| Citation: | Yang Zongyong, Zhu Jingjing, Pan Lichuan, Huang Mingliang, Wang Dianzhong, 2025. Petrogenesis of Yarigong Granodiorite in Batang Area and Constraints on Porphyry Cu Fertility, Eastern Tibetan Plateau. Earth Science, 50(11): 4195-4207. doi: 10.3799/dqkx.2024.159 |
The Paleo-Tethyan Ocean, represented by the Jinshajiang River suture in eastern Tibetan Plateau, was consumed and closed in the Early-Middle Triassic, but the specific process after the oceanic crust demise is still poorly constrained. The potential for porphyry copper mineralization of magma generated in post-subduction setting remains unclear. In present study, geochronological and geochemical analyses were carried out on the Yarigong pluton in Batang area. Magmas were intruded in Late Triassic as corroborated by zircon U-Pb mean age of about 227 Ma. Rocks from this intrusion were characterized by high SiO2 (65.5% to 67.6%) and Mg# (53 to 64), as well as high initial 87Sr/86Sr values (0.709 8 to 0.711 8) and low εNd(t) values (-7.4 to -8.0). Magma generation of the Yarigong pluton resulted from interaction between melts derived from continental crust and peridotite mantle, and partial melts of the continental crust was likely associated with the break-off of early subducted Paleo-Tethyan oceanic slab. Geochemical compositions of amphibole and zircon suggest high magma H2O contents (>5%), the oxygen fugacity of magma is lower than magma related to typical porphyry Cu deposits, and extremely low S in magma was indicated by consistent low SO3 in apatite. These conditions imply barren magma for porphyry Cu deposit formation.
|
Aydin, F., Sönmez, M., Siebel, W., et al., 2022. Slab Break-off-Related Magnesian Andesites and Dacites with Adakitic Affinity from the Early Quaternary Keçiboyduran Stratovolcano, Cappadocia Province, Central Turkey: Evidence for Slab/Sediment Melt- Mantle Interaction and Magma Mixing. Contributions to Mineralogy and Petrology, 177(7): 65. https://doi.org/10.1007/s00410-022-01931-8
|
|
Davidson, J., Turner, S., Handley, H., et al., 2007. Amphibole "Sponge" in Arc Crust? Geology, 35(9): 787. https://doi.org/10.1130/g23637a.1
|
|
Davis, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
|
|
Fan, H. P., Li, B., Zhou, J. X., et al., 2020. Subduction-Modified Mantle-Derived Triassic High-Mg Andesites in the Sanjiang Tethys, Eastern Tibet. Journal of Asian Earth Sciences, 191: 104216. https://doi.org/10.1016/j.jseaes.2019.104216
|
|
Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. https://doi.org/10.1038/nature03162
|
|
Ge, R. F., Wilde, S. A., Zhu, W. B., et al., 2023. Earth's Early Continental Crust Formed from Wet and Oxidizing Arc Magmas. Nature, 623(7986): 334-339. https://doi.org/10.1038/s41586-023-06552-0
|
|
Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., et al., 2007. Geochemical Evidence for Slab Melting in the Trans-Mexican Volcanic Belt. Journal of Petrology, 48(3): 537-562. https://doi.org/10.1093/petrology/egl071
|
|
Hou, Z. Q., Wang, L. Q., Zaw, K., et al., 2003. Post- Collisional Crustal Extension Setting and VHMS Mineralization in the Jinshajiang Orogenic Belt, Southwestern China. Ore Geology Reviews, 22(3-4): 177-199. https://doi.org/10.1016/S0169-1368(02)00141-5
|
|
Huang, M. L., Zhu, J. J., Bi, X. W., et al., 2022. Low Magmatic Cl Contents in Giant Porphyry Cu Deposits Caused by Early Fluid Exsolution: A Case Study of the Yulong Belt and Implication for Exploration. Ore Geology Reviews, 141: 104664. https://doi.org/10.1016/j.oregeorev.2021.104664
|
|
Huang, M. L., Zhu, J. J., Chiaradia, M., et al., 2023. Apatite Volatile Contents of Porphyry Cu Deposits Controlled by Depth-Related Fluid Exsolution Processes. Economic Geology, 118(5): 1201-1217. https://doi.org/10.5382/econgeo.5000
|
|
Jian, P., Liu, D. Y., Kröner, A., et al., 2009. Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (Ⅰ): Geochemistry of Ophiolites, Arc/back-Arc Assemblages and Within-Plate Igneous Rocks. Lithos, 113(3-4): 748-766. https://doi.org/10.1016/j.lithos.2009.04.004
|
|
Jian, P., Liu, D. Y., Sun, X. M., 2003. SHRIMP Dating of Carboniferous Jinshajiang Ophiolite in Western Yunnan and Sichuan: Geochronological Constraints on the Evolution of the Paleo-Tethys Oceanic Crust. Acta Geologica Sinica, 77(2): 217-228, 291-292 (in Chinese with English abstract).
|
|
Jugo, P. J., 2009. Sulfur Content at Sulfide Saturation in Oxidized Magmas. Geology, 37(5): 415-418. https://doi.org/10.1130/G25527A.1
|
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
|
Loucks, R. R., Fiorentini, M. L., Henríquez, G. J., 2020. New Magmatic Oxybarometer Using Trace Elements in Zircon. Journal of Petrology, 61(3): egaa034. https://doi.org/10.1093/petrology/egaa034
|
|
Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016. Zircon Compositions as A Pathfinder for Porphyry Cu± Mo±Au Deposits. In: Richards, J. P., ed., Tectonics and Metallogeny of the Tethyan Orogenic Belt. Society of Economic Geologists, Colorado, 329-347.
|
|
Ludwig, K. R., 2012. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, Berkeley, 75.
|
|
Mo, X. X., Deng, J. F., Lu, F. X., 1994. Volcanism and the Evolution of Tethys in Sanjiang Area, Southwestern China. Journal of Asian Earth Sciences, 9(4): 325-333. https://doi.org/10.1016/0743-9547(94)90043-4
|
|
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3-4): 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
|
|
Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0
|
|
Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4): 891-931. https://doi.org/10.1093/petrology/36.4.891
|
|
Richards, J. P., 2015. The Oxidation State, and Sulfur and Cu Contents of Arc Magmas: Implications for Metallogeny. Lithos, 233: 27-45. https://doi.org/10.1016/j.lithos.2014.12.011
|
|
Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas: An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45-66. https://doi.org/10.1007/s00410-009-0465-7
|
|
Streck, M. J., Leeman, W. P., 2018. Petrology of "Mt. Shasta" High-Magnesian Andesite (HMA): A Product of Multi-Stage Crustal Assembly. American Mineralogist, 103(2): 216-240. https://doi.org/10.2138/am-2018-6151
|
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
|
Tang, Y., Qin, Y. D., Gong, X. D., et al., 2023. Petrology, Geochemistry and Ar-Ar Geochronology of Eclogites in Jinshajiang Orogenic Belt, Gonjo Area, Eastern Tibet and Restriction on Paleo-Tethyan Evolution. China Geology, 6(2): 285-302. https://doi.org/10.31035/cg2023025
|
|
Tatsumi, Y., 2001. Geochemical Modeling of Partial Melting of Subducting Sediments and Subsequent Melt-Mantle Interaction: Generation of High-Mg Andesites in the Setouchi Volcanic Belt, Southwest Japan. Geology, 29(4): 323-326. https://doi.org/10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2 doi: 10.1130/0091-7613(2001)029<0323:GMOPMO>2.0.CO;2
|
|
Wang, B. D., Wang, L. Q., Chen, J. L., et al., 2014a. Triassic Three-Stage Collision in the Paleo-Tethys: Constraints from Magmatism in the Jiangda-Deqen-Weixi Continental Margin Arc, SW China. Gondwana Research, 26(2): 475-491. https://doi.org/10.1016/j.gr.2013.07.023
|
|
Wang, R., Richards, J. P., Hou, Z. Q., et al., 2014b. Increasing Magmatic Oxidation State from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo Au Mineralization. Economic Geology, 109(7): 1943-1965. https://doi.org/10.2113/econgeo.109.7.1943
|
|
Wang, D. Z., Hu, R. Z., Hollings, P., et al., 2021a. Remelting of a Neoproterozoic Arc Root: Origin of the Pulang and Songnuo Porphyry Cu Deposits, Southwest China. Mineralium Deposita, 56(6): 1043-1070. https://doi.org/10.1007/s00126-021-01049-0
|
|
Wang, J., Dan, W., Wang, Q., et al., 2021b. High-Mg# Adakitic Rocks Formed by Lower-Crustal Magma Differentiation: Mineralogical and Geochemical Evidence from Garnet-Bearing Diorite Porphyries in Central Tibet. Journal of Petrology, 62(4): egaa099. https://doi.org/10.1093/petrology/egaa099
|
|
Wang, R., Luo, C. H., Xia, W. J., et al., 2021. Progresses in the Study of High Magmatic Water and Oxidation State of Post-Collisional Magmas in the Gangdese Porphyry Deposit Belt. Bulletin of Mineralogy, Petrology and Geochemistry, 40(5): 1061-1077, 997 (in Chinese with English abstract).
|
|
Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070
|
|
Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere: Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1-4): 9-27. https://doi.org/10.1016/j.tecto.2004.07.028
|
|
Yang, Z. M., Goldfarb, R., Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. In: Richards, J. P., ed., Tectonics and Metallogeny of the Tethyan Orogenic Belt. Society of Economic Geologists, Colorado, 279-300.
|
|
Zhu, J. J., Hu, R. Z., Bi, X. W., et al., 2011. Zircon U-Pb Ages, Hf-O Isotopes and Whole-Rock Sr-Nd-Pb Isotopic Geochemistry of Granitoids in the Jinshajiang Suture Zone, SW China: Constraints on Petrogenesis and Tectonic Evolution of the Paleo-Tethys Ocean. Lithos, 126(3-4): 248-264. https://doi.org/10.1016/j.lithos.2011.07.003
|
|
Zhu, J. J., Hu, R. Z., Bi, X. W., et al., 2022. Porphyry Cu Fertility of Eastern Paleo-Tethyan Arc Magmas: Evidence from Zircon and Apatite Compositions. Lithos, 424: 106775. https://doi.org/10.1016/j.lithos.2022.106775
|
|
Zhu, J. J., Hu, R. Z., Richards, J. P., et al., 2015. Genesis and Magmatic-Hydrothermal Evolution of the Yangla Skarn Cu Deposit, Southwest China. Economic Geology, 110(3): 631-652. https://doi.org/10.2113/econgeo.110.3.631
|
|
Zhu, J. J., Richards, J. P., Rees, C., et al., 2018. Elevated Magmatic Sulfur and Chlorine Contents in Ore-Forming Magmas at the Red Chris Porphyry Cu-Au Deposit, Northern British Columbia, Canada. Economic Geology, 113(5): 1047-1075. https://doi.org/10.5382/econgeo.2018.4581
|
|
Zi, J. W., Cawood, P. A., Fan, W. M., et al., 2012. Triassic Collision in the Paleo-Tethys Ocean Constrained by Volcanic Activity in SW China. Lithos, 144: 145-160. https://doi.org/10.1016/j.lithos.2012.04.020
|
|
简平, 刘敦一, 孙晓猛, 2003. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约. 地质学报, 77(2): 217-228, 291-292.
|
|
王瑞, 罗晨皓, 夏文杰, 等, 2021. 冈底斯后碰撞斑岩成矿带高水、高氧逸度岩浆成因研究进展. 矿物岩石地球化学通报, 40(5): 1061-1077, 997.
|