• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Xu Zhen, Yu Jianxin, Peng Nian, Chi Hongfei, Han Mingxian, Lin Wenjie, Jiang Hongchen, 2025. Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction. Earth Science, 50(3): 934-950. doi: 10.3799/dqkx.2025.001
    Citation: Xu Zhen, Yu Jianxin, Peng Nian, Chi Hongfei, Han Mingxian, Lin Wenjie, Jiang Hongchen, 2025. Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction. Earth Science, 50(3): 934-950. doi: 10.3799/dqkx.2025.001

    Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction

    doi: 10.3799/dqkx.2025.001
    • Received Date: 2024-11-30
    • Publish Date: 2025-03-25
    • Plants enhance their nutrient and water uptake and improve resilience to extreme climates through mutualism with microorganisms, including mycorrhizal fungi and nitrogen-fixing bacteria. Despite the ecological significance of plant-microbe interactions, direct evidence of such symbioses during critical climate transitions in Earth's history remains limited due to the lack of relevant fossil records. This study adopts a modern-analogue approach, focusing on extant relatives of plants that survived the Permian-Triassic mass extinction, including Araucaria heterophylla, Cycas revoluta, and Ginkgo biloba. Using artificial climate chambers with temperature gradients, these plants were cultivated for one year, and high-throughput amplicon sequencing was employed to analyse the composition and relative abundance of root-associated microbial communities. The findings were then compared to plant fossil evidence to explore the impact of plant-microbe symbioses on plant survival under the extreme greenhouse climates of the Triassic. Preliminary results indicate that increasing the temperature by 10 ℃ above 25 ℃ resulted in a higher relative abundance ratio of beneficial and harmful microorganisms in the rhizosphere of Araucaria compared to Cycas and Ginkgo. This may explain why coniferous plants like Araucaria became dominant during the high-temperature conditions of the Early Triassic. However, at lower temperatures (30 ℃ and 25 ℃), the microbial communities associated with Cycas and Ginkgo exhibited greater adaptive advantages, consistent with their later dominance in cooler Late Triassic and post-Triassic ecosystems. This study provides microbial-based insights into the mechanisms by which plants adapted to extreme greenhouse climates following the Permian-Triassic mass extinction and contributes valuable data for understanding deep-time plant-microbe-environment interactions.

       

    • loading
    • Angus, A. A., Agapakis, C. M., Fong, S., et al., 2014. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PLoS One, 9(1): e83779. https://doi.org/10.1371/journal.pone.0083779
      Arun Kumar, T. K., Manimohan, P., 2009. The Genera Leucoagaricus and Leucocoprinus (Agaricales, Basidiomycota) in Kerala State, India. Mycotaxon, 108(1): 385-428. https://doi.org/10.5248/108.385
      Blackwell, M., 2000. Terrestrial Life: Fungal from the Start? Science, 289(5486): 1884-1885. https://doi.org/10.1126/science.289.5486.1884
      Bunn, R., Lekberg, Y., Zabinski, C., 2009. Arbuscular Mycorrhizal Fungi Ameliorate Temperature Stress in Thermophilic Plants. Ecology, 90(5): 1378-1388. https://doi.org/10.1890/07-2080.1
      Crous, P. W., Gams, W., Wingfield, M. J., et al., 1996. Phaeoacremonium gen. nov. Associated with Wilt and Decline Diseases of Woody Hosts and Human Infections. Mycologia, 88(5): 786-796. https://doi.org/10.1080/00275514.1996.12026716
      Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017-021-00259-4
      Delavaux, C. S., Weigelt, P., Dawson, W., 2019. Mycorrhizal Fungi Influence Global Plant Biogeography. Nature Ecology & Evolution, 3(3): 424-429. https://doi.org/10.1038/s41559-019-0823-4
      Dias, G. M., de Sousa Pires, A., Grilo, V. S., et al., 2019. Comparative Genomics of Paraburkholderia Kururiensis and Its Potential in Bioremediation, Biofertilization, and Biocontrol of Plant Pathogens. MicrobiologyOpen, 8(8): e00801. https://doi.org/10.1002/mbo3.801
      Dotzler, N., Krings, M., Taylor, T. N., et al., 2006. Germination Shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 Million- Year-Old Rhynie Chert. Mycological Progress, 5(3): 178-184. https://doi.org/10.1007/s11557-006-0511-z
      Dotzler, N., Walker, C., Krings, M., et al., 2009. Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert. Mycological Progress, 8(1): 9-18. https://doi.org/10.1007/s11557-008-0573-1
      Field, K. J., Daniell, T., Johnson, D., et al., 2020. Mycorrhizas for a Changing World: Sustainability, Conservation, and Society. Plants, People, Planet, 2(2): 98-103. https://doi.org/10.1002/ppp3.10092
      Genre, A., Lanfranco, L., Perotto, S., et al., 2020. Unique and Common Traits in Mycorrhizal Symbioses. Nature Reviews Microbiology, 18: 649-660. https://doi.org/10.1038/s41579-020-0402-3
      Hawkins, H. J., Cargill, R. I. M., Van Nuland, M. E., et al., 2023. Mycorrhizal Mycelium as a Global Carbon Pool. Current Biology, 33(11): R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
      Hoysted, G. A., Kowal, J., Jacob, A., et al., 2018. A Mycorrhizal Revolution. Current Opinion in Plant Biology, 44: 1-6. https://doi.org/10.1016/j.pbi.2017.12.004
      Jia, M., Sun, X., Chen, M., et al., 2022. Deciphering the Microbial Diversity Associated with Healthy and Wilted Paeonia suffruticosa Rhizosphere Soil. Front Microbiol, 13: 967601. https://doi.org/10.3389/fmicb.2022.967601
      Jian, P. Y., Zha, Q., Hui, X. R., et al., 2024. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae, 10(8): 855. https://doi.org/10.3390/horticulturae10080855
      Judd, E. J., Tierney, J. E., Lunt, D. J., et al., 2024. A 485-Million-Year History of Earth's Surface Temperature. Science, 385(6715): eadk3705. https://doi.org/10.1126/science.adk3705
      Kaur, C., Selvakumar, G., Ganeshamurthy, A. N., 2017. Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In: Shukla, P., ed., Recent Advances in Applied Microbiology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_10
      Krishnan, R., Menon, R. R., Likhitha, et al., 2017. Novosphingobium Pokkalii Sp Nov, a Novel Rhizosphere-Associated Bacterium with Plant Beneficial Properties Isolated from Saline-Tolerant Pokkali Rice. Research in Microbiology, 168(2): 113-121. https://doi.org/10.1016/j.resmic.2016.09.001
      Loskutov, I. G., Shelenga, T. V., Konarev, A. V., et al., 2019. Biochemical Aspects of Interactions between Fungi and Plants: A Case Study of Fusarium in Oats. Agricultural Biology, 54: 575-588. https://doi.org/10.15389/agrobiology.2019.3.575rus
      Lu, M. Z., 2020. Plant-Microbe Mutualism: Evolutionary Mechanisms and Ecological Functions. Biodiversity Science, 28(11): 1311-1323 (in Chinese with English abstract). doi: 10.17520/biods.2020409
      Ma, Z. Q., Guo, D. L., Xu, X. L., et al., 2018. Evolutionary History Resolves Global Organization of Root Functional Traits. Nature, 555: 94-97. https://doi.org/10.1038/nature25783
      Maheshwari, D. K., 2011. Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin. https://doi.org/10.1007/978-3-642-20332-9 doi: 10.1007/978-3-642-20332-9
      Maloy, S., Hughes, K., 2013. Brenner's Encyclopedia of Genetics. Academic Press, New York.
      Mills, B. J. W., Batterman, S. A., Field, K. J., 2018. Nutrient Acquisition by Symbiotic Fungi Governs Palaeozoic Climate Transition. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1739): 20160503. https://doi.org/10.1098/rstb.2016.0503
      Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115
      Pirozynski, K. A., Malloch, D. W., 1975. The Origin of Land Plants: A Matter of Mycotrophism. Biosystems, 6(3): 153-164. https://doi.org/10.1016/0303-2647(75)90023-4
      Preston, G. M., 2004. Plant Perceptions of Plant Growth-Promoting Pseudomonas. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359(1446): 907-918. https://doi.org/10.1098/rstb.2003.1384
      Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011. https://doi.org/10.1098/rsbl.2012.0503
      Redecker, D., Kodner, R., Graham, L. E., 2000. Glomalean Fungi from the Ordovician. Science, 289(5486): 1920-1921. https://doi.org/10.1126/science.289.5486.1920
      Remy, W., Taylor, T. N., Hass, H., et al., 1994. Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91(25): 11841-11843. https://doi.org/10.1073/pnas.91.25.11841
      Rippon, J. W., Conway, T. P., Domes, A. L., 1965. Pathogenic Potential of Aspergillus and Penicillium Species. The Journal of Infectious Diseases, 115(1): 27-32. https://doi.org/10.1093/infdis/115.1.27
      Rivera-Vega, L. J., Grunseich, J. M., Aguirre, N. M., et al., 2022. A Beneficial Plant-Associated Fungus Shifts the Balance Toward Plant Growth over Resistance, Increasing Cucumber Tolerance to Root Herbivory. Plants (Basel, Switzerland), 11(3): 282. https://doi.org/10.3390/plants11030282
      Ruiz-Lozano, J. M., Azcon, R., Gomez, M., 1995. Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology, 61(2): 456-460. https://doi.org/10.1128/aem.61.2.456-460.1995
      Scotese, C. R., Song, H. J., Mills, B. J. W., et al., 2021. Phanerozoic Paleotemperatures: The Earth's Changing Climate during the last 540 Million Years. Earth-Science Reviews, 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503
      Shu, W., Tong, J., Yu, J., et al., 2023. Permian-Middle Triassic Floral Succession in North China and Implications for the Great Transition of Continental Ecosystems. GSA Bulletin, 135(7-8): 1747-1767. https://doi.org/10.1130/B36316.1
      Song, H. B., Bau, T., 2023. Conocybe Section Pilosellae in China: Reconciliation of Taxonomy and Phylogeny Reveals Seven New Species and a New Record. Journal of Fungi, 9(9): 924. https://doi.org/10.3390/jof9090924
      Strullu-Derrien, C., Kenrick, P., Pressel, S., et al., 2014. Fungal Associations in Horneophyton Ligneri from the Rhynie Chert (C. 407 Million Year Old) Closely Resemble those in Extant Lower Land Plants: Novel Insights into Ancestral Plant-Fungus Symbioses. New Phytologist, 203(3): 964-979. https://doi.org/10.1111/nph.12805
      Sun, M., Shi, C., Huang, Y., et al., 2023. Effect of Disease Severity on the Structure and Diversity of the Phyllosphere Microbial Community in Tobacco. Frontiers in Microbiology, 13: 1081576. https://doi.org/10.3389/fmicb.2022.1081576
      Sun, S. L., Yang, W. L., Fang, W. W., et al., 2018. The Plant Growth-Promoting Rhizobacterium Variovorax Boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile. Applied and Environmental Microbiology, 84(16): e00298-18. https://doi.org/10.1128/aem.00298-18
      Sun, Y., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End-Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
      Tao, X., Chen, S. L., 2020. Research Progress on Fungal Fossils. Mycosystema, 39(2): 211-222 (in Chinese with English abstract).
      Tarkka, M. T., Lehr, N. A., Hampp, R., et al., 2008. Plant Behavior Upon Contact with Streptomycetes. Plant Signaling & Behavior, 3(11): 917-919. https://doi.org/10.4161/psb.5996
      Taylor, L. L., Banwart, S. A., Valdes, P. J., et al., 2012. Evaluating the Effects of Terrestrial Ecosystems, Climate and Carbon Dioxide on Weathering over Geological Time: A Global-Scale Process-Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 565-582. https://doi.org/10.1098/rstb.2011.0251
      Taylor, L. L., Leake, J. R., Quirk, J., et al., 2009. Biological Weathering and the Long-Term Carbon Cycle: Integrating Mycorrhizal Evolution and Function into the Current Paradigm. Geobiology, 7(2): 171-191. https://doi.org/10.1111/j.1472-4669.2009.00194.x
      Tian, N., Wang, Y. D., Jiang, Z. K., 2021. A New Permineralized Osmundaceous Rhizome with Fungal Remains from the Jurassic of Western Liaoning, NE China. Review of Palaeobotany and Palynology, 290: 104414. https://doi.org/10.1016/j.revpalbo.2021.104414
      Trappe, J. M., 1987. Phylogenetic and Ecologic Aspects of Mycotrophy in the Angiosperms from an Evolutionary Standpoint. Ecophysiology of VA Mycorrhizal Plants, 5-25.
      van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al., 2015. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytologist, 205(4): 1406-1423. https://doi.org/10.1111/nph.13288
      Wang, B., Qiu, Y. L., 2006. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza, 16(5): 299-363. https://doi.org/10.1007/s00572-005-0033-6
      Wang, Y. Z., Pan, T. G., Ke, Y. Q., 2003. Study and Utilization on Symbiotic Relation between Microbes and Plants. Chinese Journal of Eco-Agriculture, 11(3): 95-98 (in Chinese with English abstract).
      Xia, Y., Wang, Y., Wang, Y., et al., 2016. Cellular Adhesiveness and Cellulolytic Capacity in Anaerolineae Revealed by Omics-Based Genome Interpretation. Biotechnology for Biofuels, 9: 111. https://doi.org/10.1186/s13068-016-0524-z
      Xie, S. C., Algeo, T. J., Zhou, W. F., et al., 2017. Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries. Earth and Planetary Science Letters, 460: 180-191. https://doi.org/10.1016/j.epsl.2016.12.015
      Xu, Z., Hilton, J., Yu, J. X., et al., 2022. End Permian to Middle Triassic Plant Species Richness and Abundance Patterns in South China: Coevolution of Plants and the Environment through the Permian-Triassic Transition. Earth-Science Reviews, 232: 104136. https://doi.org/10.1016/j.earscirev.2022.104136
      Xue, H., Piao, C. G., Lin, Y. H., et al., 2022. Pinirhizobacter Soli gen. nov., sp. nov., a Novel Low Temperature Resistant Gammaproteobacterium in the Family Rhodanobacteraceae Isolated from Rhizospheric Soil of Larix Gmelinii. Archives of Microbiology, 204(5): 283. https://doi.org/10.1007/s00203-022-02867-0
      Yu, J. X., Broutin, J., Lu, Z. S., 2022. Plants and Palynomorphs around the Permian-Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978-981-19-1492-8 doi: 10.1007/978-981-19-1492-8
      Zakaria, L., 2024. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens (Basel, Switzerland), 13(9): 813. https://doi.org/10.3390/pathogens13090813
      Zhang, K., Chen, X., Shi, X., et al., 2024. Endophytic Bacterial Community, Core Taxa, and Functional Variations within the Fruiting Bodies of Laccaria. Microorganisms, 12(11): 2296. https://doi.org/10.3390/microorganisms12112296
      Zhao, Z. W., 1999. The Roles of Mycorrhizal Fungi in Terrestrial Ecosysytems. Biodiversity Science, 7(3): 240-244 (in Chinese with English abstract). doi: 10.17520/biods.1999037
      Zhu, X. C., Song, F. B., Liu, F. L., 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In: Wu, Q. S., ed., Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-4115-0_8
      卢明镇, 2020. 植物‒微生物互惠共生: 演化机制与生态功能. 生物多样性, 28(11): 1311-1323.
      陶欣, 陈双林, 2020. 真菌化石研究进展. 菌物学报, 39(2): 211-222.
      王元贞, 潘廷国, 柯玉琴, 2003. 微生物与植物共生关系的研究及其利用. 中国生态农业学报, 11(3): 95-98.
      赵之伟, 1999. 菌根真菌在陆地生态系统中的作用. 生物多样性, 7(3): 240-244.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(2)

      Article views (133) PDF downloads(24) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return