Citation: | Xu Zhen, Yu Jianxin, Peng Nian, Chi Hongfei, Han Mingxian, Lin Wenjie, Jiang Hongchen, 2025. Modern Climate-Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian-Triassic Mass Extinction. Earth Science, 50(3): 934-950. doi: 10.3799/dqkx.2025.001 |
Angus, A. A., Agapakis, C. M., Fong, S., et al., 2014. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PLoS One, 9(1): e83779. https://doi.org/10.1371/journal.pone.0083779
|
Arun Kumar, T. K., Manimohan, P., 2009. The Genera Leucoagaricus and Leucocoprinus (Agaricales, Basidiomycota) in Kerala State, India. Mycotaxon, 108(1): 385-428. https://doi.org/10.5248/108.385
|
Blackwell, M., 2000. Terrestrial Life: Fungal from the Start? Science, 289(5486): 1884-1885. https://doi.org/10.1126/science.289.5486.1884
|
Bunn, R., Lekberg, Y., Zabinski, C., 2009. Arbuscular Mycorrhizal Fungi Ameliorate Temperature Stress in Thermophilic Plants. Ecology, 90(5): 1378-1388. https://doi.org/10.1890/07-2080.1
|
Crous, P. W., Gams, W., Wingfield, M. J., et al., 1996. Phaeoacremonium gen. nov. Associated with Wilt and Decline Diseases of Woody Hosts and Human Infections. Mycologia, 88(5): 786-796. https://doi.org/10.1080/00275514.1996.12026716
|
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian-Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017-021-00259-4
|
Delavaux, C. S., Weigelt, P., Dawson, W., 2019. Mycorrhizal Fungi Influence Global Plant Biogeography. Nature Ecology & Evolution, 3(3): 424-429. https://doi.org/10.1038/s41559-019-0823-4
|
Dias, G. M., de Sousa Pires, A., Grilo, V. S., et al., 2019. Comparative Genomics of Paraburkholderia Kururiensis and Its Potential in Bioremediation, Biofertilization, and Biocontrol of Plant Pathogens. MicrobiologyOpen, 8(8): e00801. https://doi.org/10.1002/mbo3.801
|
Dotzler, N., Krings, M., Taylor, T. N., et al., 2006. Germination Shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 Million- Year-Old Rhynie Chert. Mycological Progress, 5(3): 178-184. https://doi.org/10.1007/s11557-006-0511-z
|
Dotzler, N., Walker, C., Krings, M., et al., 2009. Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert. Mycological Progress, 8(1): 9-18. https://doi.org/10.1007/s11557-008-0573-1
|
Field, K. J., Daniell, T., Johnson, D., et al., 2020. Mycorrhizas for a Changing World: Sustainability, Conservation, and Society. Plants, People, Planet, 2(2): 98-103. https://doi.org/10.1002/ppp3.10092
|
Genre, A., Lanfranco, L., Perotto, S., et al., 2020. Unique and Common Traits in Mycorrhizal Symbioses. Nature Reviews Microbiology, 18: 649-660. https://doi.org/10.1038/s41579-020-0402-3
|
Hawkins, H. J., Cargill, R. I. M., Van Nuland, M. E., et al., 2023. Mycorrhizal Mycelium as a Global Carbon Pool. Current Biology, 33(11): R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
|
Hoysted, G. A., Kowal, J., Jacob, A., et al., 2018. A Mycorrhizal Revolution. Current Opinion in Plant Biology, 44: 1-6. https://doi.org/10.1016/j.pbi.2017.12.004
|
Jia, M., Sun, X., Chen, M., et al., 2022. Deciphering the Microbial Diversity Associated with Healthy and Wilted Paeonia suffruticosa Rhizosphere Soil. Front Microbiol, 13: 967601. https://doi.org/10.3389/fmicb.2022.967601
|
Jian, P. Y., Zha, Q., Hui, X. R., et al., 2024. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae, 10(8): 855. https://doi.org/10.3390/horticulturae10080855
|
Judd, E. J., Tierney, J. E., Lunt, D. J., et al., 2024. A 485-Million-Year History of Earth's Surface Temperature. Science, 385(6715): eadk3705. https://doi.org/10.1126/science.adk3705
|
Kaur, C., Selvakumar, G., Ganeshamurthy, A. N., 2017. Burkholderia to Paraburkholderia: The Journey of a Plant-Beneficial-Environmental Bacterium. In: Shukla, P., ed., Recent Advances in Applied Microbiology. Springer, Singapore.
|
Krishnan, R., Menon, R. R., Likhitha, et al., 2017. Novosphingobium Pokkalii Sp Nov, a Novel Rhizosphere-Associated Bacterium with Plant Beneficial Properties Isolated from Saline-Tolerant Pokkali Rice. Research in Microbiology, 168(2): 113-121. https://doi.org/10.1016/j.resmic.2016.09.001
|
Loskutov, I. G., Shelenga, T. V., Konarev, A. V., et al., 2019. Biochemical Aspects of Interactions between Fungi and Plants: A Case Study of Fusarium in Oats. Agricultural Biology, 54: 575-588. https://doi.org/10.15389/agrobiology.2019.3.575rus
|
Lu, M. Z., 2020. Plant-Microbe Mutualism: Evolutionary Mechanisms and Ecological Functions. Biodiversity Science, 28(11): 1311-1323 (in Chinese with English abstract). doi: 10.17520/biods.2020409
|
Ma, Z. Q., Guo, D. L., Xu, X. L., et al., 2018. Evolutionary History Resolves Global Organization of Root Functional Traits. Nature, 555: 94-97. https://doi.org/10.1038/nature25783
|
Maheshwari, D. K., 2011. Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin. https://doi.org/10.1007/978-3-642-20332-9 doi: 10.1007/978-3-642-20332-9
|
Maloy, S., Hughes, K., 2013. Brenner's Encyclopedia of Genetics. Academic Press, New York.
|
Mills, B. J. W., Batterman, S. A., Field, K. J., 2018. Nutrient Acquisition by Symbiotic Fungi Governs Palaeozoic Climate Transition. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1739): 20160503. https://doi.org/10.1098/rstb.2016.0503
|
Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115
|
Pirozynski, K. A., Malloch, D. W., 1975. The Origin of Land Plants: A Matter of Mycotrophism. Biosystems, 6(3): 153-164. https://doi.org/10.1016/0303-2647(75)90023-4
|
Preston, G. M., 2004. Plant Perceptions of Plant Growth-Promoting Pseudomonas. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359(1446): 907-918. https://doi.org/10.1098/rstb.2003.1384
|
Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011. https://doi.org/10.1098/rsbl.2012.0503
|
Redecker, D., Kodner, R., Graham, L. E., 2000. Glomalean Fungi from the Ordovician. Science, 289(5486): 1920-1921. https://doi.org/10.1126/science.289.5486.1920
|
Remy, W., Taylor, T. N., Hass, H., et al., 1994. Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91(25): 11841-11843. https://doi.org/10.1073/pnas.91.25.11841
|
Rippon, J. W., Conway, T. P., Domes, A. L., 1965. Pathogenic Potential of Aspergillus and Penicillium Species. The Journal of Infectious Diseases, 115(1): 27-32. https://doi.org/10.1093/infdis/115.1.27
|
Rivera-Vega, L. J., Grunseich, J. M., Aguirre, N. M., et al., 2022. A Beneficial Plant-Associated Fungus Shifts the Balance Toward Plant Growth over Resistance, Increasing Cucumber Tolerance to Root Herbivory. Plants (Basel, Switzerland), 11(3): 282. https://doi.org/10.3390/plants11030282
|
Ruiz-Lozano, J. M., Azcon, R., Gomez, M., 1995. Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology, 61(2): 456-460. https://doi.org/10.1128/aem.61.2.456-460.1995
|
Scotese, C. R., Song, H. J., Mills, B. J. W., et al., 2021. Phanerozoic Paleotemperatures: The Earth's Changing Climate during the last 540 Million Years. Earth-Science Reviews, 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503
|
Shu, W., Tong, J., Yu, J., et al., 2023. Permian-Middle Triassic Floral Succession in North China and Implications for the Great Transition of Continental Ecosystems. GSA Bulletin, 135(7-8): 1747-1767. https://doi.org/10.1130/B36316.1
|
Song, H. B., Bau, T., 2023. Conocybe Section Pilosellae in China: Reconciliation of Taxonomy and Phylogeny Reveals Seven New Species and a New Record. Journal of Fungi, 9(9): 924. https://doi.org/10.3390/jof9090924
|
Strullu-Derrien, C., Kenrick, P., Pressel, S., et al., 2014. Fungal Associations in Horneophyton Ligneri from the Rhynie Chert (C. 407 Million Year Old) Closely Resemble those in Extant Lower Land Plants: Novel Insights into Ancestral Plant-Fungus Symbioses. New Phytologist, 203(3): 964-979. https://doi.org/10.1111/nph.12805
|
Sun, M., Shi, C., Huang, Y., et al., 2023. Effect of Disease Severity on the Structure and Diversity of the Phyllosphere Microbial Community in Tobacco. Frontiers in Microbiology, 13: 1081576. https://doi.org/10.3389/fmicb.2022.1081576
|
Sun, S. L., Yang, W. L., Fang, W. W., et al., 2018. The Plant Growth-Promoting Rhizobacterium Variovorax Boronicumulans CGMCC 4969 Regulates the Level of Indole-3-Acetic Acid Synthesized from Indole-3-Acetonitrile. Applied and Environmental Microbiology, 84(16): e00298-18. https://doi.org/10.1128/aem.00298-18
|
Sun, Y., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End-Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030
|
Tao, X., Chen, S. L., 2020. Research Progress on Fungal Fossils. Mycosystema, 39(2): 211-222 (in Chinese with English abstract).
|
Tarkka, M. T., Lehr, N. A., Hampp, R., et al., 2008. Plant Behavior Upon Contact with Streptomycetes. Plant Signaling & Behavior, 3(11): 917-919. https://doi.org/10.4161/psb.5996
|
Taylor, L. L., Banwart, S. A., Valdes, P. J., et al., 2012. Evaluating the Effects of Terrestrial Ecosystems, Climate and Carbon Dioxide on Weathering over Geological Time: A Global-Scale Process-Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 565-582. https://doi.org/10.1098/rstb.2011.0251
|
Taylor, L. L., Leake, J. R., Quirk, J., et al., 2009. Biological Weathering and the Long-Term Carbon Cycle: Integrating Mycorrhizal Evolution and Function into the Current Paradigm. Geobiology, 7(2): 171-191. https://doi.org/10.1111/j.1472-4669.2009.00194.x
|
Tian, N., Wang, Y. D., Jiang, Z. K., 2021. A New Permineralized Osmundaceous Rhizome with Fungal Remains from the Jurassic of Western Liaoning, NE China. Review of Palaeobotany and Palynology, 290: 104414. https://doi.org/10.1016/j.revpalbo.2021.104414
|
Trappe, J. M., 1987. Phylogenetic and Ecologic Aspects of Mycotrophy in the Angiosperms from an Evolutionary Standpoint. Ecophysiology of VA Mycorrhizal Plants, 5-25.
|
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al., 2015. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytologist, 205(4): 1406-1423. https://doi.org/10.1111/nph.13288
|
Wang, B., Qiu, Y. L., 2006. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza, 16(5): 299-363. https://doi.org/10.1007/s00572-005-0033-6
|
Wang, Y. Z., Pan, T. G., Ke, Y. Q., 2003. Study and Utilization on Symbiotic Relation between Microbes and Plants. Chinese Journal of Eco-Agriculture, 11(3): 95-98 (in Chinese with English abstract).
|
Xia, Y., Wang, Y., Wang, Y., et al., 2016. Cellular Adhesiveness and Cellulolytic Capacity in Anaerolineae Revealed by Omics-Based Genome Interpretation. Biotechnology for Biofuels, 9: 111. https://doi.org/10.1186/s13068-016-0524-z
|
Xie, S. C., Algeo, T. J., Zhou, W. F., et al., 2017. Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries. Earth and Planetary Science Letters, 460: 180-191. https://doi.org/10.1016/j.epsl.2016.12.015
|
Xu, Z., Hilton, J., Yu, J. X., et al., 2022. End Permian to Middle Triassic Plant Species Richness and Abundance Patterns in South China: Coevolution of Plants and the Environment through the Permian-Triassic Transition. Earth-Science Reviews, 232: 104136. https://doi.org/10.1016/j.earscirev.2022.104136
|
Xue, H., Piao, C. G., Lin, Y. H., et al., 2022. Pinirhizobacter Soli gen. nov., sp. nov., a Novel Low Temperature Resistant Gammaproteobacterium in the Family Rhodanobacteraceae Isolated from Rhizospheric Soil of Larix Gmelinii. Archives of Microbiology, 204(5): 283. https://doi.org/10.1007/s00203-022-02867-0
|
Yu, J. X., Broutin, J., Lu, Z. S., 2022. Plants and Palynomorphs around the Permian-Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978-981-19-1492-8 doi: 10.1007/978-981-19-1492-8
|
Zakaria, L., 2024. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens (Basel, Switzerland), 13(9): 813. https://doi.org/10.3390/pathogens13090813
|
Zhang, K., Chen, X., Shi, X., et al., 2024. Endophytic Bacterial Community, Core Taxa, and Functional Variations within the Fruiting Bodies of Laccaria. Microorganisms, 12(11): 2296. https://doi.org/10.3390/microorganisms12112296
|
Zhao, Z. W., 1999. The Roles of Mycorrhizal Fungi in Terrestrial Ecosysytems. Biodiversity Science, 7(3): 240-244 (in Chinese with English abstract). doi: 10.17520/biods.1999037
|
Zhu, X. C., Song, F. B., Liu, F. L., 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In: Wu, Q. S., ed., Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore.
|
卢明镇, 2020. 植物‒微生物互惠共生: 演化机制与生态功能. 生物多样性, 28(11): 1311-1323.
|
陶欣, 陈双林, 2020. 真菌化石研究进展. 菌物学报, 39(2): 211-222.
|
王元贞, 潘廷国, 柯玉琴, 2003. 微生物与植物共生关系的研究及其利用. 中国生态农业学报, 11(3): 95-98.
|
赵之伟, 1999. 菌根真菌在陆地生态系统中的作用. 生物多样性, 7(3): 240-244.
|