Fault-Zone Architecture and Permeability Structure: Implications for Episodicity of Fault-Zone Fluid Transport in Extensional Basins. Geological Society of America Bulletin, 129(3/4): 464-478. https://doi.org/10.1130/B31443.1
|
Xia, Z. G., 1983. Classification, Identification and Formation Conditions of Fault Rocks. Geological Review, 29(6): 578-583 (in Chinese with English abstract).
|
Xu, C. G., 2016. Strike-Slip Transfer Zone and Its Control on Formation of Medium and Large-Sized Oilfields in Bohai Sea Area. Earth Science, 41(9): 1548-1560 (in Chinese with English abstract).
|
Xu, G. X., Zhang, Y. X., Ha, Q. L., 2003. Super-Cubic and Sub-Cubic Law of Rough Fracture Seepage and Its Experiments Study. Journal of Hydraulic Engineering, 34(3): 74-79 (in Chinese with English abstract).
|
Xue, L., Li, H. B., Brodsky, E. E., et al., 2013. Continuous Permeability Measurements Record Healing Inside the Wenchuan Earthquake Fault Zone. Science, 340(6140): 1555-1559. https://doi.org/10.1126/science.1237237
|
Yamaguchi, A., Cox, S. F., Kimura, G., et al., 2011. Dynamic Changes in Fluid Redox State Associated with Episodic Fault Rupture along a Megasplay Fault in a Subduction Zone. Earth and Planetary Science Letters, 302(3-4): 369-377. https://doi.org/10.1016/j.epsl.2010.12.029
|
Yang, G. L., Ren, Z. L., He, F. Q., 2022. Fault-Fracture Body Growth and Hydrocarbon Enrichment of the Zhenjing Area, the Southwestern Margin of the Ordos Basin. Oil & Gas Geology, 43(6): 1382-1396 (in Chinese with English abstract).
|
Yang, T. H., Shi, W. H., Li, S. C., et al., 2016. State of the Art and Trends of Water-Inrush Mechanism of Nonlinear Flow in Fractured Rock Mass. Journal of China Coal Society, 41(7): 1598-1609 (in Chinese with English abstract).
|
Yang, T. H., Tang, C. A., Zhu, W. C., et al., 2001. Coupling Analysis of Seepage and Stresses in Rock Failure Process. Chinese Journal of Geotechnical Engineering, 23(4): 489-493 (in Chinese with English abstract).
|
Yao, Y. D., Ge, J. L., 2003. New Pattern and Its Rules of Oil Non-Darcy Flow in Porous Media. Oil Drilling & Production Technology, 25(5): 40-42 (in Chinese with English abstract).
|
Yu, H., Li, S. J., Man, L. T., et al., 2011. Research Progress of Water Flow in Fractal Fracture Network System of Rock Mass. Journal of Harbin Institute of Technology, 43(S1): 94-99 (in Chinese with English abstract).
|
Zeng, L. B., Gong, L., Su, X. C., et al., 2024. Natural Fractures in Deep to Ultra-Deep Tight Reservoirs: Distribution and Development. Oil & Gas Geology, 45(1): 1-14 (in Chinese with English abstract).
|
Zhang, P. Z., Xu, X. W., Wen, X. Z., et al., 2008. Slip Rates and Recurrence Intervals of the Longmen Shan Active Fault Zone and Tectonic Implications for the Mechanism of the May 12 Wenchuan Earthquake, 2008, Sichuan, China. Chinese Journal of Geophysics, 51(4): 1066-1073 (in Chinese with English abstract).
|
Zhang, Y., Gartrell, A., Underschultz, J. R., et al., 2009. Numerical Modelling of Strain Localisation and Fluid Flow during Extensional Fault Reactivation: Implications for Hydrocarbon Preservation. Journal of Structural Geology, 31(3): 315-327. https://doi.org/10.1016/j.jsg.2008.11.006
|
陈红汉, 2023. 我国大型克拉通叠合盆地的走滑构造与油气聚集研究进展. 地球科学, 48(6): 2039-2066. doi: 10.3799/dqkx.2023.094
|
段庆宝, 杨晓松, 陈建业, 2015. 地震断层带流体作用的岩石物理和地球化学响应研究综述. 地球物理学进展, 30(6): 2448-2462.
|
范婕, 蒋有录, 刘景东, 等, 2017. 长岭断陷龙凤山地区断裂与油气运聚的关系. 地球科学, 42(10) : 1817-1829. doi: 10.3799/dqkx.2017.568
|
付旭, 张德会, 印贤波, 2011. 岩石变形、流体压力与热液成矿关系的研究现状. 地质通报, 30(4): 595-604.
|
宫亚军, 秦峰, 赵乐强, 等, 2019. 准噶尔盆地南缘红雁池断裂带结构特征及流体运移模式. 矿物岩石地球化学通报, 38(4): 729-737.
|
宫亚军, 张奎华, 曾治平, 等, 2021. 准噶尔盆地阜康凹陷侏罗系超压成因、垂向传导及油气成藏. 地球科学, 46(10): 3588-3600. doi: 10.3799/dqkx.2020.366
|
郝芳, 邹华耀, 姜建群, 2000. 油气成藏动力学及其研究进展. 地学前缘, 7(3): 11-21.
|
康永尚, 郭黔杰, 朱九成, 等, 2003. 裂缝介质中石油运移模拟实验研究. 石油学报, 24(4): 44-47.
|
李世愚, 和泰名, 尹祥础, 2010. 岩石断裂力学导论. 合肥: 中国科学技术大学出版社.
|
李映涛, 邓尚, 张继标, 等, 2023. 深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式: 以塔里木盆地顺北4号断裂带为例. 地学前缘, 30(6): 80-94.
|
罗群, 王千军, 杨威, 等, 2023. 走滑断裂内部结构渗透差异特征及其输导控藏模式. 地球科学, 48(6): 2342-2360. doi: 10.3799/dqkx.2023.092
|
马德波, 邬光辉, 朱永峰, 等, 2019. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例. 地学前缘, 26(1): 225-237.
|
宋明水, 赵乐强, 宫亚军, 等, 2016. 准噶尔盆地西北缘超剥带圈闭含油性量化评价. 石油学报, 37(1): 64-72.
|
苏圣民, 蒋有录, 2021. 含油气盆地断裂带结构特征及其与油气运聚关系. 中国石油大学学报(自然科学版), 45(4): 32-41.
|
孙同文, 付广, 吕延防, 等, 2012. 断裂输导流体的机制及输导形式探讨. 地质论评, 58(6): 1081-1090.
|
王媛, 速宝玉, 2002. 单裂隙面渗流特性及等效水力隙宽. 水科学进展, 13(1): 61-68.
|
王朝, 黄雷, 刘池洋, 等, 2024. 鄂尔多斯盆地西南部走滑断缝体分布规律及其主控因素. 中国矿业大学学报, 53 (4) : 793-807.
|
夏宗国, 1983. 断层岩的分类、识别及其形成条件. 地质论评, 29(6): 578-583.
|
徐长贵, 2016. 渤海走滑转换带及其对大中型油气田形成的控制作用. 地球科学, 41(9): 1548-1561. doi: 10.3799/dqkx.2016.508
|
许光祥, 张永兴, 哈秋舲, 2003. 粗糙裂隙渗流的超立方和次立方定律及其试验研究. 水利学报, 34(3) : 74-79.
|
杨桂林, 任战利, 何发岐, 2022. 鄂尔多斯盆地西南缘镇泾地区断缝体发育特征及油气富集规律. 石油与天然气地质, 43(6): 1382-1396.
|
杨天鸿, 师文豪, 李顺才, 等, 2016. 破碎岩体非线性渗流突水机理研究现状及发展趋势. 煤炭学报, 41(7): 1598-1609.
|
杨天鸿, 唐春安, 朱万成, 等, 2001. 岩石破裂过程渗流与应力耦合分析. 岩土工程学报, 23(4): 489-493.
|
姚约东, 葛家理, 2002. 石油渗流新的运动形态及其规律. 重庆大学学报, 23(2) : 150-153.
|
于贺, 李守巨, 满林涛, 等, 2011. 岩体分形裂隙网络系统中水流动研究进展. 哈尔滨工业大学学报, 43(S1): 94-99.
|
曾联波, 巩磊, 宿晓岑, 等, 2024. 深层-超深层致密储层天然裂缝分布特征及发育规律. 石油与天然气地质, 45(1): 1-14.
|
张培震, 徐锡伟, 闻学泽, 等, 2008. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因. 地球物理学报, 51(4): 1066-1073.
|