Citation: | Wu Yuyang, Song Haijun, Chu Daoliang, Song Huyue, Tian Li, 2025. Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition. Earth Science, 50(3): 964-982. doi: 10.3799/dqkx.2024.156 |
Beerling, D. J., Harfoot, M., Lomax, B., et al., 2007. The Stability of the Stratospheric Ozone Layer during the End⁃Permian Eruption of the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1856): 1843-1866. https://doi.org/10.1098/rsta.2007.2046
|
Benca, J. P., Duijnstee, I. A. P., Looy, C. V., 2018. UV⁃B⁃Induced Forest Sterility: Implications of Ozone Shield Failure in Earth's Largest Extinction. Science Advances, 4(2): e1700618. https://doi.org/10.1126/sciadv.1700618
|
Benton, M. J., 2003. When Life nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London.
|
Benton, M. J., 2018. Hyperthermal⁃Driven Mass Extinctions: Killing Models during the Permian⁃Triassic Mass Extinction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076
|
Berner, R. A., 2002. Examination of Hypotheses for the Permo⁃Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of the National Academy of Sciences, 99(7): 4172-4177. https://doi.org/10.1073/pnas.032095199
|
Black, B. A., Elkins⁃Tanton, L. T., Rowe, M. C., et al., 2012. Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363-373. https://doi.org/10.1016/j.epsl.2011.12.001
|
Black, B. A., Lamarque, J. F., Shields, C. A., et al., 2014. Acid Rain and Ozone Depletion from Pulsed Siberian Traps Magmatism. Geology, 42(1): 67-70. https://doi.org/10.1130/g34875.1
|
Black, B. A., Neely, R. R., Lamarque, J. F., et al., 2018. Systemic Swings in End⁃Permian Climate from Siberian Traps Carbon and Sulfur Outgassing. Nature Geoscience, 11: 949-954. https://doi.org/10.1038/s41561⁃018⁃0261⁃y
|
Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
|
Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End⁃Permian Mass Extinction. Science, 280(5366): 1039-1045. https://doi.org/10.1126/science.280.5366.1039
|
Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End⁃Permian Extinction Amplified by Plume⁃Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11: 682-687. https://doi.org/10.1038/s41561⁃018⁃0215⁃4
|
Burgess, S. D., Bowring, S. A., 2015. High⁃Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth's Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470
|
Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High⁃Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
|
Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End⁃Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467⁃017⁃00083⁃9
|
Cai, Y. F., Zhang, H., Cao, C. Q., et al., 2021. Wildfires and Deforestation during the Permian⁃Triassic Transition in the Southern Junggar Basin, Northwest China. Earth⁃Science Reviews, 218: 103670. https://doi.org/10.1016/j.earscirev.2021.103670
|
Chapman, T., Milan, L. A., Metcalfe, I., et al., 2022. Pulses in Silicic Arc Magmatism Initiate End⁃Permian Climate Instability and Extinction. Nature Geoscience, 15: 411-416. https://doi.org/10.1038/s41561⁃022⁃00934⁃1
|
Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007
|
Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo⁃Tethys Ocean during the Permian⁃Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534
|
Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
|
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
|
Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
|
Chu, D. L., Grasby, S. E., Song, H. J., et al., 2020. Ecological Disturbance in Tropical Peatlands Prior to Marine Permian⁃Triassic Mass Extinction. Geology, 48(3): 288-292. https://doi.org/10.1130/g46631.1
|
Chu, D. L., Song, H. J., Dal Corso, J., et al., 2025. Diachronous End⁃Permian Terrestrial Crises in North and South China. Geology, 53(1): 55-60. https://doi.org/10.1130/g52655.1
|
Clapham, M. E., Payne, J. L., 2011. Acidification, Anoxia, and Extinction: A Multiple Logistic Regression Analysis of Extinction Selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062. https://doi.org/10.1130/G32230.1
|
Clapham, M. E., Renne, P. R., 2019. Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47: 275-303. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060136
|
Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193
|
Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. https://doi.org/10.1016/j.palaeo.2013.09.001
|
Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118
|
Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2020. Permo⁃Triassic Boundary Carbon and Mercury Cycling Linked to Terrestrial Ecosystem Collapse. Nature Communications, 11(1): 2962. https://doi.org/10.1038/s41467⁃020⁃16725⁃4
|
Dal Corso, J., Newton, R. J., Zerkle, A. L., et al., 2024. Repeated Pulses of Volcanism Drove the End⁃Permian Terrestrial Crisis in Northwest China. Nature Communications, 15(1): 7628. https://doi.org/10.1038/s41467⁃024⁃51671⁃5
|
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4
|
Damon Matthews, H., Wynes, S., 2022. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ℃. Science, 376(6600): 1404-1409. https://doi.org/10.1126/science.abo3378
|
Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian⁃Triassic Extinction. Earth⁃Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438
|
Davydov, V. I., Karasev, E. V., 2021. The Influence of the Permian⁃Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian⁃Triassic Transition in the Region. Frontiers in Earth Science, 9: 635179. https://doi.org/10.3389/feart.2021.635179
|
Ekart, D. D., Cerling, T. E., Montanez, I. P., 1999. A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate; Implications for Paleoatomospheric Carbon Dioxide. American Journal of Science, 299(10): 805-827. https://doi.org/10.2475/ajs.299.10.805
|
Elkins⁃Tanton, L. T., Grasby, S. E., Black, B. A., et al., 2020. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption. Geology, 48(10): 986-991. https://doi.org/10.1130/g47365.1
|
Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
|
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
|
Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High⁃Latitude Continental End⁃Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10(1): 385. https://doi.org/10.1038/s41467⁃018⁃07934⁃z
|
Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. https://doi.org/10.1038/ncomms14845
|
Foster, W. J., Hirtz, J. A., Farrell, C., et al., 2022. Bioindicators of Severe Ocean Acidification Are Absent from the End⁃Permian Mass Extinction. Scientific Reports, 12(1): 1202. https://doi.org/10.1038/s41598⁃022⁃04991⁃9
|
Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457
|
Friedlingstein, P., O'Sullivan, M., Jones, M. W., et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340. https://doi.org/10.5194/essd⁃12⁃3269⁃2020
|
Gales, E., Black, B., Elkins⁃Tanton, L. T., 2020. Carbonatites as a Record of the Carbon Isotope Composition of Large Igneous Province Outgassing. Earth and Planetary Science Letters, 535: 116076. https://doi.org/10.1016/j.epsl.2020.116076
|
Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
|
Garbelli, C., Angiolini, L., Shen, S. Z., 2017. Biomineralization and Global Change: A New Perspective for Understanding the End⁃Permian Extinction. Geology, 45(1): 19-22. https://doi.org/10.1130/g38430.1
|
Gastaldo, R. A., Kamo, S. L., Neveling, J., et al., 2020. The Base of the Lystrosaurus Assemblage Zone, Karoo Basin, Predates the End⁃Permian Marine Extinction. Nature Communications, 11(1): 1428. https://doi.org/10.1038/s41467⁃020⁃15243⁃7
|
Gastaldo, R. A., Knight, C. L., Neveling, J., et al., 2014. Latest Permian Paleosols from Wapadsberg Pass, South Africa: Implications for Changhsingian Climate. Geological Society of America Bulletin, 126(5-6): 665-679. https://doi.org/10.1130/b30887.1
|
Gliwa, J., Wiedenbeck, M., Schobben, M., et al., 2022. Gradual Warming Prior to the End⁃Permian Mass Extinction. Palaeontology, 65(5): e12621. https://doi.org/10.1111/pala.12621
|
Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo⁃Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234(1-2): 207-221. https://doi.org/10.1016/j.epsl.2005.02.027
|
Grasby, S. E., Beauchamp, B., Bond, D. P. G., et al., 2015. Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 127(9-10): 1331-1347. https://doi.org/10.1130/b31197.1
|
Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175-178. https://doi.org/10.1130/g33599.1
|
Grasby, S. E., Bond, D. P. G., 2023. How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times. Elements, 19(5): 276-281. https://doi.org/10.2138/gselements.19.5.276
|
Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
|
Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1
|
He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011
|
Hochuli, P. A., Schneebeli⁃Hermann, E., Mangerud, G., et al., 2017. Evidence for Atmospheric Pollution across the Permian⁃Triassic Transition. Geology, 45(12): 1123-1126. https://doi.org/10.1130/g39496.1
|
Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. https://doi.org/10.1126/science.1208277
|
Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science in China (Series D), 50(8): 1023-1043 (in Chinese).
|
Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7
|
Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo⁃Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth⁃Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001
|
Jiao, Y., Zhou, L., Algeo, T. J., et al., 2023. Zirconium and Neodymium Isotopes Record Intensive Felsic Volcanism in South China Region during the Permian⁃Triassic Boundary Crisis. Chemical Geology, 636: 121653. https://doi.org/10.1016/j.chemgeo.2023.121653
|
Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian⁃Triassic Mass Extinction: New Insights from Armenian Permian⁃Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1
|
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
|
Joachimski, M. M., Müller, J., Gallagher, T. M., et al., 2022. Five Million Years of High Atmospheric CO2 in the Aftermath of the Permian⁃Triassic Mass Extinction. Geology, 50(6): 650-654. https://doi.org/10.1130/g49714.1
|
Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian⁃Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745-750. https://doi.org/10.1038/s41561⁃020⁃00646⁃4
|
Komar, N., Zeebe, R. E., 2016. Calcium and Calcium Isotope Changes during Carbon Cycle Perturbations at the End⁃Permian. Paleoceanography, 31(1): 115-130. https://doi.org/10.1002/2015pa002834
|
Li, H., Yu, J. X., McElwain, J. C., et al., 2019. Reconstruction of Atmospheric CO2 Concentration during the Late Changhsingian Based on Fossil Conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 37-48. https://doi.org/10.1016/j.palaeo.2018.09.006
|
Li, M. H., Frank, T. D., Xu, Y. L., et al., 2022. Sulfur Isotopes Link Atmospheric Sulfate Aerosols from the Siberian Traps Outgassing to the End⁃Permian Extinction on Land. Earth and Planetary Science Letters, 592: 117634. https://doi.org/10.1016/j.epsl.2022.117634
|
Li, R. C., Wu, N. P., Shen, S. Z., et al., 2023. A Rapid Onset of Ocean Acidification Associated with the End⁃Permian Mass Extinction. Global and Planetary Change, 225: 104130. https://doi.org/10.1016/j.gloplacha.2023.104130
|
Liu, F., Peng, H. P., Marshall, J. E. A., et al., 2023. Dying in the Sun: Direct Evidence for Elevated UV⁃B Radiation at the End⁃Permian Mass Extinction. Science Advances, 9(1): eabo6102. https://doi.org/10.1126/sciadv.abo6102
|
Maruoka, T., Koeberl, C., Hancox, P. J., et al., 2003. Sulfur Geochemistry across a Terrestrial Permian⁃Triassic Boundary Section in the Karoo Basin, South Africa. Earth and Planetary Science Letters, 206(1-2): 101-117. https://doi.org/10.1016/S0012⁃821X(02)01087⁃7
|
Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8(3): 199-216. https://doi.org/10.1007/s10311⁃010⁃0297⁃8
|
Nelson, D. A., Cottle, J. M., 2019. Tracking Voluminous Permian Volcanism of the Choiyoi Province into Central Antarctica. Lithosphere, 11(3): 386-398. https://doi.org/10.1130/l1015.1
|
Payne, J. L., Kump, L. R., 2007. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 256(1-2): 264-277. https://doi.org/10.1016/j.epsl.2007.01.034
|
Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events. Geological Society of America Bulletin, 119(7-8): 771-784. https://doi.org/10.1130/b26091.1
|
Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107
|
Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature⁃Dependent Hypoxia Explains Biogeography and Severity of End⁃Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
|
Rampino, M. R., Rodriguez, S., Baransky, E., et al., 2017. Global Nickel Anomaly Links Siberian Traps Eruptions and the Latest Permian Mass Extinction. Scientific Reports, 7(1): 12416. https://doi.org/10.1038/s41598⁃017⁃12759⁃9
|
Renne, P. R., Basu, A. R., 1991. Rapid Eruption of the Siberian Traps Flood Basalts at the Permo⁃Triassic Boundary. Science, 253(5016): 176-179. https://doi.org/10.1126/science.253.5016.176
|
Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1
|
Retallack, G. J., 2013. Permian and Triassic Greenhouse Crises. Gondwana Research, 24(1): 90-103. https://doi.org/10.1016/j.gr.2012.03.003
|
Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116(1): 1-20. https://doi.org/10.1086/524120
|
Ridgwell, A., Schmidt, D. N., 2010. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nature Geoscience, 3: 196-200. https://doi.org/10.1038/ngeo755
|
Rong, J. Y., Huang, B., 2014. Study of Mass Extinction over the Past Thirty Years: A Synopsis. Science in China (Series D), 44(3): 377-404 (in Chinese).
|
Schmidt, A., Skeffington, R. A., Thordarson, T., et al., 2016. Selective Environmental Stress from Sulphur Emitted by Continental Flood Basalt Eruptions. Nature Geoscience, 9: 77-82. https://doi.org/10.1038/ngeo2588
|
Schneebeli⁃Hermann, E., Kurschner, W. M., Hochuli, P. A., et al., 2013. Evidence for Atmospheric Carbon Injection during the End⁃Permian Extinction. Geology, 41(5): 579-582. https://doi.org/10.1130/g34047.1
|
Schobben, M., Joachimski, M. M., Korn, D., et al., 2014. Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End⁃Permian Mass Extinction. Gondwana Research, 26(2): 675-683. https://doi.org/10.1016/j.gr.2013.07.019
|
Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052
|
Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/g36227.1
|
Shen, J. H., Zhang, Y. G., Yang, H., et al., 2022. Early and Late Phases of the Permian⁃Triassic Mass Extinction Marked by Different Atmospheric CO2 Regimes. Nature Geoscience, 15: 839-844. https://doi.org/10.1038/s41561⁃022⁃01034⁃w
|
Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
|
Shen, J., Chen, J. B., Algeo, T. J., et al., 2021. Mercury Fluxes Record Regional Volcanism in the South China Craton Prior to the End⁃Permian Mass Extinction. Geology, 49(4): 452-456. https://doi.org/10.1130/g48501.1
|
Shen, J., Chen, J. B., Yu, J. X., et al., 2023. Mercury Evidence from Southern Pangea Terrestrial Sections for End⁃Permian Global Volcanic Effects. Nature Communications, 14(1): 6. https://doi.org/10.1038/s41467⁃022⁃35272⁃8
|
Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian⁃Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1
|
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
|
Shen, S. Z., Ramezani, J., Chen, J., et al., 2019c. A Sudden End⁃Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
|
Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events Versus Global Changes: Progresses and Challenges. Chinese Science Bulletin, 69(2): 268-285 (in Chinese).
|
Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions. Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese). doi: 10.1360/N972017-00013
|
Sial, A. N., Chen, J. B., Lacerda, L. D., et al., 2020. Globally Enhanced Hg Deposition and Hg Isotopes in Sections Straddling the Permian⁃Triassic Boundary: Link to Volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109537. https://doi.org/10.1016/j.palaeo.2019.109537
|
Silva⁃Tamayo, J. C., Lau, K. V., Jost, A. B., et al., 2018. Global Perturbation of the Marine Calcium Cycle during the Permian⁃Triassic Transition. GSA Bulletin, 130(7/8): 1323-1338. https://doi.org/10.1130/b31818.1
|
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385
|
Song, H. C., Song, H. J., Zhang, Z. S., et al., 2023. Evolution and Driving Mechanisms of Water Circulation During the Late Paleozoic to Early Mesozoic. Chinese Science Bulletin, 68(12): 1501-1516 (in Chinese). doi: 10.1360/TB-2022-0896
|
Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian⁃Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117
|
Song, H. J., Scotese, C. R., 2023. The End⁃Paleozoic Great Warming. Science Bulletin, 68(21): 2523-2526. https://doi.org/10.1016/j.scib.2023.09.009
|
Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
|
Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian⁃Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract).
|
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
|
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
|
Song, H. J., Wu, Y. Y., Dai, X., et al., 2024. Respiratory Protein⁃Driven Selectivity during the Permian⁃Triassic Mass Extinction. The Innovation, 5(3): 100618. https://doi.org/10.1016/j.xinn.2024.100618
|
Sun, Y. D., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
|
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
|
Svensen, H. H., Frolov, S., Akhmanov, G. G., et al., 2018. Sills and Gas Generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170080. https://doi.org/10.1098/rsta.2017.0080
|
Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End⁃Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. https://doi.org/10.1016/j.epsl.2008.11.015
|
Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GSWX200903019.htm
|
Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End⁃Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875
|
Visscher, H., Looy, C. V., Collinson, M. E., et al., 2004. Environmental Mutagenesis during the End⁃Permian Ecological Crisis. Proceedings of the National Academy of Sciences, 101(35): 12952-12956. https://doi.org/10.1073/pnas.0404472101
|
Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).
|
Wang, W. Q., Garbelli, C., Zhang, F. F., et al., 2020. A High⁃Resolution Middle to Late Permian Paleotemperature Curve Reconstructed Using Oxygen Isotopes of Well⁃Preserved Brachiopod Shells. Earth and Planetary Science Letters, 540: 116245. https://doi.org/10.1016/j.epsl.2020.116245
|
Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
|
Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth⁃Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/S0012⁃8252(00)00037⁃4
|
Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5-6): 954-956. https://doi.org/10.1130/b26424.1
|
Witkowski, C. R., Weijers, J. W. H., Blais, B., et al., 2018. Molecular Fossils from Phytoplankton Reveal Secular Pco2 Trend over the Phanerozoic. Science Advances, 4(11): eaat4556. https://doi.org/10.1126/sciadv.aat4556
|
Wu, Q., Zhang, H., Ramezani, J., et al., 2024a. The Terrestrial End⁃Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284
|
Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six⁃Fold Increase of Atmospheric pCO2 during the Permian⁃ Triassic Mass Extinction. Nature Communications, 12(1): 2137. https://doi.org/10.1038/s41467⁃021⁃22298⁃7
|
Wu, Y. Y., Cui, Y., Chu, D. L., et al., 2023. Volcanic CO2 Degassing Postdates Thermogenic Carbon Emission during the End⁃Permian Mass Extinction. Science Advances, 9(7): eabq4082. https://doi.org/10.1126/sciadv.abq4082
|
Wu, Y. Y., Pohl, A., Tian, L., et al., 2024b. Recurrent Marine Anoxia in the Paleo⁃Tethys Linked to Constriction of Seaways during the Early Triassic. Earth and Planetary Science Letters, 643: 118882. https://doi.org/10.1016/j.epsl.2024.118882
|
Wu, Y. Y., Tong, J. N., Algeo, T. J., et al., 2020. Organic Carbon Isotopes in Terrestrial Permian⁃Triassic Boundary Sections of North China: Implications for Global Carbon Cycle Perturbations. GSA Bulletin, 132(5-6): 1106-1118. https://doi.org/10.1130/b35228.1
|
Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 M. Y. Permo⁃Triassic Biotic Crisis. Geology, 38(5): 447-450. https://doi.org/10.1130/g30769.1
|
Yang, L. R., Dai, X., Liu, X. K., et al., 2024. Foraminiferal Extinction and Size Reduction during the Permian⁃ Triassic Transition in Southern Tibet. Journal of Earth Science, 35(6): 1799-1809. https://doi.org/10.1007/s12583⁃023⁃1847⁃x
|
Yang, Z. Y., Wu, S. B., Yin, H. F., 1991. Permo⁃Triassic Events of South China. Geological Publishing House, Beijing (in Chinese).
|
Yin, H. F., Feng, Q. L., Lai, X. L., et al., 2007. The Protracted Permo⁃Triassic Crisis and Multi⁃Episode Extinction around the Permian⁃Triassic Boundary. Global and Planetary Change, 55(1-3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005
|
Yin, H. F., Huang, S. J., Zhang, K., et al., 1992. The Effects of Volcanism on the Permo⁃Triassic Mass Extinction in South China. In: Sweet, W. C., Yang, Z., Dickins, J. M., eds., Permo⁃Triassic Events in the Eastern Tethys. Cambridge University Press, Cambridge, 146-157.
|
Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
|
Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian⁃Triassic Boundary of the GSSP Section Meishan. Earth⁃Science Reviews, 115(3): 163-172. https://doi.org/10.1016/j.earscirev.2012.08.006
|
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
|
Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian⁃Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English abstract).
|
Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic⁃Mesozoic Transition. Science in China (Series D), 43(10): 1539-1552 (in Chinese).
|
Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic Carbon Release Rate Unprecedented during the Past 66 Million Years. Nature Geoscience, 9: 325-329. https://doi.org/10.1038/ngeo2681
|
Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
|
Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
|
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
|
胡修棉, 李娟, 韩中, 等, 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学(D辑), 50(8): 1023-1043.
|
戎嘉余, 黄冰, 2014. 生物大灭绝研究三十年. 中国科学(D辑), 44(3): 377-404.
|
沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
|
沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
|
宋汉宸, 宋海军, 张仲石, 等, 2023. 古生代‒中生代之交的水循环演变及驱动机制. 科学通报, 68(12): 1501-1516.
|
宋海军, 童金南, 2016. 二叠纪‒三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918.
|
童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508.
|
王曼, 钟玉婷, 侯莹玲, 等, 2018. 华南地区二叠纪‒三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48.
|
杨遵仪, 吴顺宝, 殷鸿福, 1991. 华南二叠‒三叠纪过渡时期地质事件. 北京: 地质出版社.
|
殷鸿福, 黄思骥, 张克信, 等1989. 华南二叠纪‒三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63(2): 169-180.
|
殷鸿福, 宋海军, 2013. 古、中生代之交生物大灭绝与泛大陆聚合. 中国科学(D辑), 43(10): 1539-1552.
|
张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
|