Citation: | Zhang Lei, Zhao He, Lü Zhengyi, Wang Xiangdong, 2025. Progress in Study of Conodont Bioapatite Geochemistry. Earth Science, 50(3): 1122-1141. doi: 10.3799/dqkx.2025.004 |
Armstrong, H. A., Pearson, D. G., Griselin, M., 2001. Thermal Effects on Rare Earth Element and Strontium Isotope Chemistry in Single Conodont Elements. Geochimica et Cosmochimica Acta, 65(3): 435-441. https://doi.org/10.1016/S0016-7037(00)00548-2
|
Balter, V., Martin, J. E., Tacail, T., et al., 2019. Calcium Stable Isotopes Place Devonian Conodonts as First Level Consumers. Geochemical Perspectives Letters, 10: 36-39. https://doi.org/10.7185/geochemlet.1912
|
Bergström, S. M., Sweet, W. C., 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky, and Its Lateral Equivalents in Ohio and Indiana. Bulletin of American Paleontology, 50: 271-441.
|
Brazier, J. M., Suan, G., Tacail, T., et al., 2015. Calcium Isotope Evidence for Dramatic Increase of Continental Weathering during the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 411: 164-176. https://doi.org/10.1016/j.epsl.2014.11.028
|
Bright, C. A., Cruse, A. M., Lyons, T. W., et al., 2009. Seawater Rare-Earth Element Patterns Preserved in Apatite of Pennsylvanian Conodonts? Geochimica et Cosmochimica Acta, 73(6): 1609-1624. https://doi.org/10.1016/j.gca.2008.12.014
|
Buggisch, W., Joachimski, M. M., Sevastopulo, G., et al., 2008. Mississippian δ13Ccarb and Conodont Apatite δ18O Records: Their Relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273-292. https://doi.org/10.1016/j.palaeo.2008.03.043
|
Carlson, S. J., 2018. Revision and Review of the Order Pentamerida. In: Copper, P., ed., Brachiopods. CRC Press, Boca Raton, 53-58.
|
Chen, B., Joachimski, M. M., Sun, Y. D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian-Lopingian Boundary Sections: Climatic or Sea-Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016
|
Chen, D. Z., Wang, J. G., Racki, G., et al., 2013. Large Sulphur Isotopic Perturbations and Oceanic Changes during the Frasnian-Famennian Transition of the Late Devonian. Journal of the Geological Society, 170(3): 465-476. https://doi.org/10.1144/jgs2012-037
|
Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
|
Chen, J. B., Zhao, L. S., Chen, Z. Q., et al., 2012. In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science, 37(1): 25-34 (in Chinese with English abstract).
|
Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025
|
Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362
|
Cummins, R. C., Finnegan, S., Fike, D. A., et al., 2014. Carbonate Clumped Isotope Constraints on Silurian Ocean Temperature and Seawater δ18O. Geochimica et Cosmochimica Acta, 140: 241-258. https://doi.org/10.1016/j.gca.2014.05.024
|
De La Rocha, C. L., DePaolo, D. J., 2000. Isotopic Evidence for Variations in the Marine Calcium Cycle over the Cenozoic. Science, 289(5482): 1176-1178. https://doi.org/10.1126/science.289.5482.1176
|
Deng, Y., Guo, Q., Liu, C., et al., 2022. Early Diagenetic Control on the Enrichment and Fractionation of Rare Earth Elements in Deep-Sea Sediments. Science Advances, 8(25): eabn5466. https://doi.org/10.1126/sciadv.abn5466
|
Du, Y., Zhu, Y. Y., Song, H., et al., 2019. Analytical Method for δ18O of Phosphate in Trace Apatite. Earth Science, 44(2): 456-462 (in Chinese with English abstract).
|
Ebneth, S., Diener, A., Buhl, D., et al., 1997. Strontium Isotope Systematics of Conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 79-96. https://doi.org/10.1016/S0031-0182(97)00057-6
|
Edwards, C. T., Jones, C. M., Quinton, P. C., et al., 2022. Oxygen Isotope (δ18O) Trends Measured from Ordovician Conodont Apatite Using Secondary Ion Mass Spectrometry (SIMS): Implications for Paleo-Thermometry Studies. GSA Bulletin, 134(1-2): 261-274. https://doi.org/10.1130/b35891.1
|
Elrick, M., 2022. Orbital-Scale Climate Changes Detected in Lower and Middle Ordovician Cyclic Limestones Using Oxygen Isotopes of Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111209. https://doi.org/10.1016/j.palaeo.2022.111209
|
Epstein, A. G., Epstein, J. B., Harris, L. D., 1975. Conodont Color Alteration; an Index to Organic Metamorphism. U. S. Geological Survey, Washington, D. C. .
|
Fantle, M. S., 2010. Evaluating the Ca Isotope Proxy. American Journal of Science, 310(3): 194-230. https://doi.org/10.2475/03.2010.03
|
Farkaš, J., Böhm, F., Wallmann, K., et al., 2007. Calcium Isotope Record of Phanerozoic Oceans: Implications for Chemical Evolution of Seawater and Its Causative Mechanisms. Geochimica et Cosmochimica Acta, 71(21): 5117-5134. https://doi.org/10.1016/j.gca.2007.09.004
|
Faure, G., Powell, J. L., 2012. Strontium Isotope Geology. Springer, New York.
|
Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano-Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026
|
García-López, S., Bastida, F., Aller, J., et al., 2001. Geothermal Palaeogradients and Metamorphic Zonation from the Conodont Colour Alteration Index (CAI). Terra Nova, 13(2): 79-83. https://doi.org/10.1046/j.1365-3121.2001.00328.x
|
Girard, C., Cornée, J. J., Joachimski, M. M., et al., 2020. Paleogeographic Differences in Temperature, Water Depth and Conodont Biofacies during the Late Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 108852. https://doi.org/10.1016/j.palaeo.2018.06.046
|
Golding, M. L., McMillan, R., 2021. The Impacts of Diagenesis on the Geochemical Characteristics and Color Alteration Index of Conodonts. Palaeobiodiversity and Palaeoenvironments, 101(3): 803-821. https://doi.org/10.1007/s12549-020-00447-y
|
Goudemand, N., Orchard, M. J., Urdy, S., et al., 2011. Synchrotron-Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the First Vertebrates. Proceedings of the National Academy of Sciences, 108(21): 8720-8724. https://doi.org/10.1073/pnas.1101754108
|
Griffin, J. M., Montañez, I. P., Glessner, J. J. G., et al., 2021. Geologic Variability of Conodont Strontium Isotopic Composition Quantified by Laser Ablation Multiple Collection Inductively Coupled Plasma Mass Spectrometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 568: 110308. https://doi.org/10.1016/j.palaeo.2021.110308
|
Griffith, E. M., Fantle, M. S., Eisenhauer, A., et al., 2015. Effects of Ocean Acidification on the Marine Calcium Isotope Record at the Paleocene-Eocene Thermal Maximum. Earth and Planetary Science Letters, 419: 81-92. https://doi.org/10.1016/j.epsl.2015.03.010
|
Gussone, N., Filipsson, H. L., 2010. Calcium Isotope Ratios in Calcitic Tests of Benthic Foraminifers. Earth and Planetary Science Letters, 290(1-2): 108-117. https://doi.org/10.1016/j.epsl.2009.12.010
|
Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
|
Henderson, C. M., 2021. Conodonts. In: Selley, R., Plimer, I., Cocks, L., eds., Encyclopedia of Geology. Elsevier, Amsterdam, 435-445.
|
Henkes, G. A., Passey, B. H., Grossman, E. L., et al., 2018. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth and Planetary Science Letters, 490: 40-50. https://doi.org/10.1016/j.epsl.2018.02.001
|
Herrmann, A. D., Barrick, J. E., Algeo, T. J., 2015. The Relationship of Conodont Biofacies to Spatially Variable Water Mass Properties in the Late Pennsylvanian Midcontinent Sea. Paleoceanography, 30(3): 269-283. https://doi.org/10.1002/2014PA002725
|
Heuser, A., Eisenhauer, A., 2008. The Calcium Isotope Composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostandards and Geoanalytical Research, 32(3): 311-315. https://doi.org/10.1111/j.1751-908x.2008.00877.x
|
Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow-Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046
|
Hinde, G. J., 1879. On Conodonts from the Chazy and Cincinnati Group of the Cambro-Silurian, and from the Hamilton and Genesee-Shale Divisions of the Devonian, in Canada and the United States. Quarterly Journal of the Geological Society of London, 35(1-4): 351-369. https://doi.org/10.1144/gsl.jgs.1879.035.01-04.23
|
Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End-Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1
|
Huang, S. J., 1997. Carbon and Strontium Isotopes of Late Paleozoic Marine Carbonates in the Upper Yangtze Platform. Acta Geologica Sinica, 71(1): 45-53 (in Chinese with English abstract).
|
Joachimski, M. M., Breisig, S., Buggisch, W., et al., 2009. Devonian Climate and Reef Evolution: Insights from Oxygen Isotopes in Apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. https://doi.org/10.1016/j.epsl.2009.05.028
|
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1
|
Joachimski, M. M., van Geldern, R., Breisig, S., et al., 2004. Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542-553. https://doi.org/10.1007/s00531-004-0405-8
|
John, E. H., Cliff, R., Wignall, P. B., 2008. A Positive Trend in Seawater 87Sr/86Sr Values over the Early- Middle Frasnian Boundary (Late Devonian) Recorded in Well-Preserved Conodont Elements from the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(3-4): 166-175. https://doi.org/10.1016/j.palaeo.2008.04.031
|
Jost, A. B., Mundil, R., He, B., et al., 2014. Constraining the Cause of the End-Guadalupian Extinction with Coupled Records of Carbon and Calcium Isotopes. Earth and Planetary Science Letters, 396: 201-212. https://doi.org/10.1016/j.epsl.2014.04.014
|
Kamber, B. S., Webb, G. E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509-2525. https://doi.org/10.1016/S0016-7037(01)00613-5
|
Kilic, A. M., 2024. Note on Lower Triassic Gondolelloid Conodont Rediversifications with Emphasis on the Spathian Recovery. Journal of Earth Science, 35(4): 1236-1242. https://doi.org/10.1007/s12583-023-1954-8
|
Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012-821X(83)90100-0
|
Königshof, P., 2003. Conodont Deformation Patterns and Textural Alteration in Paleozoic Conodonts: Examples from Germany and France. Palaeobiodiversity and Palaeoenvironments, 83(1-2): 149-156. https://doi.org/10.1007/bf03043310
|
Lai, X. L., Wignall, P., Zhang, K. X., 2001. Palaeoecology of the Conodonts Hindeodus and Clarkina during the Permian-Triassic Transitional Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(1-2): 63-72. https://doi.org/10.1016/S0031-0182(01)00269-3
|
Lara-Peña, R. A., Blanco-Ferrera, S., Torres-Martínez, M. A., et al., 2024. CAI and Microtextures of Low-Grade Metamorphosed Conodonts Related to Lithological and Geological Controls. Palaeoworld, 33(4): 937-958. https://doi.org/10.1016/j.palwor.2023.06.010
|
Le Houedec, S., McCulloch, M., Trotter, J., et al., 2017. Conodont Apatite δ88/86Sr and δ44/40Ca Compositions and Implications for the Evolution of Palaeozoic to Early Mesozoic Seawater. Chemical Geology, 453: 55-65. https://doi.org/10.1016/j.chemgeo.2017.02.013
|
Lécuyer, C., Amiot, R., Touzeau, A., et al., 2013. Calibration of the Phosphate δ18O Thermometer with Carbonate-Water Oxygen Isotope Fractionation Equations. Chemical Geology, 347: 217-226. https://doi.org/10.1016/j.chemgeo.2013.03.008
|
Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1-2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003
|
Li, Q. L., Yang, W., Liu, Y., et al., 2013. Ion Microprobe Microanalytical Techniques and Their Applications in Earth Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 310-327 (in Chinese with English abstract).
|
Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
|
Liu, K., Jiang, M. S., Zhang, L. Y., et al., 2022. A New High-Resolution Palaeotemperature Record during the Middle-Late Ordovician Transition Derived from Conodont δ18O Palaeothermometry. Journal of the Geological Society, 179(4): jgs2021-jgs2148. https://doi.org/10.1144/jgs2021-148
|
Lumiste, K., Paiste, T., Paiste, P., et al., 2023. REE+Y Uptake in Bioapatite Revisited: Facies-Controlled Variability in Coeval Conodonts. Chemical Geology, 640: 121761. https://doi.org/10.1016/j.chemgeo.2023.121761
|
Matsumoto, H., Takahashi, S., Muto, S., et al., 2023. REE Geochemistry of Conodont Fossils from Pelagic Deep-Sea Sedimentary Rocks. Geochemical Journal, 57(6): 184-196. https://doi.org/10.2343/geochemj.gj23017
|
McArthur, J. M., Howarth, R. J., Shields, G. A., et al., 2020. Strontium Isotope Stratigraphy. In: Gradstein, F. M., ed., Geologic Time Scale 2020. Elsevier, Amsterdam, 211-238.
|
McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar-39Ar Reference Age for the Durango Apatite (U-Th)/He and Fission-Track Dating Standard. Chemical Geology, 214(3-4): 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002
|
McMillan, R., Golding, M., 2019. Thermal Maturity of Carbonaceous Material in Conodonts and the Color Alteration Index: Independently Identifying Maximum Temperature with Raman Spectroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109290. https://doi.org/10.1016/j.palaeo.2019.109290
|
Medici, L., Savioli, M., Ferretti, A., et al., 2021. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis? Journal of Earth Science, 32(3): 501-511. https://doi.org/10.1007/s12583-020-1094-3
|
Murdock, D. J. E., Dong, X. P., Repetski, J. E., et al., 2013. The Origin of Conodonts and of Vertebrate Mineralized Skeletons. Nature, 502: 546-549. https://doi.org/10.1038/nature12645
|
Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8
|
Orchard, M. J., 2007. Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 93-117. https://doi.org/10.1016/j.palaeo.2006.11.037
|
Orchard, M. J., 2010. Triassic Conodonts and Their Role in Stage Boundary Definition. Geological Society, London, Special Publications, 334(1): 139-161. https://doi.org/10.1144/sp334.7
|
Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012-821X(89)90017-4
|
Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End-Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107
|
Peucker-Ehrenbrink, B., Fiske, G. J., 2019. A Continental Perspective of the Seawater 87Sr/86Sr Record: A Review. Chemical Geology, 510: 140-165. https://doi.org/10.1016/j.chemgeo.2019.01.017
|
Picard, S., Lécuyer, C., Barrat, J. A., et al., 2002. Rare Earth Element Contents of Jurassic Fish and Reptile Teeth and Their Potential Relation to Seawater Composition (Anglo-Paris Basin, France and England). Chemical Geology, 186(1-2): 1-16. https://doi.org/10.1016/S0009-2541(01)00424-7
|
Pietzner, H., 1968. Zur Chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica Abteilung A, (Lieferung 4-6): 115-152.
|
Price, G. D., Bajnai, D., Fiebig, J., 2020. Carbonate Clumped Isotope Evidence for Latitudinal Seawater Temperature Gradients and the Oxygen Isotope Composition of Early Cretaceous Seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109777. https://doi.org/10.1016/j.palaeo.2020.109777
|
Pucéat, E., Joachimski, M. M., Bouilloux, A., et al., 2010. Revised Phosphate-Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite. Earth and Planetary Science Letters, 298(1-2): 135-142. https://doi.org/10.1016/j.epsl.2010.07.034
|
Pucéat, E., Reynard, B., Lécuyer, C., 2004. Can Crystallinity be Used to Determine the Degree of Chemical Alteration of Biogenic Apatites? Chemical Geology, 205(1-2): 83-97. https://doi.org/10.1016/j.chemgeo.2003.12.014
|
Purnell, M. A., Donoghue, P. C. J., Aldridge, R. J., 2000. Orientation and Anatomical Notation in Conodonts. Journal of Paleontology, 74(1): 113-122. https://doi.org/10.1017/s0022336000031292
|
Purnell, M. A., von Bitter, P. H., 1992. Blade-Shaped Conodont Elements Functioned as Cutting Teeth. Nature, 359: 629-631. https://doi.org/10.1038/359629a0
|
Rhodes, F. H. T., 1952. A Classification of Pennsylvanian Conodont Assemblages. Journal of Paleontology, 26(6): 886-901.
|
Rigo, M., Joachimski, M. M., 2010. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 55(3): 471-478. https://doi.org/10.4202/app.2009.0100
|
Rigo, M., Trotter, J. A., Preto, N., et al., 2012. Oxygen Isotopic Evidence for Late Triassic Monsoonal Upwelling in the Northwestern Tethys. Geology, 40(6): 515-518. https://doi.org/10.1130/g32792.1
|
Romaniello, S. J., Field, M. P., Smith, H. B., et al., 2015. Fully Automated Chromatographic Purification of Sr and Ca for Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 30(9): 1906-1912. https://doi.org/10.1039/C5JA00205B
|
Saltzman, M. R., Edwards, C. T., Leslie, S. A., et al., 2014. Calibration of a Conodont Apatite-Based Ordovician 87Sr/86Sr Curve to Biostratigraphy and Geochronology: Implications for Stratigraphic Resolution. Geological Society of America Bulletin, 126(11-12): 1551-1568. https://doi.org/10.1130/B31038.1
|
Sanz-López, J., Blanco-Ferrera, S., 2012. Overgrowths of Large Authigenic Apatite Crystals on the Surface of Conodonts from Cantabrian Limestones (Spain). Facies, 58(4): 707-726. https://doi.org/10.1007/s10347-012-0295-3
|
Schmidt, H., 1934. Conodonten-Funde in Ursprünglichem Zusammenhang. Palaeontologische Zeitschrift, 16(1): 76-85. https://doi.org/10.1007/BF03041668
|
Scott, H. W., 1934. The Zoological Relationships of the Conodonts. Journal of Paleontology, 8(4): 448-455.
|
Shemesh, A., 1990. Crystallinity and Diagenesis of Sedimentary Apatites. Geochimica et Cosmochimica Acta, 54(9): 2433-2438. https://doi.org/10.1016/0016-7037(90)90230-I
|
Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 58(6): 1567-1579. https://doi.org/10.1016/0016-7037(94)90559-2
|
Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038
|
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005
|
Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian-Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082
|
Sun, Y. D., Wiedenbeck, M., Joachimski, M. M., et al., 2016. Chemical and Oxygen Isotope Composition of Gem-Quality Apatites: Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS). Chemical Geology, 440: 164-178. https://doi.org/10.1016/j.chemgeo.2016.07.013
|
Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
|
Sweet, W. C., 1989. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum. Oxford University Press, Oxford.
|
Tang, J. W., Köhler, S. J., Dietzel, M., 2008. Sr2+/Ca2+ and 44Ca/40Ca Fractionation during Inorganic Calcite Formation: I. Sr Incorporation. Geochimica et Cosmochimica Acta, 72(15): 3718-3732. https://doi.org/10.1016/j.gca.2008.05.031
|
Taylor, A. S., Lasaga, A. C., 1999. The Role of Basalt Weathering in the Sr Isotope Budget of the Oceans. Chemical Geology, 161(1-3): 199-214. https://doi.org/10.1016/S0009-2541(99)00087-X
|
Teichert, B. M. A., Gussone, N., Torres, M. E., 2009. Controls on Calcium Isotope Fractionation in Sedimentary Porewaters. Earth and Planetary Science Letters, 279(3-4): 373-382. https://doi.org/10.1016/j.epsl.2009.01.011
|
Thiagarajan, N., Lepland, A., Ryb, U., et al., 2024. Reconstruction of Phanerozoic Climate Using Carbonate Clumped Isotopes and Implications for the Oxygen Isotopic Composition of Seawater. Proceedings of the National Academy of Sciences, 121(36): e2400434121.10.1073/pnas. 2400434121 doi: 10.1073/pnas.2400434121
|
Tian, S. G., 1993. Late Permian-Earliest Triassic Conodont Palaeoecology in Northwestern Hunan. Acta Palaeontologica Sinica, 32(3): 332-345 (in Chinese with English abstract).
|
Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007
|
Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3-4): 196-216. https://doi.org/10.1016/j.chemgeo.2006.03.004
|
Trotter, J. A., Fitz Gerald, J. D., Kokkonen, H., et al., 2007. New Insights into the Ultrastructure, Permeability, and Integrity of Conodont Apatite Determined by Transmission Electron Microscopy. Lethaia, 40(2): 97-110. https://doi.org/10.1111/j.1502-3931.2007.00024.x
|
Trotter, J. A., Korsch, M. J., Nicoll, R. S., et al., 1998. Sr Isotopic Variations in Single Conodont Elements: Implications for Defining the Sr Seawater Curve. Bollettino-Societa Paleontologica Italiana, 37: 507-514.
|
Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814
|
Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long-Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038
|
Turner, S., Burrow, C. J., Schultze, H. P., et al., 2010. False Teeth: Conodont-Vertebrate Phylogenetic Relationships Revisited. Geodiversitas, 32(4): 545-594. https://doi.org/10.5252/g2010n4a1
|
van Geldern, R., Joachimski, M. M., Day, J., et al., 2006. Carbon, Oxygen and Strontium Isotope Records of Devonian Brachiopod Shell Calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 47-67. https://doi.org/10.1016/j.palaeo.2006.03.045
|
Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9
|
Wang, A. D., Wang, H. D., 1990. Approach on Information Functions and Conodont Palaeocology. Experimental Petroleum Geology, 12(2): 182-190 (in Chinese with English abstract).
|
Wang, J. Y., Jacobson, A. D., Zhang, H., et al., 2019. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr Geochemistry across the End-Permian Mass Extinction Event. Geochimica et Cosmochimica Acta, 262: 143-165. https://doi.org/10.1016/j.gca.2019.07.035
|
Wang, R., Chen, J. B., Zhao, L. S., et al., 2013. In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo-Sea Surface Temperature. Global Geology, 32(4): 652-658 (in Chinese with English abstract).
|
Wang, W. Q., Katchinoff, J. A. R., Garbelli, C., et al., 2021. Revisiting the Permian Seawater 87Sr/86Sr Record: New Perspectives from Brachiopod Proxy Data and Stochastic Oceanic Box Models. Earth-Science Reviews, 218: 103679. https://doi.org/10.1016/j.earscirev.2021.103679
|
Wang, Y. H., Zhu, Y. Y., Huang, J. D., et al., 2018. Application of Rare Earth Elements of the Marine Carbonate Rocks in Paleoenvironmental Researches. Advances in Earth Science, 33(9): 922-932 (in Chinese with English abstract).
|
Wang, Y. Y., Liang, K., Xiao, Y. L., et al., 2023. Carbonate Lithium Isotope Systematics Indicate Cooling Triggered Mass Extinction during the Frasnian-Famennian Transition. Global and Planetary Change, 230: 104284. https://doi.org/10.1016/j.gloplacha.2023.104284
|
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7
|
Webers, G. F., 1966. The Middle and Upper Ordovician Conodont Faunas of Minnesota. Minnesota Geological Survey, St. Paul.
|
Wenzel, B., Lécuyer, C., Joachimski, M. M., 2000. Comparing Oxygen Isotope Records of Silurian Calcite and Phosphate—δ18O Compositions of Brachiopods and Conodonts. Geochimica et Cosmochimica Acta, 64(11): 1859-1872. https://doi.org/10.1016/S0016-7037(00)00337-9
|
Wheeley, J. R., Jardine, P. E., Raine, R. J., et al., 2018. Paleoecologic and Paleoceanographic Interpretation of δ18O Variability in Lower Ordovician Conodont Species. Geology, 46(5): 467-470. https://doi.org/10.1130/g40145.1
|
Wheeley, J. R., Smith, M. P., Boomer, I., 2012. Oxygen Isotope Variability in Conodonts: Implications for Reconstructing Palaeozoic Palaeoclimates and Palaeoceanography. Journal of the Geological Society, 169(3): 239-250. https://doi.org/10.1144/0016-76492011-048
|
Yang, S. R., Hao, W. C., Jiang, D. Y., 2001. Palaeoenvironmental and Palaeogeographic Significance of the Triassic Conodonts. Journal of Palaeogeography (Chinese Edition), 3(1): 78-84 (in Chinese with English abstract).
|
Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U-Th-Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012
|
Ye, F. H., Zhao, L. S., Zhang, L., et al., 2023. Calcium Isotopes Reveal Shelf Acidification on Southern Neotethyan Margin during the Smithian-Spathian Boundary Cooling Event. Global and Planetary Change, 227: 104138. https://doi.org/10.1016/j.gloplacha.2023.104138
|
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
|
Zhang, K. X., 1988. Aleoecology of Changxingian Conodonts from Jiangsu, Zhejiang and Anhui, South China. Earth Science, 13(5): 537-543 (in Chinese with English abstract).
|
Zhang, L. Y., Chen, D. Z., Huang, T. Y., et al., 2020. An Abrupt Oceanic Change and Frequent Climate Fluctuations across the Frasnian-Famennian Transition of Late Devonian: Constraints from Conodont Sr Isotope. Geological Journal, 55(6): 4479-4492. https://doi.org/10.1002/gj.3657
|
Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
|
Zhang, L., Cao, L., Zhao, L. S., et al., 2017. Raman Spectral, Elemental, Crystallinity, and Oxygen-Isotope Variations in Conodont Apatite during Diagenesis. Geochimica et Cosmochimica Acta, 210: 184-207. https://doi.org/10.1016/j.gca.2017.04.036
|
Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2018. Improved in Situ Sr Isotopic Analysis by a 257 nm Femtosecond Laser in Combination with the Addition of Nitrogen for Geological Minerals. Chemical Geology, 479: 10-21. https://doi.org/10.1016/j.chemgeo.2017.12.018
|
Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2019. In Situ Calcium Isotopic Ratio Determination in Calcium Carbonate Materials and Calcium Phosphate Materials Using Laser Ablation-Multiple Collector-Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 522: 16-25. https://doi.org/10.1016/j.chemgeo.2019.04.027
|
Zhang, Z. T., Sun, Y. D., 2023. The Ladinian-Carnian Conodont Fauna at Yize, Yunnan, Southwestern China, with Implications for Conodont Palaeoecology and Palaeogeography. Geological Magazine, 160(4): 776-793. https://doi.org/10.1017/S0016756822001236
|
Zhao, H., Cui, Y., Zhang, L., et al., 2024. Calcium Isotope Evidence of Increased Carbonate Saturation State during the Frasnian-Famennian Boundary Event. Earth and Planetary Science Letters, 642: 118876. https://doi.org/10.1016/j.epsl.2024.118876
|
Zhao, H., Dahl, T. W., Chen, Z. Q., et al., 2020. Anomalous Marine Calcium Cycle Linked to Carbonate Factory Change after the Smithian Thermal Maximum (Early Triassic). Earth-Science Reviews, 211: 103418. https://doi.org/10.1016/j.earscirev.2020.103418
|
Zhao, L. S., Chen, Z. Q., Algeo, T. J., et al., 2013. Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis? Global and Planetary Change, 105: 135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001
|
Zhao, L. S., Wu, Y. B., Hu, Z. C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian-Triassic. Earth Science, 34(5): 725-732 (in Chinese with English abstract).
|
Zhou, L. Q., Williams, I. S., Liu, J. H., et al., 2012. Methodology of SHRIMP In-Situ O Isotopes Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618 (in Chinese with English abstract).
|
陈剑波, 赵来时, 陈中强, 等, 2012. 浙江煤山牙形石微区原位REE组成及古环境意义. 地球科学, 37(1): 25-34.
|
杜勇, 朱园园, 宋虎跃, 等, 2019. 微量磷灰石中磷酸根氧同位素分析方法. 地球科学, 44(2): 456-462.
|
黄思静, 1997. 上扬子地台区晚古生代海相碳酸盐岩的碳, 锶同位素研究. 地质学报, 71(1): 45-53.
|
李秋立, 杨蔚, 刘宇, 等, 2013. 离子探针微区分析技术及其在地球科学中的应用进展. 矿物岩石地球化学通报, 32(3): 310-327.
|
田树刚, 1993. 湘西北晚二叠世‒早三叠世早期牙形石古生态. 古生物学报, 32(3): 332-345.
|
王安德, 汪恒定, 1990. 信息函数与牙形石古生态研究. 石油实验地质, 12(2): 182-190.
|
王润, 陈剑波, 赵来时, 等, 2013. 二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用. 世界地质, 32(4): 652-658.
|
王宇航, 朱园园, 黄建东, 等, 2018. 海相碳酸盐岩稀土元素在古环境研究中的应用. 地球科学进展, 33(9): 922-932.
|
杨守仁, 郝维城, 江大勇, 2001. 三叠纪牙形石的古环境与古地理意义. 古地理学报, 3(1): 78-84.
|
张克信, 1988. 苏浙皖地区晚二叠世长兴期牙形石古生态. 地球科学, 13(5): 537-543.
|
赵来时, 吴元保, 胡兆初, 等, 2009. 牙形石微量元素对生物绝灭事件的响应: 以二叠‒三叠系全球层型剖面第一幕绝灭事件为例. 地球科学, 34(5): 725-732.
|
周丽芹, Williams, I. S., 刘建辉, 等, 2012. 牙形石SHRIMP微区原位氧同位素分析方法. 地质学报, 86(4): 611-618.
|