Citation: | Yu Wenchao, Márta Polgári, Zhou Qi, Du Yuansheng, Gong Yin, Yang Mingyu, Wei Wei, Liu Zhichen, Xu Lingtong, Zhen Xin, Zhou Gao, 2025. Geobiological Perspective for the Formation of Manganiferous Deposit: Principle, Evidence, and Model. Earth Science, 50(3): 1142-1161. doi: 10.3799/dqkx.2025.002 |
Banfield, M. J., Salvucci, M. E., Baker, E. N., et al., 2001. Crystal Structure of the NADP (H)-Dependent Ketose Reductase from Bemisia Argentifolii at 2.3 Å Resolution. Journal of Molecular Biology, 306: 239-250. https://doi.org/10.1006/jmbi.2000.4381
|
Beal, E. J., House, C. H., Orphan, V. J., 2009. Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 325(5937): 184-187. https://doi.org/10.1126/science.1169984
|
Biondi, J. C., Lopez, M., 2017. Urucum Neoproterozoic-Cambrian Manganese Deposits (MS, Brazil): Biogenic Participation in the Ore Genesis, Geology, Geochemistry, and Depositional Environment. Ore Geology Reviews, 91: 335-386. https://doi.org/10.1016/j.oregeorev.2017.09.018
|
Biondi, J. C., Polgári, M., Gyollai, I., et al., 2020. Biogenesis of the Neoproterozoic Kremydilite Manganese Ores from Urucum (Brazil): A New Manganese Ore Type. Precambrian Research, 340: 105624. https://doi.org/10.1016/j.precamres.2020.105624
|
Blöthe, M., Wegorzewski, A., Müller, C., et al., 2015. Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules. Environmental Science & Technology, 49(13): 7692-7700. https://doi.org/10.1021/es504930v
|
Bücking, C., Schicklberger, M., Gescher, J., 2012. Microbial Metal Respiration: From Geochemistry to Potential Applications. Springer, Berlin, 49-82.
|
Burke, I. T., Kemp, A. E. S., 2002. Microfabric Analysis of Mn-Carbonate Laminae Deposition and Mn-Sulfide Formation in the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta, 66(9): 1589-1600. https://doi.org/10.1016/S0016-7037(01)00860-2
|
Butuzova, G. Y., Drits, V. A., Morozov, A. A., et al., 2009. Sediment-Hosted Mineral Deposits. Blackwell Publishing Ltd., Oxford, 57-72.
|
Calvert, S. E., Pedersen, T. F., 1996. Sedimentary Geochemistry of Manganese; Implications for the Environment of Formation of Manganiferous Black Shales. Economic Geology, 91: 36-47. https://doi.org/10.2113/gsecongeo.91.1.36
|
Canfield, D. E., Erik, K., Bo, T., 2005. Advances in Marine Biology. Academic Press, London.
|
Chen, F. G., Pufahl, P. K., Wang, Q. F., et al., 2022. A New Model for the Genesis of Carboniferous Mn Ores, Longtou Deposit, South China Block. Economic Geology, 117: 107-125. https://doi.org/10.5382/econgeo.4855
|
Chen, F. G., Wang, Q. F., Yang, S. J., et al., 2018. Space-Time Distribution of Manganese Ore Deposits along the Southern Margin of the South China Block, in the Context of Palaeo-Tethyan Evolution. International Geology Review, 60(1): 72-86. https://doi.org/10.1080/00206814.2017.1320689
|
Cho, H., Kim, K. H., Son, S. K., et al., 2018. Fine-Scale Microbial Communities Associated with Manganese Nodules in Deep-Sea Sediment of the Korea Deep Ocean Study Area in the Northeast Equatorial Pacific. Ocean Science Journal, 53(2): 337-353. https://doi.org/10.1007/s12601-018-0032-0
|
Clement, B. G., Luther, G. W., Tebo, B. M., 2009. Rapid, Oxygen-Dependent Microbial Mn(Ⅱ) Oxidation Kinetics at Sub-Micromolar Oxygen Concentrations in the Black Sea Suboxic Zone. Geochimica et Cosmochimica Acta, 73(7): 1878-1889. https://doi.org/10.1016/j.gca.2008.12.023
|
Daye, M., Klepac-Ceraj, V., Pajusalu, M., et al., 2019. Light-Driven Anaerobic Microbial Oxidation of Manganese. Nature, 576: 311-314. https://doi.org/10.1038/s41586-019-1804-0
|
Deng, X. D., Li, J. W., Vasconcelos, P., 2016. 40Ar/39Ar Dating of Supergene Mn-Oxides from the Zunyi Mn Deposit, Guizhou Plateau, SW China: Implications for Chemical Weathering and Paleoclimatic Evolution Since the Late Miocene. Chemical Geology, 445(16): 185-198. https://doi.org/10.1016/j.chemgeo.2016.02.009
|
Dick, G. J., Clement, B. G., Webb, S. M., et al., 2009. Enzymatic Microbial Mn(Ⅱ) Oxidation and Mn Biooxide Production in the Guaymas Basin Deep-Sea Hydrothermal Plume. Geochimica et Cosmochimica Acta, 73(21): 6517-6530. https://doi.org/10.1016/j.gca.2009.07.039
|
Dong, Z. G., Peng, Z. D., Robbins, L. J., et al., 2023. Episodic Ventilation of Euxinic Bottom Waters Triggers the Formation of Black Shale-Hosted Mn Carbonate Deposits. Geochimica et Cosmochimica Acta, 341: 132-149. https://doi.org/10.1016/j.gca.2022.11.027
|
Dong, Z. G., Zhang, B. L., Gyollai, I., et al., 2024. Microbial Contribution to the Formation of the Carboniferous Sedimentary Manganese Deposits in Northwestern China. Ore Geology Reviews, 170: 106124. https://doi.org/10.1016/j.oregeorev.2024.106124
|
Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255 (in Chinese with English abstract).
|
Du, Y. S., Yu, W. C., Zhou, Q., et al., 2023. Discussion about the Coupling Relationship between the Breakup of Supercontinent and the Large-Scale Manganese Accumulation in China. Journal of Palaeogeography (Chinese Edition), 25(6): 1211-1234 (in Chinese with English abstract).
|
Duan, G. W., Geng, X. Y., Wei, X. Y., et al., 2020. Advances in Physiological and Ecological Functions of Manganese Oxidizing Bacteria and the Underlying Molecular Mechanisms. Microbiology China, 47(9): 3039-3053 (in Chinese with English abstract).
|
Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141-162. https://doi. org/10.1016/j. earscirev. 2008.https://doi.org/10.005 doi: 10.1016/j.earscirev.2008.https://doi.org/10.005
|
Ehrlich, H. L., 1963. Bacteriology of Manganese Nodules: I. Bacterial Action on Manganese in Nodule Enrichments. Applied and Environmental Microbiology, 11: 15-19. https://doi.org/10.1128/am.11.1.15-19.1963
|
Estes, E. R., eer, P. F., Nordlund, D., et al., 2017. Biogenic Manganese Oxides as Reservoirs of Organic Carbon and Proteins in Terrestrial and Marine Environments. Geobiology, 15(1): 158-172. https://doi.org/10.1111/gbi.12195
|
Fan, D. L., Liu, T. B., Ye, J., 1992. The Process of Formation of Manganese Carbonate Deposits Hosted in Black Shale Series. Economic Geology, 87: 1419-1429. https://doi.org/10.2113/gsecongeo.87.5.1419
|
Fan, D. L., Yang, P. J., 1999. Introduction to and Classification of Manganese Deposits of China. Ore Geology Reviews, 15(1-3): 1-13. https://doi.org/10.1016/ S0169-1368(99)00011-6 doi: 10.1016/S0169-1368(99)00011-6
|
Fan, D. L., Ye, J., Yin, L. M., et al., 1999. Microbial Processes in the Formation of the Sinian Gaoyan Manganese Carbonate Ore, Sichuan Province, China. Ore Geology Reviews, 15(1-3): 79-93. https://doi.org/10.1016/S0169-1368(99)00016-5
|
Fang, H., Tang, D. J., Shi, X. Y., et al., 2020. Manganese-Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (Ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966
|
Fischer, W. W., Hemp, J., Johnson, J. E., 2015. Manganese and the Evolution of Photosynthesis. Origins of Life and Evolution of Biospheres, 45(3): 351-357. https://doi.org/10.1007/s11084-015-9442-5
|
Fu, Y., Xu, Z. G., Pei, H. X., et al., 2014. Study on Metallogenic Regularity of Manganese Ore Deposits in China. Acta Geologica Sinica, 88(12): 2192-2207 (in Chinese with English abstract).
|
Gao, Z. F., Zhu, X. K., Wang, D., et al., 2021. Insights into Hydrothermal Controls and Processes Leading to the Formation of the Late Ediacaran Gaoyan Stratiform Manganese-Carbonate Deposit, Southwest China. Ore Geology Reviews, 139: 104524. https://doi.org/10.1016/j.oregeorev.2021.104524
|
Glasby, G. P., 2006. Manganese: Predominant Role of Nodules and Crusts. In: Schulz, H. D., Zabel, M., eds., Marine Geochemistry. Springer, Berlin, 371-427.
|
Gralnick, J. A., Newman, D. K., 2007. Extracellular Respiration. Molecular Microbiology, 65: 1-11. https://doi.org/10.1111/j.1365-2958.2007.05778.x
|
Granina, L., Müller, B., Wehrli, B., 2004. Origin and Dynamics of Fe and Mn Sedimentary Layers in Lake Baikal. Chemical Geology, 205(1-2): 55-72. https://doi.org/10.1016/j.chemgeo.2003.12.018
|
Gutzmer, J., Beukes, N. J., 1998. The Manganese Formation of the Neoproterozoic Penganga Group, India; Revision of an Enigma. Economic Geology, 93(7): 1091-1102. https://doi.org/10.1016/S1342-937X(05)70812-1
|
Haas, J., 2012. Influence of Global, Regional, and Local Factors on the Genesis of the Jurassic Manganese Ore Formation in the Transdanubian Range, Hungary. Ore Geology Reviews, 47: 77-86. https://doi.org/10.1016/j.oregeorev.2011.08.006
|
Hansel, C. M., 2017. Advances in Microbial Physiology, 70. Academic Press, London.
|
Hansel, C. M., Learman, D., 2015. Ehrlich's Geomicrobiology. CRC Press, Boca Raton, 401-452.
|
Havig, J. R., McCormick, M. L., Hamilton, T. L., et al., 2015. The Behavior of Biologically Important Trace Elements across the Oxic/Euxinic Transition of Meromictic Fayetteville Green Lake, New York, USA. Geochimica et Cosmochimica Acta, 165: 389-406. https://doi.org/10.1016/j.gca.2015.06.024
|
Hein, J. R., Fan, D. L., Ye, J., et al., 1999. Composition and Origin of Early Cambrian Tiantaishan Phosphorite-Mn Carbonate Ores, Shaanxi Province, China. Ore Geology Reviews, 15(1-3): 95-134. https://doi.org/10.1016/S0169-1368(99)00017-7
|
Heller, C., Kuhn, T., Versteegh, G. J. M., et al., 2018. The Geochemical Behavior of Metals during Early Diagenetic Alteration of Buried Manganese Nodules. Deep Sea Research Part I: Oceanographic Research Papers, 142: 16-33. https://doi.org/10.1016/j.dsr.2018.09.008
|
Henkel, J. V., Dellwig, O., Pollehne, F., et al., 2019. A Bacterial Isolate from the Black Sea Oxidizes Sulfide with Manganese (Ⅳ) Oxide. Proceedings of the National Academy of Sciences, 116(25): 12153-12155. https://doi.org/10.1073/pnas.1906000116
|
Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re-Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033
|
Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013
|
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology-Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983
|
Huang, Q., Jiang, S. Y., Pi, D. H., et al., 2023. Thermochemical Oxidation of Methane by Manganese Oxides in Hydrothermal Sediments. Communications Earth & Environment, 4: 224. https://doi.org/10.1038/s43247-023-00891-6
|
Huang, Q., Pi, D. H., Jiang, S. Y., et al., 2022. The Dual Role of Microbes in the Formation of the Malkantu Manganese Carbonate Deposit, NW China: Petrographic, Geochemical, and Experimental Evidence. Chemical Geology, 606: 120992. https://doi.org/10.1016/j.chemgeo.2022.120992
|
Jiao, L. X., She, Z. B., Papineau, D., et al., 2023. Evidence for High-Frequency Oxygenation of Ediacaran Shelf Seafloor during Early Evolution of Complex Life. Communications Earth & Environment, 4: 429. https://doi.org/10.1038/s43247-023-01080-1
|
Johnson, J. E., Savalia, P., Davis, R., et al., 2016a. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction. Environmental Science & Technology, 50(8): 4248-4258. https://doi.org/10.1021/acs.est.5b04834
|
Johnson, J. E., Webb, S. M., Ma, C., et al., 2016b. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record. Geochimica et Cosmochimica Acta, 173: 210-231. https://doi.org/10.1016/j.gca.2015.10.027
|
Kang, Y., Zhu, R., Liu, K., et al., 2024. Detrital and Authigenic Clay Minerals in Shales: A Review on Their Identification and Applications. Heliyon, 10(20): e39239. https://doi.org/10.1016/j.heliyon.2024.e39239
|
Kerr, R. A., 1984. Manganese Nodules Grow by Rain from Above: The Rain of Plant and Animal Remains Falling into the Deep Sea not only Provides Metals to Nodules but also Determines Nodule Growth Rates and Composition. Science, 223(4636): 576-577. https://doi.org/10.1126/science.223.4636.576
|
Konhauser, K. O., Urrutia, M. M., 1999. Bacterial Clay Authigenesis: A Common Biogeochemical Process. Chemical Geology, 161(4): 399-413. https://doi.org/10.1016/S0009-2541(99)00118-7
|
Krylov, A. A., Hachikubo, A., Minami, H., et al., 2018. Authigenic Rhodochrosite from a Gas Hydrate-Bearing Structure in Lake Baikal. International Journal of Earth Sciences, 107(6): 2011-2022. https://doi.org/10.1007/s00531-018-1584-z
|
Kuleshov, V. N., Bych, A. F., 2002. Isotopic Composition (δ13C, δ18O) and Origin of Manganese Carbonate Ores of the Usa Deposit (Kuznetskii Alatau). Lithology and Mineral Resources, 37(4): 330-343. https://doi.org/10.1023/A:1019995322515
|
Kuliński, K., Rehder, G., Asmala, E., et al., 2022. Biogeochemical Functioning of the Baltic Sea. Earth System Dynamics, 13: 633-685. https://doi.org/10.5194/esd-13-633-2022
|
Lewis, B. L., Landing, W. M., 1991. The Biogeochemistry of Manganese and Iron in the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S773-S803. https://doi.org/10.1016/ S0198-0149(10)80009-3 doi: 10.1016/S0198-0149(10)80009-3
|
Li, Y., Zhuang, Z. Y., Ye, H., et al., 2022. Evolution of Manganese-Bearing Minerals in Deep-Time Earth and Oxygenic Photosynthesis. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 203-212 (in Chinese with English abstract).
|
Lin, H., Szeinbaum, N. H., DiChristina, T. J., et al., 2012. Microbial Mn(Ⅳ) Reduction Requires an Initial One-Electron Reductive Solubilization Step. Geochimica et Cosmochimica Acta, 99: 179-192. https://doi.org/10.1016/j.gca.2012.09.020
|
Liu, C., Wang, Z. R., MacDonald, F. A., 2018. Sr and Mg Isotope Geochemistry of the Basal Ediacaran Cap Limestone Sequence of Mongolia: Implications for Carbonate Diagenesis, Mixing of Glacial Meltwaters, and Seawater Chemistry in the Aftermath of Snowball Earth. Chemical Geology, 491: 1-13. https://doi.org/10.1016/j.chemgeo.2018.05.008
|
Liu, C., Wang, Z. R., Raub, T. D., et al., 2014. Neoproterozoic Cap-Dolostone Deposition in Stratified Glacial Meltwater Plume. Earth and Planetary Science Letters, 404: 22-32. https://doi.org/10.1016/j.epsl.2014.06.039
|
Liu, F., Feng, X. H., Chen, X. H., et al., 2008. Advances in the Study of Biological Genesis of Manganese Oxide Minerals and Their Characteristics. Earth Science Frontiers, 15(6): 66-73 (in Chinese with English abstract).
|
Mandernack, K. W., Fogel, M. L., Tebo, B. M., et al., 1995b. Oxygen Isotope Analyses of Chemically and Microbially Produced Manganese Oxides and Manganates. Geochimica et Cosmochimica Acta, 59(21): 4409-4425. https://doi.org/10.1016/0016-7037(95)00299-F
|
Mandernack, K. W., Post, J., Tebo, B. M., 1995a. Manganese Mineral Formation by Bacterial Spores of the Marine Bacillus, Strain SG-1: Evidence for the Direct Oxidation of Mn(Ⅱ) to Mn(Ⅳ). Geochimica et Cosmochimica Acta, 59(21): 4393-4408. https://doi.org/10.1016/0016-7037(95)00298-E
|
Mandernack, K. W., Tebo, B. M., 1993. Manganese Scavenging and Oxidation at Hydrothermal Vents and in Vent Plumes. Geochimica et Cosmochimica Acta, 57(16): 3907-3923. https://doi.org/10.1016/0016-7037(93)90343-U
|
Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
|
Maynard, B., 2014. Treatise of Geochemistry 2nd Edition, Vol. 7, Sediments, Diagenesis, and Sedimentary Rocks. Pergamon, Oxford, 289-308.
|
Maynard, J. B., 2003. Treatise on Geochemistry. Pergamon, Oxford, 289-308.
|
Maynard, J. B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth-Surface Environments. Economic Geology, 105: 535-552. https://doi.org/10.2113/gsecongeo.105.3.535
|
Meng, Q., Xue, W. Q., Chen, F. Y., et al., 2022. Stratigraphy of the Guadalupian (Permian) Siliceous Deposits from Central Guizhou of South China: Regional Correlations with Implications for Carbonate Productivity during the Middle Permian Biocrisis. Earth-Science Reviews, 228: 104011. https://doi.org/10.1016/j.earscirev.2022.104011
|
Michaelis, W., Seifert, R., Nauhaus, K., et al., 2002. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 297(5583): 1013-1015. https://doi.org/10.1126/science.1072502
|
Miletto, M., Wang, X. L., Planavsky, N. J., et al., 2021. Marine Microbial Mn(Ⅱ) Oxidation Mediates Cr(Ⅲ) Oxidation and Isotope Fractionation. Geochimica et Cosmochimica Acta, 297: 101-119. https://doi.org/10.1016/j.gca.2021.01.008
|
Moffett, J. W., 1994, A Radiotracer Study of Cerium and Manganese Uptake onto Suspended Particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58: 695-703. https://doi.org/10.1016/0016-7037(94)90499-5
|
Morgan, J. J., 2005. Kinetics of Reaction between O2 and Mn(Ⅱ) Species in Aqueous Solutions. Geochimica et Cosmochimica Acta, 69(1): 35-48. https://doi.org/10.1016/j.gca.2004.06.013
|
Nealson, K. H., Saffarini, D., 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annual Review of Microbiology, 48: 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523
|
Nicholson, K., Hein, J. R., Bühn, B., et al., 1997. Precambrian to Modern Manganese Mineralization: Changes in Ore Type and Depositional Environment. Geological Society, London, Special Publications, 119(1): 1-3. https://doi.org/10.1144/GSL.SP.1997.119.01.01
|
Okita, P. M., 1992. Manganese Carbonate Mineralization in the Molango District, Mexico. Economic Geology, 87: 1345-1366. https://doi.org/10.2113/gsecongeo.87.5.1345
|
Polgári, M., Gyollai, I., Fintor, K., et al., 2019. Microbially Mediated Ore-Forming Processes and Cell Mineralization. Frontiers in Microbiology, 10: 2731. https://doi.org/10.3389/fmicb.2019.02731
|
Polgári, M., Hein, J. R., Tóth, A., et al., 2012a. Microbial Action Formed Jurassic Mn-Carbonate Ore Deposit in Only a Few Hundred Years (Úrkút, Hungary). Geology, 40(10): 903-906. https://doi.org/10.1130/G33304.1
|
Polgári, M., Hein, J. R., Vigh, T., et al., 2012b. Microbial Processes and the Origin of the ÚRKÚT Manganese Deposit, Hungary. Ore Geology Reviews, 47: 87-109. https://doi.org/10.1016/j.oregeorev.2011.10.001
|
Polgári, M., Németh, T., Pál-Molnár, E., et al., 2016. Correlated Chemostratigraphy of Mn-Carbonate Microbialites (Úrkút, Hungary). Gondwana Research, 29(1): 278-289. https://doi.org/10.1016/j.gr.2014.12.002
|
Polgari, M., Okita, P. M., Hein, J. R., 1991. Stable Isotope Evidence for the Origin of the Urkut Manganese Ore Deposit, Hungary. Journal of Sedimentary Research, 61.
|
Post, J. E., 1999. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceedings of the National Academy of Sciences, 96(7): 3447-3454. https://doi.org/10.1073/pnas.96.7.3447
|
Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi'ao Formation-Datangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Bulletin of Geological Science and Technology, 34(6): 47-57 (in Chinese with English abstract).
|
Rajabzadeh, M. A., Haddad, F., Polgári, M., et al., 2017. Investigation on the Role of Microorganisms in Manganese Mineralization from Abadeh-Tashk Area, Fars Province, Southwestern Iran by Using Petrographic and Geochemical Data. Ore Geology Reviews, 80: 229-249. https://doi.org/10.1016/j.oregeorev.2016.06.035
|
Reolid, M., El Kadiri, K., Abad, I., et al., 2011. Jurassic Microbial Communities in Hydrothermal Manganese Crust of the Rifian Calcareous Chain, Northern Morocco. Sedimentary Geology, 233(1-4): 159-172. https://doi.org/10.1016/j.sedgeo.2010.11.008
|
Richter, K., Schicklberger, M., Gescher, J., 2012. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration. Applied and Environmental Microbiology, 78(4): 913-921. https://doi.org/10.1128/aem.06803-11
|
Romano, C. A., Zhou, M. W., Song, Y., et al., 2017. Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx. Nature Communications, 8: 746. https://doi.org/10.1038/s41467-017-00896-8
|
Roy, S., 1988. Manganese Metallogenesis: A Review. Ore Geology Reviews, 4(1-2): 155-170. https://doi.org/10.1016/0169-1368(88)90011-X
|
Roy, S., 1992. Environments and Processes of Manganese Deposition. Economic Geology, 87: 1218-1236. https://doi.org/10.2113/gsecongeo.87.5.1218
|
Roy, S., 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth-Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004
|
Saffarini, D., Brockman, K., Beliaev, A., et al., 2015. Bacteria-Metal Interactions. Springer International Publishing, Cham, 21-40.
|
Santelli, C. M., Webb, S. M., Dohnalkova, A. C., et al., 2011. Diversity of Mn Oxides Produced by Mn(Ⅱ)-Oxidizing Fungi. Geochimica et Cosmochimica Acta, 75: 2762-2776. https://doi.org/10.1016/j.gca.2011.02.022
|
Shields, G. A., 2005. Neoproterozoic Cap Carbonates: A Critical Appraisal of Existing Models and the Plumeworld Hypothesis. Terra Nova, 17(4): 299-310. https://doi.org/10.1111/j.1365-3121.2005.00638.x
|
Shiraishi, F., Matsumura, Y., Chihara, R., et al., 2019. Depositional Processes of Microbially Colonized Manganese Crusts, Sambe Hot Spring, Japan. Geochimica et Cosmochimica Acta, 258: 1-18. https://doi.org/10.1016/j.gca.2019.05.023
|
Sjöberg, S., Callac, N., Allard, B., et al., 2018. Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite-Type Manganese Deposit in the Ytterby Mine, Sweden. Geomicrobiology Journal, 35(8): 657-674. https://doi.org/10.1080/01490451.2018.1444690
|
Solomon, E. I., Sundaram, U. M., Machonkin, T. E., 1996. Multicopper Oxidases and Oxygenases. Chemical Reviews, 96(7): 2563-2606. https://doi.org/10.1021/cr950046o
|
Song, H. Y., Algeo, T. J., Song, H. J., et al., 2023. Global Oceanic Anoxia Linked with the Capitanian (Middle Permian) Marine Mass Extinction. Earth and Planetary Science Letters, 610: 118128. https://doi.org/10.1016/j.epsl.2023.118128
|
Sutherland, K. M., Wankel, S. D., Hansel, C. M., 2018. Oxygen Isotope Analysis of Bacterial and Fungal Manganese Oxidation. Geobiology, 16(4): 399-411. https://doi.org/10.1111/gbi.12288
|
Tan, Z. Z., Jia, W. L., Li, J., et al., 2021. Geochemistry and Molybdenum Isotopes of the Basal Datangpo Formation: Implications for Ocean-Redox Conditions and Organic Matter Accumulation during the Cryogenian Interglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169. https://doi.org/10.1016/j.palaeo.2020.110169
|
Tang, Y. Z., Zeiner, C. A., Santelli, C. M., et al., 2013. Fungal Oxidative Dissolution of the Mn(Ⅱ)-Bearing Mineral Rhodochrosite and the Role of Metabolites in Manganese Oxide Formation. Environmental Microbiology, 15(4): 1063-1077. https://doi.org/10.1111/1462-2920.12029
|
Tebo, B. M., 1991. Manganese(Ⅱ) Oxidation in the Suboxic Zone of the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S883-S905. https://doi.org/10.1016/S0198-0149(10)80015-9
|
Tebo, B. M., Bargar, J. R., Clement, B. G., et al., 2004. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32: 287-328. https://doi.org/10.1146/annurev.earth.32.101802.120213
|
Tebo, B. M., Johnson, H. A., McCarthy, J. K., et al., 2005. Geomicrobiology of Manganese(Ⅱ) Oxidation. Trends in Microbiology, 13(9): 421-428. https://doi.org/10.1016/j.tim.2005.07.009
|
Templeton, A. S., Knowles, E. J., Eldridge, D. L., et al., 2009. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts. Nature Geoscience, 2: 872-876. https://doi.org/10.1038/ngeo696
|
Thamdrup, B., 2000. Bacterial Manganese and Iron Reduction in Aquatic Sediments. In: Schink, B., ed., Advances in Microbial Ecology. Springer, Boston, 41-84.
|
Thamdrup, B., Rosselló-Mora, R., Amann, R., 2000. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments. Applied and Environmental Microbiology, 66(7): 2888-2897. https://doi.org/10.1128/aem.66.7.2888-2897.2000
|
Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
|
Trimble, R., Ehrlich, H., 1968. Bacteriology of Manganese Nodules: Ⅲ. Reduction of MnO2 by Two Strains of Nodule Bacteria. Applied and Environmental Microbiology, 16: 695-702. https://doi.org/10.1128/am.16.5.695-702.1968
|
Tully, B. J., Heidelberg, J. F., 2013. Microbial Communities Associated with Ferromanganese Nodules and the Surrounding Sediments. Frontiers in Microbiology, 4: 161. https://doi.org/10.3389/fmicb.2013.00161
|
Vandieken, V., Pester, M., Finke, N., et al., 2012. Three Manganese Oxide-Rich Marine Sediments Harbor Similar Communities of Acetate-Oxidizing Manganese- Reducing Bacteria. The ISME Journal, 6(11): 2078-2090. https://doi.org/10.1038/ismej.2012.41
|
Vicenzi, E. P., Grissom, C. A., Livingston, R. A., et al., 2016. Rock Varnish on Architectural Stone: Microscopy and Analysis of Nanoscale Manganese Oxide Deposits on the Smithsonian Castle, Washington, DC. Heritage Science, 4(1): 26. https://doi.org/10.1186/s40494-016-0093-2
|
Volz, J. B., Liu, B., Köster, M., et al., 2020. Post-Depositional Manganese Mobilization during the Last Glacial Period in Sediments of the Eastern Clarion- Clipperton Zone, Pacific Ocean. Earth and Planetary Science Letters, 532: 116012. https://doi.org/10.1016/j.epsl.2019.116012
|
Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).
|
Wang, P., Algeo, T. J., Zhou, Q., et al., 2019. Large Accumulations of 34S-Enriched Pyrite in a Low-Sulfate Marine Basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504. https://doi.org/10.1016/j.precamres.2019.105504
|
Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial-Interglacial Transitions in Earth History. Earth-Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032
|
Wang, R., Wang, S., Tai, Y. P., et al., 2017. Biogenic Manganese Oxides Generated by Green Algae Desmodesmus Sp. WR1 to Improve Bisphenol a Removal. Journal of Hazardous Materials, 339: 310-319. https://doi.org/10.1016/j.jhazmat.2017.06.026
|
Wang, T. G., Li, M. J., Wang, C. J., et al., 2008. Organic Molecular Evidence in the Late Neoproterozoic Tillites for a Palaeo-Oceanic Environment during the Snowball Earth Era in the Yangtze Region, Southern China. Precambrian Research, 162(3-4): 317-326. https://doi.org/10.1016/j.precamres.2007.09.009
|
Wang, X., Li, Y., Li, Y. Z., et al., 2018. Effects of Mg2+ and SO42- on the Formation of Manganese Carbonate Induced by Microorganisms in Shallow Water. Earth Science, 43(S1): 145-156 (in Chinese with English abstract).
|
Webb, S. M., Dick, G. J., Bargar, J. R., et al., 2005. Evidence for the Presence of Mn(Ⅲ) Intermediates in the Bacterial Oxidation of Mn(Ⅱ). Proceedings of the National Academy of Sciences, 102(15): 5558-5563. https://doi.org/10.1073/pnas.0409119102
|
Wei, W., Yu, W. C., Du, Y. S., et al., 2024. A New Salinity-Based Model for Cryogenian Mn-Carbonate Deposits. Precambrian Research, 403: 107309. https://doi.org/10.1016/j.precamres.2024.107309
|
Wittkop, C., Swanner, E. D., Grengs, A., et al., 2020. Evaluating a Primary Carbonate Pathway for Manganese Enrichments in Reducing Environments. Earth and Planetary Science Letters, 538: 116201. https://doi.org/10.1016/j.epsl.2020.116201
|
Wu, C. Q., Zhang, Z. W., Xiao, J. F., et al., 2016. Nanhuan Manganese Deposits within Restricted Basins of the Southeastern Yangtze Platform, China: Constraints from Geological and Geochemical Evidence. Ore Geology Reviews, 75: 76-99. https://doi.org/10.1016/j.oregeorev.2015.12.003
|
Wu, C., Luo, Y. X., Xue, S. G., et al., 2023. Research Progress of Heavy Metal Biomineralization Induced by Iron and Manganese-Oxidizing Bacteria in Soils. Acta Pedologica Sinica, 60(4): 953-968 (in Chinese with English abstract).
|
Yang, J., Jansen, M. F., Macdonald, F. A., et al., 2017. Persistence of a Freshwater Surface Ocean after a Snowball Earth. Geology, 45: 615-618. https://doi.org/10.1130/G38920.1
|
Yu, H., Leadbetter, J. R., 2020. Bacterial Chemolithoautotrophy via Manganese Oxidation. Nature, 583: 453-458. https://doi.org/10.1038/s41586-020-2468-5
|
Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023
|
Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2022. Evaluation of Alkalinity Sources to Cryogenian Cap Carbonates, and Implications for Cap Carbonate Formation Models. Global and Planetary Change, 217: 103949. https://doi.org/10.1016/j.gloplacha.2022.103949
|
Yu, W. C., Liu, Z. C., Zhang, B. L., et al., 2024. A Distinct Manganese Deposit on a Middle Permian Carbonate Platform in South China. Chemical Geology, 662: 122227. https://doi.org/10.1016/j.chemgeo.2024.122227
|
Yu, W. C., Polgári, M., Fintor, K., et al., 2021a. Contribution of Microbial Processes to the Enrichment of Middle Permian Manganese Deposits in Northern Guizhou, South China. Ore Geology Reviews, 136: 104259. https://doi.org/10.1016/j.oregeorev.2021.104259
|
Yu, W. C., Polgári, M., Gyollai, I., et al., 2019. Microbial Metallogenesis of Cryogenian Manganese Ore Deposits in South China. Precambrian Research, 322: 122-135. https://doi.org/10.1016/j.precamres.2019.01.004
|
Yu, W. C., Polgári, M., Gyollai, I., et al., 2021b. Microbial Metallogenesis of Early Carboniferous Manganese Deposit in Central Guangxi, South China. Ore Geology Reviews, 136: 104251. https://doi.org/10.1016/j.oregeorev.2021.104251
|
Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract).
|
Zhang, B. L., Wang, C. L., Robbins, L., et al., 2020. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang Province, China: Implications for the Depositional Environment and the Origin of Mineralization. Economic Geology, 115: 1559-1588. https://doi.org/10.5382/econgeo.4729
|
Zhang, B., Cao, J., Hu, K., et al., 2022. Microbially-Mediated Mn Redox Cycling and Mn Carbonate Precipitation in the Marinoan Glacial Aftermath, South China. Global and Planetary Change, 217: 103950. https://doi.org/10.1016/j.gloplacha.2022.103950
|
Zhang, B., Cao, J., Liao, Z. W., et al., 2021a. Dynamic Biogeochemical Cycling and Mineralization of Manganese of Hydrothermal Origin after the Marinoan Glaciation. Chemical Geology, 584: 120502. https://doi.org/10.1016/j.chemgeo.2021.120502
|
Zhang, Y., Li, J., Chen, L., et al., 2021b. Manganese Carbonate Stromatolites of the Ediacaran Doushantuo Formation in Chengkou, Northern Yangtze Craton, China. Journal of Palaeogeography, 10(1): 22. https://doi.org/10.1186/s42501-021-00099-9
|
Zhou, H., Fu, C., 2020. Manganese-Oxidizing Microbes and Biogenic Manganese Oxides: Characterization, Mn(Ⅱ) Oxidation Mechanism and Environmental Relevance. Reviews in Environmental Science and Bio/Technology, 19(3): 489-507. https://doi.org/10.1007/s11157-020-09541-1
|
Zhou, Q., Du, Y. S., Yuan, L. J., et al., 2016. The Structure of the Wuling Rift Basin and Its Control on the Manganese Deposit during the Nanhua Period in Guizhou-Hunan-Chongqing Border Area, South China. Earth Science, 41(2): 177-188 (in Chinese with English abstract).
|
董志国, 张连昌, 王长乐, 等, 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255.
|
杜远生, 余文超, 周琦, 等, 2023. 超大陆裂解与中国大规模成锰作用的耦合关系探讨. 古地理学报, 25(6): 1211-1234.
|
段国文, 耿新燕, 魏绪宇, 等, 2020. 锰氧化细菌的生理生态功能与作用机制研究进展. 微生物学通报, 47(9): 3039-3053.
|
付勇, 徐志刚, 裴浩翔, 等, 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207.
|
李艳, 庄子仪, 叶欢, 等, 2022. 深时地球锰矿物演化与产氧光合作用. 矿物岩石地球化学通报, 41(2): 203-212.
|
刘凡, 冯雄汉, 陈秀华, 等, 2008. 氧化锰矿物的生物成因及其性质的研究进展. 地学前缘, 15(6): 66-73.
|
毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698.
|
齐靓, 余文超, 杜远生, 等, 2015. 黔东南华纪铁丝坳期-大塘坡期古气候的演变: 来自CIA的证据. 地质科技通报, 34(6): 47-57.
|
王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209.
|
王霄, 李艳, 黎晏彰, 等, 2018. 浅海Mg2+和SO42-对微生物诱导形成锰碳酸盐的影响. 地球科学, 43(S1): 145-156.
|
吴川, 罗雨轩, 薛生国, 等, 2023. 铁/锰氧化菌诱导土壤重金属生物成矿研究进展. 土壤学报, 60(4): 953-968.
|
翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111.
|
周琦, 杜远生, 袁良军, 等, 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-188.
|