• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Ren Lei, Wang Xiaorui, Jing Laihong, Meng Xuyang, Yang Jie, Zhang Huaqing, 2025. Deformation Law of the Main Canal Bottom Plate under Coupling Effect of Main Canal Leakage and Shield Tunneling. Earth Science, 50(6): 2387-2399. doi: 10.3799/dqkx.2024.309
    Citation: Ren Lei, Wang Xiaorui, Jing Laihong, Meng Xuyang, Yang Jie, Zhang Huaqing, 2025. Deformation Law of the Main Canal Bottom Plate under Coupling Effect of Main Canal Leakage and Shield Tunneling. Earth Science, 50(6): 2387-2399. doi: 10.3799/dqkx.2024.309

    Deformation Law of the Main Canal Bottom Plate under Coupling Effect of Main Canal Leakage and Shield Tunneling

    doi: 10.3799/dqkx.2024.309
    • Received Date: 2024-08-01
      Available Online: 2025-07-11
    • Publish Date: 2025-06-25
    • When a shield tunnel passes under the main canal of the South-to-North Water Diversion Project, leakage at the bottom of the canal structure can lead to more severe hazards. Therefore, to study the disturbance deformation patterns under the coupling effects of bidirectional interactions, the FEFLOW software was used to simulate the influence range of groundwater seepage under different leakage conditions in the canal. The FLAC3D software was employed to establish a model of the canal-stratum-tunnel system, and numerical simulations of cooperative deformation under different construction conditions were conducted. The study shows that when the local leakage volume in the canal approaches or exceeds 100 m³/day, the planar influence range of the leakage exceeds 100 m. In the vertical direction, the stratum from the leakage center to the tunnel roof transitions from the vadose zone to the saturated zone, changing from an unsaturated to a saturated state. Comparing the simulation results of normal conditions with leakage conditions, the deformation curves at the canal bottom exhibit "W-shaped" and "V-shaped" patterns, respectively, with maximum settlements of 3.6 mm and 6.4 mm, and settlement trough widths of 27 m and 45 m. The results indicate that leakage at the canal bottom increases the depth of the settlement trough. This is because the leakage reduces the soil strength and alters the compression coefficient within the affected range, requiring greater deformation in the saturated soil layer to counteract stress changes.

       

    • loading
    • Cao, Y. S., Chang, J. X., Huang, Q., et al., 2017. Real⁃Time Control Strategy for Water Conveyance of Middle Route Project of South⁃to⁃North Water Diversion in China. Advances in Water Science, 28(1): 133-139(in Chinese with English abstract).
      Chen, C., 2021. Research on Construction Technology and Stratum Deformation of Shield Tunneling through the Main Canal of South⁃to⁃North Water Transfer Project (Dissertation). Zhengzhou University, Zhengzhou (in Chinese with English abstract).
      Chen, R. P., Song, X., Meng, F. Y., et al., 2022. Analytical Approach to Predict Tunneling⁃Induced Subsurface Settlement in Sand Considering Soil Arching Effect. Computers and Geotechnics, 141: 104492. https://doi.org/10.1016/j.compgeo.2021.104492
      Jia, X. F., Li, C. J., Ren, L., et al., 2022. Settlement Control of Subway Shield Tunnel under the Main Channel of South⁃to⁃North Water Diversion under Complex Conditions. Safety and Environmental Engineering, 29(1): 77-84, 118(in Chinese with English abstract).
      Li, Q. W., Yan, E. C., Yang, G., et al., 2019. Simulation of Three⁃Dimensional Seepage Field of the Bank Slope Groundwater Based on FEFLOW. Safety and Environmental Engineering, 26(2): 38-44(in Chinese with English abstract).
      Tang, M., Xu, W. T., Zhang, C., et al., 2022. Risk Assessment of Sectional Water Quality Based on Deterioration Rate of Water Quality Indicators: A Case Study of the Main Canal of the Middle Route of South⁃to⁃North Water Diversion Project. Ecological Indicators, 135: 108592. https://doi.org/10.1016/j.ecolind.2022.108592
      Tian, J. J., Zhu, K., Cai, S., et al., 2021. Inversion Analysis of Peck Formula Based on Zhengzhou Subway Running down the Main Channel of South-to-North Water Transfer. Safety and Environmental Engineering, 28(2): 109-113, 132(in Chinese with English abstract).
      Wang, J. X., Fu, H. X., Zhu, Y. F., et al., 2010. Advance in Calculation of Subsidence Caused by Shield Tunnel Based on Strata Loss. Chinese Journal of Underground Space and Engineering, 6(1): 112-119, 150 (in Chinese with English abstract).
      Wang, X. R., Liu, X., Zhang, X., et al., 2023. Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel. Earth Science, 48(6): 2415-2426 (in Chinese with English abstract).
      Wang, X. R., Qin, W. Q., Yu, H. C., 2024. Research on Dynamic Response Law of Shield Tunnel and Surrounding Soil Based on Vibration Action of Subway Train. Earth Science, 49(12): 4673-4689(in Chinese with English abstract).
      Wang, Y., Zeng, C. N, Li, W. W., et al., 2023. Thermodynamic Performance of Phase Change Mortar Based on Shape⁃Stabilized Phase Change Material. Earth Science, 48(12): 4680-4688(in Chinese with English abstract).
      Wang, Z. D., Jiang, L. M., Rao, Y., 2019. Estimation of Ground Settlement Induced by Shield Tunnel Excavation Based on the Time⁃Space Relationship. Journal of Civil and Environmental Engineering, 41(1): 62-69 (in Chinese with English abstract).
      Woo, S. Y., Kim, S. J., Lee, J. W., et al., 2021. Evaluating the Impact of Interbasin Water Transfer on Water Quality in the Recipient River Basin with SWAT. Science of the Total Environment, 776: 145984. https://doi.org/10.1016/j.scitotenv.2021.145984
      Wu, H. M., Shu, Y. M., Zhu, J. G., 2011. Implementation and Verification of Interface Constitutive Model in FLAC3D. Water Science and Engineering, 4(3): 305-316. https://doi.org/10.3882/j.issn.1674⁃2370.2011.03.007
      Yang, X., Zou, Q., Wang, Q., 2013. Analysis on Influence of Shield Tunneling Crossing underneath Existing Trunk Canal of South⁃to⁃North Water Transfer Project. Tunnel Construction, 33(7): 562-566 (in Chinese with English abstract).
      Yang, Z. X., Du, J. Q., Sun, F. X., et al., 2023. Model Test for Optimization of Design Parameters of Shield Tunnel under Water Transmission Main Canal. Science Technology and Engineering, 23(31): 13573-13581(in Chinese with English abstract).
      Zhu, C. H., Li, N., 2016. Estimation Method and Laws Analysis of Surface Settlement Due to Tunneling. Rock and Soil Mechanics, 37(Suppl. 2): 533-542(in Chinese with English abstract).
      曹玉升, 畅建霞, 黄强, 等, 2017. 南水北调中线输水调度实时控制策略. 水科学进展, 28(1): 133-139.
      陈超, 2021. 盾构下穿南水北调干渠施工技术及地层变形研究(硕士学位论文). 郑州: 郑州大学.
      贾晓凤, 李春剑, 任磊, 等, 2022. 地铁盾构隧道下穿南水北调干渠的沉降控制研究. 安全与环境工程, 29(1): 77-84, 118.
      李庆伟, 晏鄂川, 杨广, 等, 2019. 基于FEFLOW的岸坡地下水三维渗流场模拟研究. 安全与环境工程, 26(2): 38-44.
      田均举, 朱坤, 蔡松, 等, 2021. 基于郑州地铁下穿南水北调干渠的Peck公式反演分析. 安全与环境工程, 28(2): 109-113, 132.
      王建秀, 付慧仙, 朱雁飞, 等, 2010. 基于地层损失的盾构沉降计算方法研究进展. 地下空间与工程学报, 6(1): 112-119, 150.
      王晓睿, 刘旭, 张昕, 等, 2023. 小半径曲线隧道下地铁运行对粉砂土层引起的振动响应规律. 地球科学, 48(6): 2415-2426. doi: 10.3799/dqkx.2023.063
      王晓睿, 秦文茜, 于怀昌, 2024. 地铁列车振动作用下盾构隧道及周边土体动力响应规律. 地球科学, 49(12): 4673-4689. doi: 10.3799/dqkx.2023.075
      王艳, 曾长女, 李皖皖, 等, 2023. 基于定形相变材料的相变砂浆热力学性能. 地球科学, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102
      王智德, 江俐敏, 饶宇, 2019. 基于时空关系的盾构开挖地表沉降规律. 土木与环境工程学报(中英文), 41(1): 62-69.
      杨喜, 邹琦, 王庆, 2013. 地铁隧道穿越南水北调干渠施工影响分析. 隧道建设, 33(7): 562-566.
      杨振兴, 杜家庆, 孙飞祥, 等, 2023. 盾构隧道下穿输水干渠设计参数优化模型试验. 科学技术与工程, 23(31): 13573-13581.
      朱才辉, 李宁, 2016. 隧道施工诱发地表沉降估算方法及其规律分析. 岩土力学, 37(增刊2): 533-542.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)  / Tables(8)

      Article views (92) PDF downloads(9) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return