• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Wu Yuyang, Song Haijun, Chu Daoliang, Song Huyue, Tian Li, 2025. Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition. Earth Science, 50(3): 964-982. doi: 10.3799/dqkx.2024.156
    Citation: Wu Yuyang, Song Haijun, Chu Daoliang, Song Huyue, Tian Li, 2025. Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition. Earth Science, 50(3): 964-982. doi: 10.3799/dqkx.2024.156

    Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition

    doi: 10.3799/dqkx.2024.156
    • Received Date: 2024-11-30
    • Publish Date: 2025-03-25
    • Humanity is facing global warming driven by large-scale anthropogenic carbon emissions, alongside a series of global climate changes and ecological crises. Throughout geological history, several hyperthermal events triggered by massive volcanic activity have occurred, often accompanied by mass extinctions. These geological events provide important analogs for modern global warming. The Permian-Triassic mass extinction (~252 Ma), the largest mass extinction event of the Phanerozoic, is widely attributed to massive volcanisms and the resulting environmental changes. This review examines recent research on volcanism during the Permian-Triassic mass extinction and summarizes the types and magnitudes of volcanic degassing, including CO2, SO2, halogens, and metals. We also summarize the environmental impacts of global warming, ocean acidification, volcanic winter, acid rain, ozone depletion, and metal poisoning directly triggered by volcanic degassing, and assess how these changes drove mass extinctions in both marine and terrestrial ecosystems. This review aims to provide a comprehensive understanding of the relationship between volcanism and mass extinction. A comparison of Permian-Triassic carbon emissions with modern anthropogenic carbon emissions reveals that modern carbon emission and warming rates may be unprecedented in the past 252 million years.

       

    • loading
    • Beerling, D. J., Harfoot, M., Lomax, B., et al., 2007. The Stability of the Stratospheric Ozone Layer during the End⁃Permian Eruption of the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1856): 1843-1866. https://doi.org/10.1098/rsta.2007.2046
      Benca, J. P., Duijnstee, I. A. P., Looy, C. V., 2018. UV⁃B⁃Induced Forest Sterility: Implications of Ozone Shield Failure in Earth's Largest Extinction. Science Advances, 4(2): e1700618. https://doi.org/10.1126/sciadv.1700618
      Benton, M. J., 2003. When Life nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London.
      Benton, M. J., 2018. Hyperthermal⁃Driven Mass Extinctions: Killing Models during the Permian⁃Triassic Mass Extinction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076
      Berner, R. A., 2002. Examination of Hypotheses for the Permo⁃Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of the National Academy of Sciences, 99(7): 4172-4177. https://doi.org/10.1073/pnas.032095199
      Black, B. A., Elkins⁃Tanton, L. T., Rowe, M. C., et al., 2012. Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363-373. https://doi.org/10.1016/j.epsl.2011.12.001
      Black, B. A., Lamarque, J. F., Shields, C. A., et al., 2014. Acid Rain and Ozone Depletion from Pulsed Siberian Traps Magmatism. Geology, 42(1): 67-70. https://doi.org/10.1130/g34875.1
      Black, B. A., Neely, R. R., Lamarque, J. F., et al., 2018. Systemic Swings in End⁃Permian Climate from Siberian Traps Carbon and Sulfur Outgassing. Nature Geoscience, 11: 949-954. https://doi.org/10.1038/s41561⁃018⁃0261⁃y
      Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
      Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End⁃Permian Mass Extinction. Science, 280(5366): 1039-1045. https://doi.org/10.1126/science.280.5366.1039
      Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End⁃Permian Extinction Amplified by Plume⁃Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11: 682-687. https://doi.org/10.1038/s41561⁃018⁃0215⁃4
      Burgess, S. D., Bowring, S. A., 2015. High⁃Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth's Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470
      Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High⁃Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111
      Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End⁃Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467⁃017⁃00083⁃9
      Cai, Y. F., Zhang, H., Cao, C. Q., et al., 2021. Wildfires and Deforestation during the Permian⁃Triassic Transition in the Southern Junggar Basin, Northwest China. Earth⁃Science Reviews, 218: 103670. https://doi.org/10.1016/j.earscirev.2021.103670
      Chapman, T., Milan, L. A., Metcalfe, I., et al., 2022. Pulses in Silicic Arc Magmatism Initiate End⁃Permian Climate Instability and Extinction. Nature Geoscience, 15: 411-416. https://doi.org/10.1038/s41561⁃022⁃00934⁃1
      Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007
      Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo⁃Tethys Ocean during the Permian⁃Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534
      Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
      Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
      Chu, D. L., Grasby, S. E., Song, H. J., et al., 2020. Ecological Disturbance in Tropical Peatlands Prior to Marine Permian⁃Triassic Mass Extinction. Geology, 48(3): 288-292. https://doi.org/10.1130/g46631.1
      Chu, D. L., Song, H. J., Dal Corso, J., et al., 2025. Diachronous End⁃Permian Terrestrial Crises in North and South China. Geology, 53(1): 55-60. https://doi.org/10.1130/g52655.1
      Clapham, M. E., Payne, J. L., 2011. Acidification, Anoxia, and Extinction: A Multiple Logistic Regression Analysis of Extinction Selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062. https://doi.org/10.1130/G32230.1
      Clapham, M. E., Renne, P. R., 2019. Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47: 275-303. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060136
      Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193
      Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. https://doi.org/10.1016/j.palaeo.2013.09.001
      Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118
      Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2020. Permo⁃Triassic Boundary Carbon and Mercury Cycling Linked to Terrestrial Ecosystem Collapse. Nature Communications, 11(1): 2962. https://doi.org/10.1038/s41467⁃020⁃16725⁃4
      Dal Corso, J., Newton, R. J., Zerkle, A. L., et al., 2024. Repeated Pulses of Volcanism Drove the End⁃Permian Terrestrial Crisis in Northwest China. Nature Communications, 15(1): 7628. https://doi.org/10.1038/s41467⁃024⁃51671⁃5
      Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4
      Damon Matthews, H., Wynes, S., 2022. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ℃. Science, 376(6600): 1404-1409. https://doi.org/10.1126/science.abo3378
      Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian⁃Triassic Extinction. Earth⁃Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438
      Davydov, V. I., Karasev, E. V., 2021. The Influence of the Permian⁃Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian⁃Triassic Transition in the Region. Frontiers in Earth Science, 9: 635179. https://doi.org/10.3389/feart.2021.635179
      Ekart, D. D., Cerling, T. E., Montanez, I. P., 1999. A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate; Implications for Paleoatomospheric Carbon Dioxide. American Journal of Science, 299(10): 805-827. https://doi.org/10.2475/ajs.299.10.805
      Elkins⁃Tanton, L. T., Grasby, S. E., Black, B. A., et al., 2020. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption. Geology, 48(10): 986-991. https://doi.org/10.1130/g47365.1
      Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
      Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953
      Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High⁃Latitude Continental End⁃Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10(1): 385. https://doi.org/10.1038/s41467⁃018⁃07934⁃z
      Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. https://doi.org/10.1038/ncomms14845
      Foster, W. J., Hirtz, J. A., Farrell, C., et al., 2022. Bioindicators of Severe Ocean Acidification Are Absent from the End⁃Permian Mass Extinction. Scientific Reports, 12(1): 1202. https://doi.org/10.1038/s41598⁃022⁃04991⁃9
      Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457
      Friedlingstein, P., O'Sullivan, M., Jones, M. W., et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340. https://doi.org/10.5194/essd⁃12⁃3269⁃2020
      Gales, E., Black, B., Elkins⁃Tanton, L. T., 2020. Carbonatites as a Record of the Carbon Isotope Composition of Large Igneous Province Outgassing. Earth and Planetary Science Letters, 535: 116076. https://doi.org/10.1016/j.epsl.2020.116076
      Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
      Garbelli, C., Angiolini, L., Shen, S. Z., 2017. Biomineralization and Global Change: A New Perspective for Understanding the End⁃Permian Extinction. Geology, 45(1): 19-22. https://doi.org/10.1130/g38430.1
      Gastaldo, R. A., Kamo, S. L., Neveling, J., et al., 2020. The Base of the Lystrosaurus Assemblage Zone, Karoo Basin, Predates the End⁃Permian Marine Extinction. Nature Communications, 11(1): 1428. https://doi.org/10.1038/s41467⁃020⁃15243⁃7
      Gastaldo, R. A., Knight, C. L., Neveling, J., et al., 2014. Latest Permian Paleosols from Wapadsberg Pass, South Africa: Implications for Changhsingian Climate. Geological Society of America Bulletin, 126(5-6): 665-679. https://doi.org/10.1130/b30887.1
      Gliwa, J., Wiedenbeck, M., Schobben, M., et al., 2022. Gradual Warming Prior to the End⁃Permian Mass Extinction. Palaeontology, 65(5): e12621. https://doi.org/10.1111/pala.12621
      Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo⁃Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234(1-2): 207-221. https://doi.org/10.1016/j.epsl.2005.02.027
      Grasby, S. E., Beauchamp, B., Bond, D. P. G., et al., 2015. Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 127(9-10): 1331-1347. https://doi.org/10.1130/b31197.1
      Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175-178. https://doi.org/10.1130/g33599.1
      Grasby, S. E., Bond, D. P. G., 2023. How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times. Elements, 19(5): 276-281. https://doi.org/10.2138/gselements.19.5.276
      Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1
      He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011
      Hochuli, P. A., Schneebeli⁃Hermann, E., Mangerud, G., et al., 2017. Evidence for Atmospheric Pollution across the Permian⁃Triassic Transition. Geology, 45(12): 1123-1126. https://doi.org/10.1130/g39496.1
      Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. https://doi.org/10.1126/science.1208277
      Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science in China (Series D), 50(8): 1023-1043 (in Chinese).
      Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7
      Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo⁃Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth⁃Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001
      Jiao, Y., Zhou, L., Algeo, T. J., et al., 2023. Zirconium and Neodymium Isotopes Record Intensive Felsic Volcanism in South China Region during the Permian⁃Triassic Boundary Crisis. Chemical Geology, 636: 121653. https://doi.org/10.1016/j.chemgeo.2023.121653
      Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian⁃Triassic Mass Extinction: New Insights from Armenian Permian⁃Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
      Joachimski, M. M., Müller, J., Gallagher, T. M., et al., 2022. Five Million Years of High Atmospheric CO2 in the Aftermath of the Permian⁃Triassic Mass Extinction. Geology, 50(6): 650-654. https://doi.org/10.1130/g49714.1
      Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian⁃Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745-750. https://doi.org/10.1038/s41561⁃020⁃00646⁃4
      Komar, N., Zeebe, R. E., 2016. Calcium and Calcium Isotope Changes during Carbon Cycle Perturbations at the End⁃Permian. Paleoceanography, 31(1): 115-130. https://doi.org/10.1002/2015pa002834
      Li, H., Yu, J. X., McElwain, J. C., et al., 2019. Reconstruction of Atmospheric CO2 Concentration during the Late Changhsingian Based on Fossil Conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 37-48. https://doi.org/10.1016/j.palaeo.2018.09.006
      Li, M. H., Frank, T. D., Xu, Y. L., et al., 2022. Sulfur Isotopes Link Atmospheric Sulfate Aerosols from the Siberian Traps Outgassing to the End⁃Permian Extinction on Land. Earth and Planetary Science Letters, 592: 117634. https://doi.org/10.1016/j.epsl.2022.117634
      Li, R. C., Wu, N. P., Shen, S. Z., et al., 2023. A Rapid Onset of Ocean Acidification Associated with the End⁃Permian Mass Extinction. Global and Planetary Change, 225: 104130. https://doi.org/10.1016/j.gloplacha.2023.104130
      Liu, F., Peng, H. P., Marshall, J. E. A., et al., 2023. Dying in the Sun: Direct Evidence for Elevated UV⁃B Radiation at the End⁃Permian Mass Extinction. Science Advances, 9(1): eabo6102. https://doi.org/10.1126/sciadv.abo6102
      Maruoka, T., Koeberl, C., Hancox, P. J., et al., 2003. Sulfur Geochemistry across a Terrestrial Permian⁃Triassic Boundary Section in the Karoo Basin, South Africa. Earth and Planetary Science Letters, 206(1-2): 101-117. https://doi.org/10.1016/S0012⁃821X(02)01087⁃7
      Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8(3): 199-216. https://doi.org/10.1007/s10311⁃010⁃0297⁃8
      Nelson, D. A., Cottle, J. M., 2019. Tracking Voluminous Permian Volcanism of the Choiyoi Province into Central Antarctica. Lithosphere, 11(3): 386-398. https://doi.org/10.1130/l1015.1
      Payne, J. L., Kump, L. R., 2007. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 256(1-2): 264-277. https://doi.org/10.1016/j.epsl.2007.01.034
      Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events. Geological Society of America Bulletin, 119(7-8): 771-784. https://doi.org/10.1130/b26091.1
      Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107
      Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature⁃Dependent Hypoxia Explains Biogeography and Severity of End⁃Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327
      Rampino, M. R., Rodriguez, S., Baransky, E., et al., 2017. Global Nickel Anomaly Links Siberian Traps Eruptions and the Latest Permian Mass Extinction. Scientific Reports, 7(1): 12416. https://doi.org/10.1038/s41598⁃017⁃12759⁃9
      Renne, P. R., Basu, A. R., 1991. Rapid Eruption of the Siberian Traps Flood Basalts at the Permo⁃Triassic Boundary. Science, 253(5016): 176-179. https://doi.org/10.1126/science.253.5016.176
      Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1
      Retallack, G. J., 2013. Permian and Triassic Greenhouse Crises. Gondwana Research, 24(1): 90-103. https://doi.org/10.1016/j.gr.2012.03.003
      Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116(1): 1-20. https://doi.org/10.1086/524120
      Ridgwell, A., Schmidt, D. N., 2010. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nature Geoscience, 3: 196-200. https://doi.org/10.1038/ngeo755
      Rong, J. Y., Huang, B., 2014. Study of Mass Extinction over the Past Thirty Years: A Synopsis. Science in China (Series D), 44(3): 377-404 (in Chinese).
      Schmidt, A., Skeffington, R. A., Thordarson, T., et al., 2016. Selective Environmental Stress from Sulphur Emitted by Continental Flood Basalt Eruptions. Nature Geoscience, 9: 77-82. https://doi.org/10.1038/ngeo2588
      Schneebeli⁃Hermann, E., Kurschner, W. M., Hochuli, P. A., et al., 2013. Evidence for Atmospheric Carbon Injection during the End⁃Permian Extinction. Geology, 41(5): 579-582. https://doi.org/10.1130/g34047.1
      Schobben, M., Joachimski, M. M., Korn, D., et al., 2014. Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End⁃Permian Mass Extinction. Gondwana Research, 26(2): 675-683. https://doi.org/10.1016/j.gr.2013.07.019
      Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052
      Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/g36227.1
      Shen, J. H., Zhang, Y. G., Yang, H., et al., 2022. Early and Late Phases of the Permian⁃Triassic Mass Extinction Marked by Different Atmospheric CO2 Regimes. Nature Geoscience, 15: 839-844. https://doi.org/10.1038/s41561⁃022⁃01034⁃w
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
      Shen, J., Chen, J. B., Algeo, T. J., et al., 2021. Mercury Fluxes Record Regional Volcanism in the South China Craton Prior to the End⁃Permian Mass Extinction. Geology, 49(4): 452-456. https://doi.org/10.1130/g48501.1
      Shen, J., Chen, J. B., Yu, J. X., et al., 2023. Mercury Evidence from Southern Pangea Terrestrial Sections for End⁃Permian Global Volcanic Effects. Nature Communications, 14(1): 6. https://doi.org/10.1038/s41467⁃022⁃35272⁃8
      Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian⁃Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., Ramezani, J., Chen, J., et al., 2019c. A Sudden End⁃Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1
      Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events Versus Global Changes: Progresses and Challenges. Chinese Science Bulletin, 69(2): 268-285 (in Chinese).
      Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions. Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese). doi: 10.1360/N972017-00013
      Sial, A. N., Chen, J. B., Lacerda, L. D., et al., 2020. Globally Enhanced Hg Deposition and Hg Isotopes in Sections Straddling the Permian⁃Triassic Boundary: Link to Volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109537. https://doi.org/10.1016/j.palaeo.2019.109537
      Silva⁃Tamayo, J. C., Lau, K. V., Jost, A. B., et al., 2018. Global Perturbation of the Marine Calcium Cycle during the Permian⁃Triassic Transition. GSA Bulletin, 130(7/8): 1323-1338. https://doi.org/10.1130/b31818.1
      Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385
      Song, H. C., Song, H. J., Zhang, Z. S., et al., 2023. Evolution and Driving Mechanisms of Water Circulation During the Late Paleozoic to Early Mesozoic. Chinese Science Bulletin, 68(12): 1501-1516 (in Chinese). doi: 10.1360/TB-2022-0896
      Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian⁃Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117
      Song, H. J., Scotese, C. R., 2023. The End⁃Paleozoic Great Warming. Science Bulletin, 68(21): 2523-2526. https://doi.org/10.1016/j.scib.2023.09.009
      Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
      Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian⁃Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract).
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
      Song, H. J., Wu, Y. Y., Dai, X., et al., 2024. Respiratory Protein⁃Driven Selectivity during the Permian⁃Triassic Mass Extinction. The Innovation, 5(3): 100618. https://doi.org/10.1016/j.xinn.2024.100618
      Sun, Y. D., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
      Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Svensen, H. H., Frolov, S., Akhmanov, G. G., et al., 2018. Sills and Gas Generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170080. https://doi.org/10.1098/rsta.2017.0080
      Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End⁃Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. https://doi.org/10.1016/j.epsl.2008.11.015
      Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GSWX200903019.htm
      Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End⁃Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875
      Visscher, H., Looy, C. V., Collinson, M. E., et al., 2004. Environmental Mutagenesis during the End⁃Permian Ecological Crisis. Proceedings of the National Academy of Sciences, 101(35): 12952-12956. https://doi.org/10.1073/pnas.0404472101
      Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).
      Wang, W. Q., Garbelli, C., Zhang, F. F., et al., 2020. A High⁃Resolution Middle to Late Permian Paleotemperature Curve Reconstructed Using Oxygen Isotopes of Well⁃Preserved Brachiopod Shells. Earth and Planetary Science Letters, 540: 116245. https://doi.org/10.1016/j.epsl.2020.116245
      Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
      Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth⁃Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/S0012⁃8252(00)00037⁃4
      Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5-6): 954-956. https://doi.org/10.1130/b26424.1
      Witkowski, C. R., Weijers, J. W. H., Blais, B., et al., 2018. Molecular Fossils from Phytoplankton Reveal Secular Pco2 Trend over the Phanerozoic. Science Advances, 4(11): eaat4556. https://doi.org/10.1126/sciadv.aat4556
      Wu, Q., Zhang, H., Ramezani, J., et al., 2024a. The Terrestrial End⁃Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284
      Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six⁃Fold Increase of Atmospheric pCO2 during the Permian⁃ Triassic Mass Extinction. Nature Communications, 12(1): 2137. https://doi.org/10.1038/s41467⁃021⁃22298⁃7
      Wu, Y. Y., Cui, Y., Chu, D. L., et al., 2023. Volcanic CO2 Degassing Postdates Thermogenic Carbon Emission during the End⁃Permian Mass Extinction. Science Advances, 9(7): eabq4082. https://doi.org/10.1126/sciadv.abq4082
      Wu, Y. Y., Pohl, A., Tian, L., et al., 2024b. Recurrent Marine Anoxia in the Paleo⁃Tethys Linked to Constriction of Seaways during the Early Triassic. Earth and Planetary Science Letters, 643: 118882. https://doi.org/10.1016/j.epsl.2024.118882
      Wu, Y. Y., Tong, J. N., Algeo, T. J., et al., 2020. Organic Carbon Isotopes in Terrestrial Permian⁃Triassic Boundary Sections of North China: Implications for Global Carbon Cycle Perturbations. GSA Bulletin, 132(5-6): 1106-1118. https://doi.org/10.1130/b35228.1
      Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 M. Y. Permo⁃Triassic Biotic Crisis. Geology, 38(5): 447-450. https://doi.org/10.1130/g30769.1
      Yang, L. R., Dai, X., Liu, X. K., et al., 2024. Foraminiferal Extinction and Size Reduction during the Permian⁃ Triassic Transition in Southern Tibet. Journal of Earth Science, 35(6): 1799-1809. https://doi.org/10.1007/s12583⁃023⁃1847⁃x
      Yang, Z. Y., Wu, S. B., Yin, H. F., 1991. Permo⁃Triassic Events of South China. Geological Publishing House, Beijing (in Chinese).
      Yin, H. F., Feng, Q. L., Lai, X. L., et al., 2007. The Protracted Permo⁃Triassic Crisis and Multi⁃Episode Extinction around the Permian⁃Triassic Boundary. Global and Planetary Change, 55(1-3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005
      Yin, H. F., Huang, S. J., Zhang, K., et al., 1992. The Effects of Volcanism on the Permo⁃Triassic Mass Extinction in South China. In: Sweet, W. C., Yang, Z., Dickins, J. M., eds., Permo⁃Triassic Events in the Eastern Tethys. Cambridge University Press, Cambridge, 146-157.
      Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
      Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian⁃Triassic Boundary of the GSSP Section Meishan. Earth⁃Science Reviews, 115(3): 163-172. https://doi.org/10.1016/j.earscirev.2012.08.006
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian⁃Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English abstract).
      Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic⁃Mesozoic Transition. Science in China (Series D), 43(10): 1539-1552 (in Chinese).
      Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic Carbon Release Rate Unprecedented during the Past 66 Million Years. Nature Geoscience, 9: 325-329. https://doi.org/10.1038/ngeo2681
      Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921
      Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      胡修棉, 李娟, 韩中, 等, 2020. 中新生代两类极热事件的环境变化、生态效应与驱动机制. 中国科学(D辑), 50(8): 1023-1043.
      戎嘉余, 黄冰, 2014. 生物大灭绝研究三十年. 中国科学(D辑), 44(3): 377-404.
      沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
      沈树忠, 张华, 2017. 什么引起五次生物大灭绝? 科学通报, 62(11): 1119-1135.
      宋汉宸, 宋海军, 张仲石, 等, 2023. 古生代‒中生代之交的水循环演变及驱动机制. 科学通报, 68(12): 1501-1516.
      宋海军, 童金南, 2016. 二叠纪‒三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918.
      童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展. 古生物学报, 48(3): 497-508.
      王曼, 钟玉婷, 侯莹玲, 等, 2018. 华南地区二叠纪‒三叠纪界线酸性火山灰的源区与规模. 岩石学报, 34(1): 36-48.
      杨遵仪, 吴顺宝, 殷鸿福, 1991. 华南二叠‒三叠纪过渡时期地质事件. 北京: 地质出版社.
      殷鸿福, 黄思骥, 张克信, 等1989. 华南二叠纪‒三叠纪之交的火山活动及其对生物绝灭的影响. 地质学报, 63(2): 169-180.
      殷鸿福, 宋海军, 2013. 古、中生代之交生物大灭绝与泛大陆聚合. 中国科学(D辑), 43(10): 1539-1552.
      张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)  / Tables(1)

      Article views (242) PDF downloads(71) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return