• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Fang Qian, Yang Liao, Qiu Xincheng, Yang Hao, Hong Hanlie, Chen Zhong-Qiang, 2025. A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT). Earth Science, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016
    Citation: Fang Qian, Yang Liao, Qiu Xincheng, Yang Hao, Hong Hanlie, Chen Zhong-Qiang, 2025. A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT). Earth Science, 50(3): 1201-1219. doi: 10.3799/dqkx.2025.016

    A New Tool for Unraveling Mineral-Microbe Interactions: Atom Probe Tomography (APT)

    doi: 10.3799/dqkx.2025.016
    • Received Date: 2024-12-03
    • Publish Date: 2025-03-25
    • Mineral-microbe interaction (MMI) is one of the most dynamic geological processes driving the evolution of Earth's system, profoundly influencing Earth life's evolutionary processes. MMIs are also a key research focus in mineralogy and geomicrobiology. To fully understand the interactions between microbes and minerals, one of the critical areas is to decode how microorganisms affect the structural and compositional changes on mineral surfaces at an ultra-microscopic scale. Although significant progress has been made in the MMI studies in recent years, major challenges still remain due to the microscopic processes occurring at nanoscale and even sub-nanoscale levels. Simultaneous characterization of mineral structures, chemical compositions, and microbial remnants at these scales remains difficult, leaving many fundamental mechanistic questions unresolved. The emerging three-dimensional atom probe technology (APT) overcomes these limitations. APT enables near-atomic scale imaging and quantitative analysis of nearly all elements/isotopes simultaneously, with a detection limit as low as 10⁻⁶. This provides near-atomic scale, high-sensitivity analysis for research into mineral-microbe interactions. Originally developed and widely applied in materials science, APT has attracted increasing attention in the field of Earth sciences in recent years. This paper provides an overview of the principles, development, and sample preparation involved in APT, introduces the concept of biomineralization and related studies, and focuses on the key applications of APT technology in fields such as microbial mineralization, identifying geological microbial remnants, and biomaterials related to mineral-microbe interactions. Finally, we objectively summarize the current limitations and challenges of APT technology in the study of mineral-microbe interactions and explore the future development directions of this advanced in-situ micro-area technique in the field of mineral-microbe research.

       

    • loading
    • Baumgartner, J., Morin, G., Menguy, N., et al., 2013. Magnetotactic Bacteria Form Magnetite from a Phosphate-Rich Ferric Hydroxide via Nanometric Ferric (Oxyhydr)Oxide Intermediates. Proceedings of the National Academy of Sciences, 110(37): 14883-14888. https://doi.org/10.1073/pnas.1307119110
      Branson, O., Bonnin, E. A., Perea, D. E., et al., 2016. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation. Proceedings of the National Academy of Sciences, 113(46): 12934-12939. https://doi.org/10.1073/pnas.1522864113
      Chan, M. A., Hinman, N. W., Potter-McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903
      Chen, Y. S., Griffith, M. J., Cairney, J. M., 2021. Cryo Atom Probe: Freezing Atoms in Place for 3D Mapping. Nano Today, 37: 101107. https://doi.org/10.1016/j.nantod.2021.101107
      Daulton, T. L., Little, B. J., Kim, J. W., et al., 2002. Quantitative Environmental Cell-Transmission Electron Microscopy: Studies of Microbial Cr(VI) and Fe(III) Reduction. JEOL News, 37(3): 6-13.
      DeRocher, K. A., Smeets, P. J. M., Goodge, B. H., et al., 2020. Chemical Gradients in Human Enamel Crystallites. Nature, 583: 66-71. https://doi.org/10.1038/s41586-020-2433-3
      Dong, H. L., 2010. Mineral-Microbe Interactions: A Review. Frontiers of Earth Science in China, 4(2): 127-147. https://doi.org/10.1007/s11707-010-0022-8
      Dong, H. L., Huang, L. Q., Zhao, L. D., et al., 2022. A Critical Review of Mineral-Microbe Interaction and Co-Evolution: Mechanisms and Applications. National Science Review, 9(10): nwac128. https://doi.org/10.1093/nsr/nwac128
      Ferraz, M. P., Monteiro, F. J., Manuel, C. M., 2004. Hydroxyapatite Nanoparticles: A Review of Preparation Methodologies. Journal of Applied Biomaterials & Biomechanics, 2(2): 74-80
      Fratzl, P., Weinkamer, R., 2007. Nature's Hierarchical Materials. Progress in Materials Science, 52(8): 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001
      Fu, L., Engqvist, H., Xia, W., 2020. Glass-Ceramics in Dentistry: A Review. Materials (Basel, Switzerland), 13(5): E1049. https://doi.org/10.3390/ma13051049
      Fu, L., Williams, J., Micheletti, C., et al., 2021. Three-Dimensional Insights into Interfacial Segregation at the Atomic Scale in a Nanocrystalline Glass-Ceramic. Nano Letters, 21(16): 6898-6906. https://doi.org/10.1021/acs.nanolett.1c02051
      Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano-Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026
      Gault, B., Chiaramonti, A., Cojocaru-Mirédin, O., et al., 2021. Atom Probe Tomography. Nature Reviews Methods Primers, 1: 51. https://doi.org/10.1038/s43586-021-00047-w
      Gault, B., Moody, M. P., Cairney, J. M., et al., 2012. Atom Probe Microscopy. Springer, New York. https://doi.org/10.1007/978-1-4614-3436-8
      Golla, U., Putnis, A., 2001. Valence State Mapping and Quantitative Electron Spectroscopic Imaging of Exsolution in Titanohematite by Energy-Filtered TEM. Physics and Chemistry of Minerals, 28(2): 119-129. https://doi.org/10.1007/s002690000136
      Gordon, L. M., Cohen, M. J., MacRenaris, K. W., et al., 2015. Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel. Science, 347(6223): 746-750. https://doi.org/10.1126/science.1258950
      Gordon, L. M., Joester, D., 2011. Nanoscale Chemical Tomography of Buried Organic-Inorganic Interfaces in the Chiton Tooth. Nature, 469: 194-197. https://doi.org/10.1038/nature09686
      Gordon, L. M., Tran, L., Joester, D., 2012a. Atom Probe Tomography of Apatites and Bone-Type Mineralized Tissues. ACS Nano, 6(12): 10667-10675. https://doi.org/10.1021/nn3049957
      Gordon, L., Joester, D., Suram, S., et al., 2012b. Atom Probe Tomography of Organic/Inorganic Interfaces in Biominerals. Microscopy and Microanalysis, 18(S2): 1608-1609. https://doi.org/10.1017/s1431927612009890
      Grandfield, K., Micheletti, C., Deering, J., et al., 2022. Atom Probe Tomography for Biomaterials and Biomineralization. Acta Biomaterialia, 148: 44-60. https://doi.org/10.1016/j.actbio.2022.06.010
      Hao, J. Y., Deng, X. M., 2002. Research Progress of Composite Biomaterials. Polymer Bulletin, (5): 1-8 (in Chinese with English abstract).
      Hazen, R. M., Papineau, D., Bleeker, W., et al., 2008. Mineral Evolution. American Mineralogist, 93(11-12): 1693-1720. https://doi.org/10.2138/am.2008.2955
      Höland, W., Rheinberger, V., Apel, E., et al., 2006. Clinical Applications of Glass-Ceramics in Dentistry. Journal of Materials Science: Materials in Medicine, 17(11): 1037-1042. https://doi.org/10.1007/s10856-006-0441-y
      Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano-Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract).
      Jacoby, R., Peukert, M., Succurro, A., et al., 2017. The Role of Soil Microorganisms in Plant Mineral Nutrition-Current Knowledge and Future Directions. Frontiers in Plant Science, 8: 1617. https://doi.org/10.3389/fpls.2017.01617
      Javaux, E. J., 2019. Challenges in Evidencing the Earliest Traces of Life. Nature, 572: 451-460. https://doi.org/10.1038/s41586-019-1436-4
      Jehannin, M., Rao, A., Cölfen, H., 2019. New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 141(26): 10120-10136. https://doi.org/10.1021/jacs.9b01883
      Jeong, J., Kim, J. H., Shim, J. H., et al., 2019. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomaterials Research, 23: 4. https://doi.org/10.1186/s40824-018-0149-3
      Jiang, Y. W., Carvalho-de-Souza, J. L., Wong, R. C. S., et al., 2016. Heterogeneous Silicon Mesostructures for Lipid-Supported Bioelectric Interfaces. Nature Materials, 15: 1023-1030. https://doi.org/10.1038/nmat4673
      Jones, J. R., 2013. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomaterialia, 9(1): 4457-4486. https://doi.org/10.1016/j.actbio.2012.08.023
      Kalita, S. J., Bhardwaj, A., Bhatt, H. A., 2007. Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering. Materials Science and Engineering: C, 27(3): 441-449. https://doi.org/10.1016/j.msec.2006.05.018
      Kim, D. H., Ghaffari, R., Lu, N., et al., 2012. Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14: 113-128. https://doi.org/10.1146/annurev-bioeng-071811-150018
      Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012-821X(83)90100-0
      Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al., 2011. Aerobic Bacterial Pyrite Oxidation and Acid Rock Drainage during the Great Oxidation Event. Nature, 478: 369-373. https://doi.org/10.1038/nature10511
      Kopp, R. E., Kirschvink, J. L., 2008. The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria. Earth-Science Reviews, 86(1-4): 42-61. https://doi.org/10.1016/j.earscirev.2007.08.001
      La Fontaine, A., Zavgorodniy, A., Liu, H., et al., 2016. Atomic-Scale Compositional Mapping Reveals Mg-Rich Amorphous Calcium Phosphate in Human Dental Enamel. Science Advances, 2(9): e1601145. https://doi.org/10.1126/sciadv.1601145
      Langelier, B., Wang, X. Y., Grandfield, K., 2017. Atomic Scale Chemical Tomography of Human Bone. Scientific Reports, 7: 39958. https://doi.org/10.1038/srep39958
      Lee, B. E. J., Langelier, B., Grandfield, K., 2021. Visualization of Collagen-Mineral Arrangement Using Atom Probe Tomography. Advanced Biology, 5(9): 2100657. https://doi.org/10.1002/adbi.202100657
      LeGeros, R. Z., 2008. Calcium Phosphate-Based Osteoinductive Materials. Chemical Reviews, 108(11): 4742-4753. https://doi.org/10.1021/cr800427g
      Liu, J., Sheng, A. X., Liu, F., et al., 2018. Nanominerals and Their Environmental Effects. Earth Science, 43(5): 1450-1463 (in Chinese with English abstract).
      Loo, S. C., Moore, T., Banik, B., et al., 2010. Biomedical Applications of Hydroxyapatite Nanoparticles. Current Pharmaceutical Biotechnology, 11(4): 333-342. https://doi.org/10.2174/138920110791233343
      Lowenstam, H. A., Weiner, S., 1989. Evolution of Biomineralization. In: Lowenstam, H. A., Weiner, S., eds., On Biomineralization. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780195049770.003.0014
      Lu, A. H., Du, Y. F., Fang, Q., et al., 2025. Mineral- Enhanced Biological Photosynthesis: New Breakthroughs in Theory and Application. Earth Science Frontiers, 32(1): 466-469 (in Chinese with English abstract).
      Lu, X. C., Li, J., Liu, H., et al., 2019. Microbial Oxidation of Metal Sulfides and Its Consequences. Acta Petrologica Sinica, 35(1): 153-163 (in Chinese with English abstract).
      Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068
      Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford.
      McCarroll, I. E., Bagot, P. A. J., Devaraj, A., et al., 2020. New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems. Materials Today Advances, 7: 100090. https://doi.org/10.1016/j.mtadv.2020.100090
      Meldrum, F. C., 2005. Biomineralisation Processes. In: Vadgama, P., ed., Surfaces and Interfaces for Biomaterials. Elsevier, Amsterdam, 666-692. https://doi.org/10.1533/9781845690809.4.666
      Metoki, N., Baik, S. I., Isheim, D., et al., 2018. Atomically Resolved Calcium Phosphate Coating on a Gold Substrate. Nanoscale, 10(18): 8451-8458. https://doi.org/10.1039/c8nr00372f
      Miller, M. K., Forbes, R. G., 2014. Atom-Probe Tomography: The Local Electrode Atom Probe. Springer, New York.
      Miot, J., Benzerara, K., Kappler, A., 2014. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods. Annual Review of Earth and Planetary Sciences, 42: 271-289. https://doi.org/10.1146/annurev-earth-050212-124110
      Mitchell, A. L., Perea, D. E., Wirth, M. G., et al., 2021. Nanoscale Microstructure and Chemistry of Transparent Gahnite Glass-Ceramics Revealed by Atom Probe Tomography. Scripta Materialia, 203: 114110. https://doi.org/10.1016/j.scriptamat.2021.114110
      Moody, M. P., Ceguerra, A. V., Breen, A. J., et al., 2014. Atomically Resolved Tomography to Directly Inform Simulations for Structure-Property Relationships. Nature Communications, 5: 5501. https://doi.org/10.1038/ncomms6501
      Moore, E. K., Jelen, B. I., Giovannelli, D., et al., 2017. Metal Availability and the Expanding Network of Microbial Metabolisms in the Archaean Eon. Nature Geoscience, 10: 629-636. https://doi.org/10.1038/ngeo3006
      Mosiman, D. S., Chen, Y. S., Yang, L., et al., 2021. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 5(2): e2000692. https://doi.org/10.1002/smtd.202000692
      Perea, D. E., Gerstl, S. S. A., Chin, J., et al., 2017. An Environmental Transfer Hub for Multimodal Atom Probe Tomography. Advanced Structural and Chemical Imaging, 3(1): 12. https://doi.org/10.1186/s40679-017-0045-2
      Pérez-Huerta, A., Cappelli, C., Jabalera, Y., et al., 2022. Biogeochemical Fingerprinting of Magnetotactic Bacterial Magnetite. Proceedings of the National Academy of Sciences, 119(31): e2203758119. https://doi.org/10.1073/pnas.2203758119
      Pérez-Huerta, A., Coronado, I., Hegna, T. A., 2018. Understanding Biomineralization in the Fossil Record. Earth-Science Reviews, 179: 95-122. https://doi.org/10.1016/j.earscirev.2018.02.015
      Pérez-Huerta, A., Laiginhas, F., 2018. Preliminary Data on the Nanoscale Chemical Characterization of the Inter-Crystalline Organic Matrix of a Calcium Carbonate Biomineral. Minerals, 8(6): 223. https://doi.org/10.3390/min8060223
      Pérez-Huerta, A., Suzuki, M., Cappelli, C., et al., 2019. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C, 5(3): 50. https://doi.org/10.3390/c5030050
      Perry, R. S., McLoughlin, N., Lynne, B. Y., et al., 2007. Defining Biominerals and Organominerals: Direct and Indirect Indicators of Life. Sedimentary Geology, 201(1-2): 157-179. https://doi.org/10.1016/j.sedgeo.2007.05.014
      Pett-Ridge, J., Weber, P. K., 2012. NanoSIP: NanoSIMS Applications for Microbial Biology. In: Navid, A., ed., Microbial Systems Biology: Methods and Protocols, Springer, New York, 375-408.
      Qiu, S., Gervinskas, G., Venugopal, H., et al., 2021. Graphene Encapsulation Enables Vitreous Ice Sample for APT and Near-Atomic Reconstruction of Nanoparticle-Liquid Interface. Microscopy and Microanalysis, 27(S1): 1270-1271. https://doi.org/10.1017/s1431927621004761
      Rahaman, M. N., Day, D. E., Sonny Bal, B., et al., 2011. Bioactive Glass in Tissue Engineering. Acta Biomaterialia, 7(6): 2355-2373. https://doi.org/10.1016/j.actbio.2011.03.016
      Ransom, B., Bennett, R. H., Baerwald, R., et al., 1999. In Situ Conditions and Interactions between Microbes and Minerals in Fine-Grained Marine Sediments; A TEM Microfabric Perspective. American Mineralogist, 84(1-2): 183-192. https://doi.org/10.2138/am-1999-1-220
      Reddy, S. M., Saxey, D. W., Rickard, W. D., et al., 2020. Atom Probe Tomography: Development and Application to the Geosciences. Geostandards and Geoanalytical Research, 44(1): 5-50. https://doi.org/10.1111/ggr.12313
      Ren, Y. R., Autefage, H., Jones, J. R., et al., 2022. Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 28(4): 1310-1320. https://doi.org/10.1017/S1431927621012976
      Suzuki, A., Kawahata, H., 2003. Carbon Budget of Coral Reef Systems: An Overview of Observations in Fringing Reefs, Barrier Reefs and Atolls in the Indo-Pacific Regions. Tellus B: Chemical and Physical Meteorology, 55(2): 428-444. https://doi.org/10.3402/tellusb.v55i2.16761
      Tasciotti, E., Liu, X. W., Bhavane, R., et al., 2008. Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nature Nanotechnology, 3: 151-157. https://doi.org/10.1038/nnano.2008.34
      Taylor, S. D., Liu, J., Zhang, X., et al., 2019. Visualizing the Iron Atom Exchange Front in the Fe(II)-Catalyzed Recrystallization of Goethite by Atom Probe Tomography. Proceedings of the National Academy of Sciences, 116(8): 2866-2874. https://doi.org/10.1073/pnas.1816620116
      Templeton, A., Knowles, E., 2009. Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annual Review of Earth and Planetary Sciences, 37: 367-391. https://doi.org/10.1146/annurev.earth.36.031207.124346
      Uebe, R., Schüler, D., 2016. Magnetosome Biogenesis in Magnetotactic Bacteria. Nature Reviews Microbiology, 14: 621-637. https://doi.org/10.1038/nrmicro.2016.99
      van Aken, P. A., Liebscher, B., 2002. Quantification of Ferrous/Ferric Ratios in Minerals: New Evaluation Schemes of Fe L23 Electron Energy-Loss Near-Edge Spectra. Physics and Chemistry of Minerals, 29(3): 188-200. https://doi.org/10.1007/s00269-001-0222-6
      Wang, B., Tang, R. K., 2013. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine. Progress in Chemistry, 25(4): 633-641 (in Chinese with English abstract).
      Wang, C., Chen, X. M., 2007. Progress of Chitosan Composite Biomaterials. Chemical Intermediates, (2): 1-3, 19 (in Chinese with English abstract).
      Weiner, S., Wagner, H. D., 1998. The Material Bone: Structure-Mechanical Function Relations. Annual Review of Materials Research, 28: 271-298. https://doi.org/10.1146/annurev.matsci.28.1.271
      Wittig, N. K., Maja, Ø., Palle, J., et al., 2022. Opportunities for Biomineralization Research Using Multiscale Computed X-Ray Tomography as Exemplified by Bone Imaging. Journal of Structural Biology, 214(1): 107822. https://doi.org/10.1016/j.jsb.2021.107822
      Worden, A. Z., Follows, M. J., Giovannoni, S. J., et al., 2015. Rethinking the Marine Carbon Cycle: Factoring in the Multifarious Lifestyles of Microbes. Science, 347(6223): 1257594. https://doi.org/10.1126/science.1257594
      Xie, S. C., Yan, J. X., Yang, Y., et al., 2023. Coevolution of Microorganisms and Sedimentary Rocks. Acta Sedimentologica Sinica, 41(6): 1635-1644 (in Chinese with English abstract).
      Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese).
      Xie, S. C., Zhu, Z. M., Zhang, H. B., et al., 2024. Earth Sphere Interaction Reflected in Microbial Fingerprints through Earth's History—A Critical Review. Earth Science Frontiers, 31(1): 446-454 (in Chinese with English abstract).
      Yang, Z., Gu, H., Sha, G., et al., 2018. TC4/Ag Metal Matrix Nanocomposites Modified by Friction Stir Processing: Surface Characterization, Antibacterial Property, and Cytotoxicity in Vitro. ACS Applied Materials & Interfaces, 10(48): 41155-41166. https://doi.org/10.1021/acsami.8b16343
      Yuan, P., 2018. Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals. Earth Science, 43(5): 1384-1407 (in Chinese with English abstract).
      Zhang, S., Gervinskas, G., Qiu, S., et al., 2022. Methods of Preparing Nanoscale Vitreous Ice Needles for High-Resolution Cryogenic Characterization. Nano Letters, 22(16): 6501-6508. https://doi.org/10.1021/acs.nanolett.2c01495
      Zhou, B. X., Liu, W. Q., 2007. The Application of 3DAP in the Study of Materials Science. Materials Science and Technology, 15(3): 405-408 (in Chinese with English abstract).
      郝建原, 邓先模, 2002. 复合生物材料的研究进展. 高分子通报, (5): 1-8.
      胡行伟, 张丽梅, 贺纪正, 2013. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用. 生态学报, 33(2): 348-357.
      刘娟, 盛安旭, 刘枫, 等, 2018. 纳米矿物及其环境效应. 地球科学, 43(5): 1450-1463.
      鲁安怀, 杜逸飞, 方谦, 等, 2025. 矿物增强生物光合作用理论与应用研究取得新突破. 地学前缘, 32(1): 466-469.
      陆现彩, 李娟, 刘欢, 等, 2019. 金属硫化物微生物氧化的机制和效应. 岩石学报, 35(1): 153-163.
      王本, 唐睿康, 2013. 生物矿化: 无机化学和生物医学间的桥梁之一. 化学进展, 25(4): 633-641.
      王畅, 陈晓明, 2007. 壳聚糖复合生物材料研究进展. 化工中间体, (2): 1-3, 19.
      谢树成, 颜佳新, 杨义, 等, 2023. 微生物与沉积岩的协同演化. 沉积学报, 41(6): 1635-1644.
      谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22.
      谢树成, 朱宗敏, 张宏斌, 等, 2024. 小小地质微生物演绎跨圈层的相互作用. 地学前缘, 31(1): 446-454.
      袁鹏, 2018. 纳米结构矿物的特殊结构和表-界面反应性. 地球科学, 43(5): 1384-1407.
      周邦新, 刘文庆, 2007. 三维原子探针及其在材料科学研究中的应用. 材料科学与工艺, 15(3): 405-408.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(6)

      Article views (293) PDF downloads(61) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return