Citation: | Fang Qian, Yang Liao, Qiu Xincheng, Yang Hao, Hong Hanlie, Chen Zhong-Qiang, 2025. A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT). Earth Science, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016 |
Baumgartner, J., Morin, G., Menguy, N., et al., 2013. Magnetotactic Bacteria Form Magnetite from a Phosphate-Rich Ferric Hydroxide via Nanometric Ferric (Oxyhydr)Oxide Intermediates. Proceedings of the National Academy of Sciences, 110(37): 14883-14888. https://doi.org/10.1073/pnas.1307119110
|
Branson, O., Bonnin, E. A., Perea, D. E., et al., 2016. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation. Proceedings of the National Academy of Sciences, 113(46): 12934-12939. https://doi.org/10.1073/pnas.1522864113
|
Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903
|
Chen, Y. S., Griffith, M. J., Cairney, J. M., 2021. Cryo Atom Probe: Freezing Atoms in Place for 3D Mapping. Nano Today, 37: 101107. https://doi.org/10.1016/j.nantod.2021.101107
|
Daulton, T. L., Little, B. J., Kim, J. W., et al., 2002. Quantitative Environmental Cell-Transmission Electron Microscopy: Studies of Microbial Cr(VI) and Fe(III) Reduction. JEOL News, 37(3): 6-13.
|
DeRocher, K. A., Smeets, P. J. M., Goodge, B. H., et al., 2020. Chemical Gradients in Human Enamel Crystallites. Nature, 583: 66-71. https://doi.org/10.1038/s41586-020-2433-3
|
Dong, H. L., 2010. Mineral-Microbe Interactions: A Review. Frontiers of Earth Science in China, 4(2): 127-147. https://doi.org/10.1007/s11707-010-0022-8
|
Dong, H. L., Huang, L. Q., Zhao, L. D., et al., 2022. A Critical Review of Mineral-Microbe Interaction and Co-Evolution: Mechanisms and Applications. National Science Review, 9(10): nwac128. https://doi.org/10.1093/nsr/nwac128
|
Ferraz, M. P., Monteiro, F. J., Manuel, C. M., 2004. Hydroxyapatite Nanoparticles: A Review of Preparation Methodologies. Journal of Applied Biomaterials & Biomechanics, 2(2): 74-80
|
Fratzl, P., Weinkamer, R., 2007. Nature's Hierarchical Materials. Progress in Materials Science, 52(8): 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001
|
Fu, L., Engqvist, H., Xia, W., 2020. Glass-Ceramics in Dentistry: A Review. Materials (Basel, Switzerland), 13(5): E1049. https://doi.org/10.3390/ma13051049
|
Fu, L., Williams, J., Micheletti, C., et al., 2021. Three-Dimensional Insights into Interfacial Segregation at the Atomic Scale in a Nanocrystalline Glass-Ceramic. Nano Letters, 21(16): 6898-6906. https://doi.org/10.1021/acs.nanolett.1c02051
|
Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano-Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026
|
Gault, B., Chiaramonti, A., Cojocaru-Mirédin, O., et al., 2021. Atom Probe Tomography. Nature Reviews Methods Primers, 1: 51. https://doi.org/10.1038/s43586-021-00047-w
|
Gault, B., Moody, M. P., Cairney, J. M., et al., 2012. Atom Probe Microscopy. Springer, New York.
|
Golla, U., Putnis, A., 2001. Valence State Mapping and Quantitative Electron Spectroscopic Imaging of Exsolution in Titanohematite by Energy-Filtered TEM. Physics and Chemistry of Minerals, 28(2): 119-129. https://doi.org/10.1007/s002690000136
|
Gordon, L. M., Cohen, M. J., MacRenaris, K. W., et al., 2015. Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel. Science, 347(6223): 746-750. https://doi.org/10.1126/science.1258950
|
Gordon, L. M., Joester, D., 2011. Nanoscale Chemical Tomography of Buried Organic-Inorganic Interfaces in the Chiton Tooth. Nature, 469: 194-197. https://doi.org/10.1038/nature09686
|
Gordon, L. M., Tran, L., Joester, D., 2012a. Atom Probe Tomography of Apatites and Bone-Type Mineralized Tissues. ACS Nano, 6(12): 10667-10675. https://doi.org/10.1021/nn3049957
|
Gordon, L., Joester, D., Suram, S., et al., 2012b. Atom Probe Tomography of Organic/Inorganic Interfaces in Biominerals. Microscopy and Microanalysis, 18(S2): 1608-1609. https://doi.org/10.1017/s1431927612009890
|
Grandfield, K., Micheletti, C., Deering, J., et al., 2022. Atom Probe Tomography for Biomaterials and Biomineralization. Acta Biomaterialia, 148: 44-60. https://doi.org/10.1016/j.actbio.2022.06.010
|
Hao, J. Y., Deng, X. M., 2002. Research Progress of Composite Biomaterials. Polymer Bulletin, (5): 1-8 (in Chinese with English abstract).
|
Hazen, R. M., Papineau, D., Bleeker, W., et al., 2008. Mineral Evolution. American Mineralogist, 93(11-12): 1693-1720. https://doi.org/10.2138/am.2008.2955
|
Höland, W., Rheinberger, V., Apel, E., et al., 2006. Clinical Applications of Glass-Ceramics in Dentistry. Journal of Materials Science: Materials in Medicine, 17(11): 1037-1042. https://doi.org/10.1007/s10856-006-0441-y
|
Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano-Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract).
|
Jacoby, R., Peukert, M., Succurro, A., et al., 2017. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in Plant Science, 8: 1617. https://doi.org/10.3389/fpls.2017.01617
|
Javaux, E. J., 2019. Challenges in Evidencing the Earliest Traces of Life. Nature, 572: 451-460. https://doi.org/10.1038/s41586-019-1436-4
|
Jehannin, M., Rao, A., Cölfen, H., 2019. New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 141(26): 10120-10136. https://doi.org/10.1021/jacs.9b01883
|
Jeong, J., Kim, J. H., Shim, J. H., et al., 2019. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomaterials Research, 23: 4. https://doi.org/10.1186/s40824-018-0149-3
|
Jiang, Y. W., Carvalho-de-Souza, J. L., Wong, R. C. S., et al., 2016. Heterogeneous Silicon Mesostructures for Lipid-Supported Bioelectric Interfaces. Nature Materials, 15: 1023-1030. https://doi.org/10.1038/nmat4673
|
Jones, J. R., 2013. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomaterialia, 9(1): 4457-4486. https://doi.org/10.1016/j.actbio.2012.08.023
|
Kalita, S. J., Bhardwaj, A., Bhatt, H. A., 2007. Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering. Materials Science and Engineering: C, 27(3): 441-449. https://doi.org/10.1016/j.msec.2006.05.018
|
Kim, D. H., Ghaffari, R., Lu, N., et al., 2012. Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14: 113-128. https://doi.org/10.1146/annurev-bioeng-071811-150018
|
Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012-821X(83)90100-0
|
Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al., 2011. Aerobic Bacterial Pyrite Oxidation and Acid Rock Drainage during the Great Oxidation Event. Nature, 478: 369-373. https://doi.org/10.1038/nature10511
|
Kopp, R. E., Kirschvink, J. L., 2008. The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria. Earth-Science Reviews, 86(1-4): 42-61. https://doi.org/10.1016/j.earscirev.2007.08.001
|
La Fontaine, A., Zavgorodniy, A., Liu, H., et al., 2016. Atomic-Scale Compositional Mapping Reveals Mg-Rich Amorphous Calcium Phosphate in Human Dental Enamel. Science Advances, 2(9): e1601145. https://doi.org/10.1126/sciadv.1601145
|
Langelier, B., Wang, X. Y., Grandfield, K., 2017. Atomic Scale Chemical Tomography of Human Bone. Scientific Reports, 7: 39958. https://doi.org/10.1038/srep39958
|
Lee, B. E. J., Langelier, B., Grandfield, K., 2021. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography. Advanced Biology, 5(9): 2100657. https://doi.org/10.1002/adbi.202100657
|
LeGeros, R. Z., 2008. Calcium Phosphate-Based Osteoinductive Materials. Chemical Reviews, 108(11): 4742-4753. https://doi.org/10.1021/cr800427g
|
Liu, J., Sheng, A. X., Liu, F., et al., 2018. Nanominerals and Their Environmental Effects. Earth Science, 43(5): 1450-1463 (in Chinese with English abstract).
|
Loo, S. C., Moore, T., Banik, B., et al., 2010. Biomedical Applications of Hydroxyapatite Nanoparticles. Current Pharmaceutical Biotechnology, 11(4): 333-342. https://doi.org/10.2174/138920110791233343
|
Lowenstam, H. A., Weiner, S., 1989. Evolution of Biomineralization. In: Lowenstam, H. A., Weiner, S., eds., On Biomineralization. Oxford University Press, Oxford.
|
Lu, A. H., Du, Y. F., Fang, Q., et al., 2025. Mineral- Enhanced Biological Photosynthesis: New Breakthroughs in Theory and Application. Earth Science Frontiers, 32(1): 466-469 (in Chinese with English abstract).
|
Lu, X. C., Li, J., Liu, H., et al., 2019. Microbial Oxidation of Metal Sulfides and Its Consequences. Acta Petrologica Sinica, 35(1): 153-163 (in Chinese with English abstract).
|
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
|
Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford.
|
McCarroll, I. E., Bagot, P. A. J., Devaraj, A., et al., 2020. New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems. Materials Today Advances, 7: 100090. https://doi.org/10.1016/j.mtadv.2020.100090
|
Meldrum, F. C., 2005. Biomineralisation Processes. In: Vadgama, P., ed., Surfaces and Interfaces for Biomaterials. Elsevier, Amsterdam, 666-692.
|
Metoki, N., Baik, S. I., Isheim, D., et al., 2018. Atomically Resolved Calcium Phosphate Coating on a Gold Substrate. Nanoscale, 10(18): 8451-8458. https://doi.org/10.1039/c8nr00372f
|
Miller, M. K., Forbes, R. G., 2014. Atom-Probe Tomography: The Local Electrode Atom Probe. Springer, New York.
|
Miot, J., Benzerara, K., Kappler, A., 2014. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods. Annual Review of Earth and Planetary Sciences, 42: 271-289. https://doi.org/10.1146/annurev-earth-050212-124110
|
Mitchell, A. L., Perea, D. E., Wirth, M. G., et al., 2021. Nanoscale Microstructure and Chemistry of Transparent Gahnite Glass-Ceramics Revealed by Atom Probe Tomography. Scripta Materialia, 203: 114110. https://doi.org/10.1016/j.scriptamat.2021.114110
|
Moody, M. P., Ceguerra, A. V., Breen, A. J., et al., 2014. Atomically Resolved Tomography to Directly Inform Simulations for Structure-Property Relationships. Nature Communications, 5: 5501. https://doi.org/10.1038/ncomms6501
|
Moore, E. K., Jelen, B. I., Giovannelli, D., et al., 2017. Metal Availability and the Expanding Network of Microbial Metabolisms in the Archaean Eon. Nature Geoscience, 10: 629-636. https://doi.org/10.1038/ngeo3006
|
Mosiman, D. S., Chen, Y. S., Yang, L., et al., 2021. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 5(2): e2000692. https://doi.org/10.1002/smtd.202000692
|
Perea, D. E., Gerstl, S. S. A., Chin, J., et al., 2017. An Environmental Transfer Hub for Multimodal Atom Probe Tomography. Advanced Structural and Chemical Imaging, 3(1): 12. https://doi.org/10.1186/s40679-017-0045-2
|
Pérez-Huerta, A., Cappelli, C., Jabalera, Y., et al., 2022. Biogeochemical Fingerprinting of Magnetotactic Bacterial Magnetite. Proceedings of the National Academy of Sciences, 119(31): e2203758119. https://doi.org/10.1073/pnas.2203758119
|
Pérez-Huerta, A., Coronado, I., Hegna, T. A., 2018. Understanding Biomineralization in the Fossil Record. Earth-Science Reviews, 179: 95-122. https://doi.org/10.1016/j.earscirev.2018.02.015
|
Pérez-Huerta, A., Laiginhas, F., 2018. Preliminary Data on the Nanoscale Chemical Characterization of the Inter-Crystalline Organic Matrix of a Calcium Carbonate Biomineral. Minerals, 8(6): 223. https://doi.org/10.3390/min8060223
|
Pérez-Huerta, A., Suzuki, M., Cappelli, C., et al., 2019. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C, 5(3): 50. https://doi.org/10.3390/c5030050
|
Perry, R. S., McLoughlin, N., Lynne, B. Y., et al., 2007. Defining Biominerals and Organominerals: Direct and Indirect Indicators of Life. Sedimentary Geology, 201(1-2): 157-179. https://doi.org/10.1016/j.sedgeo.2007.05.014
|
Pett-Ridge, J., Weber, P. K., 2012. NanoSIP: NanoSIMS Applications for Microbial Biology. In: Navid, A., ed., Microbial Systems Biology: Methods and Protocols, Springer, New York, 375-408.
|
Qiu, S., Gervinskas, G., Venugopal, H., et al., 2021. Graphene Encapsulation Enables Vitreous Ice Sample for APT and Near-Atomic Reconstruction of Nanoparticle-Liquid Interface. Microscopy and Microanalysis, 27(S1): 1270-1271. https://doi.org/10.1017/s1431927621004761
|
Rahaman, M. N., Day, D. E., Sonny Bal, B., et al., 2011. Bioactive Glass in Tissue Engineering. Acta Biomaterialia, 7(6): 2355-2373. https://doi.org/10.1016/j.actbio.2011.03.016
|
Ransom, B., Bennett, R. H., Baerwald, R., et al., 1999. In Situ Conditions and Interactions between Microbes and Minerals in Fine-Grained Marine Sediments; A TEM Microfabric Perspective. American Mineralogist, 84(1-2): 183-192. https://doi.org/10.2138/am-1999-1-220
|
Reddy, S. M., Saxey, D. W., Rickard, W. D., et al., 2020. Atom Probe Tomography: Development and Application to the Geosciences. Geostandards and Geoanalytical Research, 44(1): 5-50. https://doi.org/10.1111/ggr.12313
|
Ren, Y. R., Autefage, H., Jones, J. R., et al., 2022. Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 28(4): 1310-1320. https://doi.org/10.1017/S1431927621012976
|
Suzuki, A., Kawahata, H., 2003. Carbon Budget of Coral Reef Systems: An Overview of Observations in Fringing Reefs, Barrier Reefs and Atolls in the Indo-Pacific Regions. Tellus B: Chemical and Physical Meteorology, 55(2): 428-444. https://doi.org/10.3402/tellusb.v55i2.16761
|
Tasciotti, E., Liu, X. W., Bhavane, R., et al., 2008. Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nature Nanotechnology, 3: 151-157. https://doi.org/10.1038/nnano.2008.34
|
Taylor, S. D., Liu, J., Zhang, X., et al., 2019. Visualizing the Iron Atom Exchange Front in the Fe(II)-Catalyzed Recrystallization of Goethite by Atom Probe Tomography. Proceedings of the National Academy of Sciences, 116(8): 2866-2874. https://doi.org/10.1073/pnas.1816620116
|
Templeton, A., Knowles, E., 2009. Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annual Review of Earth and Planetary Sciences, 37: 367-391. https://doi.org/10.1146/annurev.earth.36.031207.124346
|
Uebe, R., Schüler, D., 2016. Magnetosome Biogenesis in Magnetotactic Bacteria. Nature Reviews Microbiology, 14: 621-637. https://doi.org/10.1038/nrmicro.2016.99
|
van Aken, P. A., Liebscher, B., 2002. Quantification of Ferrous/Ferric Ratios in Minerals: New Evaluation Schemes of Fe L23 Electron Energy-Loss Near-Edge Spectra. Physics and Chemistry of Minerals, 29(3): 188-200. https://doi.org/10.1007/s00269-001-0222-6
|
Wang, B., Tang, R. K., 2013. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine. Progress in Chemistry, 25(4): 633-641 (in Chinese with English abstract).
|
Wang, C., Chen, X. M., 2007. Progress of Chitosan Composite Biomaterials. Chemical Intermediates, (2): 1-3, 19 (in Chinese with English abstract).
|
Weiner, S., Wagner, H. D., 1998. The Material Bone: Structure-Mechanical Function Relations. Annual Review of Materials Research, 28: 271-298. https://doi.org/10.1146/annurev.matsci.28.1.271
|
Wittig, N. K., Maja, Ø., Palle, J., et al., 2022. Opportunities for Biomineralization Research Using Multiscale Computed X-Ray Tomography as Exemplified by Bone Imaging. Journal of Structural Biology, 214(1): 107822. https://doi.org/10.1016/j.jsb.2021.107822
|
Worden, A. Z., Follows, M. J., Giovannoni, S. J., et al., 2015. Rethinking the Marine Carbon Cycle: Factoring in the Multifarious Lifestyles of Microbes. Science, 347(6223): 1257594. https://doi.org/10.1126/science.1257594
|
Xie, S. C., Yan, J. X., Yang, Y., et al., 2023. Coevolution of Microorganisms and Sedimentary Rocks. Acta Sedimentologica Sinica, 41(6): 1635-1644 (in Chinese with English abstract).
|
Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese).
|
Xie, S. C., Zhu, Z. M., Zhang, H. B., et al., 2024. Earth Sphere Interaction Reflected in Microbial Fingerprints through Earth's History—A Critical Review. Earth Science Frontiers, 31(1): 446-454 (in Chinese with English abstract).
|
Yang, Z., Gu, H., Sha, G., et al., 2018. TC4/Ag Metal Matrix Nanocomposites Modified by Friction Stir Processing: Surface Characterization, Antibacterial Property, and Cytotoxicity in Vitro. ACS Applied Materials & Interfaces, 10(48): 41155-41166. https://doi.org/10.1021/acsami.8b16343
|
Yuan, P., 2018. Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals. Earth Science, 43(5): 1384-1407 (in Chinese with English abstract).
|
Zhang, S., Gervinskas, G., Qiu, S., et al., 2022. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization. Nano Letters, 22(16): 6501-6508. https://doi.org/10.1021/acs.nanolett.2c01495
|
Zhou, B. X., Liu, W. Q., 2007. The Application of 3DAP in the Study of Materials Science. Materials Science and Technology, 15(3): 405-408 (in Chinese with English abstract).
|
郝建原, 邓先模, 2002. 复合生物材料的研究进展. 高分子通报, (5): 1-8.
|
胡行伟, 张丽梅, 贺纪正, 2013. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用. 生态学报, 33(2): 348-357.
|
刘娟, 盛安旭, 刘枫, 等, 2018. 纳米矿物及其环境效应. 地球科学, 43(5): 1450-1463.
|
鲁安怀, 杜逸飞, 方谦, 等, 2025. 矿物增强生物光合作用理论与应用研究取得新突破. 地学前缘, 32(1): 466-469.
|
陆现彩, 李娟, 刘欢, 等, 2019. 金属硫化物微生物氧化的机制和效应. 岩石学报, 35(1): 153-163.
|
王本, 唐睿康, 2013. 生物矿化: 无机化学和生物医学间的桥梁之一. 化学进展, 25(4): 633-641.
|
王畅, 陈晓明, 2007. 壳聚糖复合生物材料研究进展. 化工中间体, (2): 1-3, 19.
|
谢树成, 颜佳新, 杨义, 等, 2023. 微生物与沉积岩的协同演化. 沉积学报, 41(6): 1635-1644.
|
谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22.
|
谢树成, 朱宗敏, 张宏斌, 等, 2024. 小小地质微生物演绎跨圈层的相互作用. 地学前缘, 31(1): 446-454.
|
袁鹏, 2018. 纳米结构矿物的特殊结构和表-界面反应性. 地球科学, 43(5): 1384-1407.
|
周邦新, 刘文庆, 2007. 三维原子探针及其在材料科学研究中的应用. 材料科学与工艺, 15(3): 405-408.
|