• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Qiu Xincheng, Yang Hao, Zheng Zijie, Fang Qian, Chen Zhong-Qiang, 2025. NanoSIMS Techniques and Its Important Implications in Geomicrobiology and Biosedimentology. Earth Science, 50(3): 1220-1233. doi: 10.3799/dqkx.2025.021
    Citation: Qiu Xincheng, Yang Hao, Zheng Zijie, Fang Qian, Chen Zhong-Qiang, 2025. NanoSIMS Techniques and Its Important Implications in Geomicrobiology and Biosedimentology. Earth Science, 50(3): 1220-1233. doi: 10.3799/dqkx.2025.021

    NanoSIMS Techniques and Its Important Implications in Geomicrobiology and Biosedimentology

    doi: 10.3799/dqkx.2025.021
    • Received Date: 2025-01-03
    • Publish Date: 2025-03-25
    • NanoSIMS (nanoscale secondary ion mass spectrometry) technology, with its high spatial resolution and chemical sensitivity, demonstrates significant potential for implications in researches of geomicrobiology. This technology enables in-situ analysis of elemental and isotopic distributions at the nanoscale, offering a revolutionary tool for uncovering interactions between microorganisms and their environments. This article reviews the applications and advancements of NanoSIMS technology in the field of geomicrobiology. It provides a detailed overview of the principles of NanoSIMS and its applications in areas such as identifying biogenic minerals from ancient microorganisms, exploring extraterrestrial life, carbonate mineral precipitation, biogeochemical cycles, and functional studies of modern microbial communities. The development of NanoSIMS has propelled geomicrobiology towards greater precision and resolution, presenting unprecedented opportunities to study the origin of life, microbial activity in extreme environments, and global biogeochemical cycles. At the same time, this article identifies challenges related to sample preparation, signal-to-noise ratio, and quantitative analysis, while also suggesting directions for optimization, such as technological upgrades, multi-technique integration, and algorithmic improvements. In the future, the continued evolution of NanoSIMS will provide critical support for investigating early life on Earth, global elemental cycles, and extraterrestrial life, further advancing geomicrobiology and its related interdisciplinary fields.

       

    • loading
    • Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718. https://doi.org/10.1038/nature04764
      Altermann, W., Kazmierczak, J., 2003. Archean Microfossils: A Reappraisal of Early Life on Earth. Research in Microbiology, 154(9): 611-617. https://doi.org/10.1016/j.resmic.2003.08.006
      Arandia-Gorostidi, N., Weber, P. K., Alonso-Sáez, L., et al., 2017. Elevated Temperature Increases Carbon and Nitrogen Fluxes between Phytoplankton and Heterotrophic Bacteria through Physical Attachment. The ISME Journal, 11(3): 641-650. https://doi.org/10.1038/ismej.2016.156
      Brasier, M., McLoughlin, N., Green, O., et al., 2006. A Fresh Look at the Fossil Evidence for Early Archaean Cellular Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 887-902. https://doi.org/10.1098/rstb.2006.1835
      Bryant, R. N., Houghton, J. L., Jones, C., et al., 2023. Deconvolving Microbial and Environmental Controls on Marine Sedimentary Pyrite Sulfur Isotope Ratios. Science, 382(6673): 912-915. https://doi.org/10.1126/science.adg6103
      Burne, R. V., Moore, L. S., 1987. Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios, 2(3): 241. https://doi.org/10.2307/3514674
      Canfield, D. E., 2001. Biogeochemistry of Sulfur Isotopes. Reviews in Mineralogy and Geochemistry, 43(1): 607-636. https://doi.org/10.2138/gsrmg.43.1.607
      Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009. Redox Sensitive Trace Elements as Paleoenvironments Proxies. Geological Review, 55(1): 91-99 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DZLP200901015&dbcode=CJFD&year=2009&dflag=pdfdown
      Chen, J., Yao, S. P., 2005. Geomicrobiology and Its Progress. Geological Journal of China Universities, 11(2): 154-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200502001.htm
      Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade (2011-2020) and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 1-35 (in Chinese with English abstract).
      Chen, Z. Q., Zhou, C., Stanley, G. J., 2017. Biosedimentary Records of China from the Precambrian to Present. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 1-6. https://doi.org/10.1016/j.palaeo.2017.03.002
      Chen, Z. Q., Tu, C. Y., Pei, Y., et al., 2019. Biosedimentological Features of Major Microbe-Metazoan Transitions (MMTs) from Precambrian to Cenozoic. Earth-Science Reviews, 189: 21-50. https://doi.org/10.1016/j.earscirev.2019.01.015
      Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598: 575-579. https://doi.org/10.1038/s41586-021-03804-9
      Grotzinger, J. P., Rothman, D. H., 1996. An Abiotic Model for Stromatolite Morphogenesis. Nature, 383: 423-425. https://doi.org/10.1038/383423a0
      Guo, Z. X., Papineau, D., O'Neil, J., et al., 2024. Abiotic Synthesis of Graphitic Carbons in the Eoarchean Saglek-Hebron Metasedimentary Rocks. Nature Communications, 15: 5679. https://doi.org/10.1038/s41467-024-50134-1
      Halevy, I., Fike, D. A., Pasquier, V., et al., 2023. Sedimentary Parameters Control the Sulfur Isotope Composition of Marine Pyrite. Science, 382(6673): 946-951. https://doi.org/10.1126/science.adh1215
      Hansen, C. J., Castillo-Rogez, J., Grundy, W., et al., 2021. Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!. The Planetary Science Journal, 2(4): 137. https://doi.org/10.3847/psj/abffd2
      Hao, J. L., Zhang, L. P., Li, Z. Y., et al., 2024. Sulfur Isotopic Analysis of Sedimentary Pyrite at Micro-Nano Scale and Its Implications to Oil/Gas Generation in the Dongying Depression. Acta Petrologica Sinica, 40(1): 313-322 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.01.17
      Harazim, D., Virtasalo, J. J., Denommee, K. C., et al., 2020. Exceptional Sulfur and Iron Isotope Enrichment in Millimetre-Sized, Early Palaeozoic Animal Burrows. Scientific Reports, 10: 20270. https://doi.org/10.1038/s41598-020-76296-8
      Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano-Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract). doi: 10.5846/stxb201111301826
      Hu, Y. L., Wang, W., Zhao, X. Y., et al., 2025. Extreme Sulfur Isotope Heterogeneity in Individual Ediacaran Pyrite Grains Revealed by NanoSIMS Analysis. Marine and Petroleum Geology, 171: 107201. https://doi.org/10.1016/j.marpetgeo.2024.107201
      Imachi, H., Nobu, M. K., Nakahara, N., et al., 2020. Isolation of an Archaeon at the Prokaryote-Eukaryote Interface. Nature, 577: 519-525. https://doi.org/10.1038/s41586-019-1916-6
      Jia, X., Kivelson, M. G., 2021. The Magnetosphere of Ganymede. In: Maggiolo, R., André, N., Hasegawa, H., et al., eds., Magnetospheres in the Solar System. Wiley, Hoboken, 557-573. https://doi.org/10.1002/9781119815624.ch35
      Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10: 849. https://doi.org/10.3389/fmicb.2019.00849
      Jørgensen, B. B., Kasten, S., 2006. Sulfur Cycling and Methane Oxidation. In: Schulz, H. D., Zabel, M., eds., Marine Geochemistry. Springer-Verlag, Berlin, 271-309. https://doi.org/10.1007/3-540-32144-6_8
      Li, Q. L., Yang, W., Liu, Y., et al., 2013. Ion Microprobe Microanalytical Techniques and Their Applications in Earth Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 310-327 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2013.03.004
      Li, W. J., Jiang, H. C., 2018. Geomicrobiology: A New Interdisciplinary Subject. Acta Microbiologica Sinica, 58(4): 521-524 (in Chinese with English abstract).
      Li, X. H., Li, Q. L., 2016. Major Advances in Microbeam Analytical Techniques and Their Applications in Earth Science. Science Bulletin, 61(23): 1785-1787. https://doi.org/10.1007/s11434-016-1197-5
      Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract).
      Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. NanoSIMS Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic-Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389
      Lin, Z. Y., Sun, X. M., Strauss, H., et al., 2017. Multiple Sulfur Isotope Constraints on Sulfate-Driven Anaerobic Oxidation of Methane: Evidence from Authigenic Pyrite in Seepage Areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153-173. https://doi.org/10.1016/j.gca.2017.05.015
      Lopes, R. M. C., Kirk, R. L., Mitchell, K. L., et al., 2013. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. Journal of Geophysical Research: Planets, 118(3): 416-435. https://doi.org/10.1002/jgre.20062
      Lovelock, J. E., 1983. Gaia as Seen through the Atmosphere. In: Westbroek, P., Jong, E. W., eds., Biomineralization and Biological Metal Accumulation. Springer, Dordrecht, 15-25. https://doi.org/10.1007/978-94-009-7944-4_2
      Marin-Carbonne, J., Decraene, M. N., Havas, R., et al., 2022. Early Precipitated Micropyrite in Microbialites: A Time Capsule of Microbial Sulfur Cycling. Geochemical Perspectives Letters, 21: 7-12. https://doi.org/10.7185/geochemlet.2209
      Mayali, X., 2020. NanoSIMS: Microscale Quantification of Biogeochemical Activity with Large-Scale Impacts. Annual Review of Marine Science, 12: 449-467. https://doi.org/10.1146/annurev-marine-010419-010714
      McLoughlin, N., Wilson, L. A., Brasier, M. D., 2008. Growth of Synthetic Stromatolites and Wrinkle Structures in the Absence of Microbes-Implications for the Early Fossil Record. Geobiology, 6(2): 95-105. https://doi.org/10.1111/j.1472-4669.2007.00141.x
      Moorbath, S., 2005. Dating Earliest Life. Nature, 434(7030): 155. https://doi.org/10.1038/434155a
      Musat, N., Halm, H., Winterholler, B., et al., 2008. A Single-Cell View on the Ecophysiology of Anaerobic Phototrophic Bacteria. Proceedings of the National Academy of Sciences, 105(46): 17861-17866. https://doi.org/10.1073/pnas.0809329105
      Oehler, D. Z., Robert, F., Walter, M. R., et al., 2010. Diversity in the Archean Biosphere: New Insights from NanoSIMS. Astrobiology, 10(4): 413-424. https://doi.org/10.1089/ast.2009.0426
      Papineau, D., She, Z., Dodd, M. S., et al., 2022. Metabolically Diverse Primordial Microbial Communities in Earth's Oldest Seafloor-Hydrothermal Jasper. Science Advances, 8(15): eabm2296. https://doi.org/10.1126/sciadv.abm2296
      Pasquier, V., Bryant, R. N., Fike, D. A., et al., 2021. Strong Local, Not Global, Controls on Marine Pyrite Sulfur Isotopes. Science Advances, 7(9): eabb7403. https://doi.org/10.1126/sciadv.abb7403
      Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558: 564-568. https://doi.org/10.1038/s41586-018-0246-4
      Qiu, X. C., 2022. Geomicrobiological Process and Paleoceanographical Analysis of Early Triassic Microbialites and Fish-Bearing Calcareous Nodules in South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Raven, M. R., Sessions, A. L., Fischer, W. W., et al., 2016. Sedimentary Pyrite δ34S Differs from Porewater Sulfide in Santa Barbara Basin: Proposed Role of Organic Sulfur. Geochimica et Cosmochimica Acta, 186: 120-134. https://doi.org/10.1016/j.gca.2016.04.037
      Schopf, J. W., 2006. Fossil Evidence of Archaean Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 869-885. https://doi.org/10.1098/rstb.2006.1834
      Schuhmacher, M., Rasser, B., De Chambost, E., et al., 1999. Recent Instrumental Developments in Magnetic Sector SIMS. Fresenius' Journal of Analytical Chemistry, 365(1): 12-18. https://doi.org/10.1007/s002160051438
      Steinhauser, M. L., Bailey, A. P., Senyo, S. E., et al., 2012. Multi-Isotope Imaging Mass Spectrometry Quantifies Stem Cell Division and Metabolism. Nature, 481: 516-519. https://doi.org/10.1038/nature10734
      Sun, S., Wang, C. S., 2008. Gaia Theory and Earth System Science. Acta Geologica Sinica, 82(1): 1-8 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2008.tb00319.x
      Thomazo, C., Vennin, E., Brayard, A., et al., 2016. A Diagenetic Control on the Early Triassic Smithian-Spathian Carbon Isotopic Excursions Recorded in the Marine Settings of the Thaynes Group (Utah, USA). Geobiology, 14(3): 220-236. https://doi.org/10.1111/gbi.12174
      Wacey, D., Gleeson, D., Kilburn, M. R., 2010. Microbialite Taphonomy and Biogenicity: New Insights from NanoSIMS. Geobiology, 8(5): 403-416. https://doi.org/10.1111/j.1472-4669.2010.00251.x
      Walter, M. R., Buick, R., Dunlop, J. S. R., 1980. Stromatolites 3, 400-3, 500 Myr Old from the North Pole Area, Western Australia. Nature, 284(5755): 443-445. https://doi.org/10.1038/284443a0
      Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1
      Wu, K. J., Zhou, L., Tahon, G., et al., 2024. Isolation of a Methyl-Reducing Methanogen Outside the Euryarchaeota. Nature, 632: 1124-1130. https://doi.org/10.1038/s41586-024-07728-y
      Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. A Transition from Paleontology to Geobiology. Chinese Science Bulletin, 51(19): 2327-2336 (in Chinese). doi: 10.1007/s11434-006-2111-3
      Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese). doi: 10.1360/csb2012-57-1-3
      Yang, W., Hu, S., Zhang, J. C., et al., 2015. Nano SIMS Analytical Technique and Its Applications in Earth Sciences. Science in China (Series D), 45(9): 1335-1346 (in Chinese). doi: 10.1007/s11430-015-5106-6
      Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K
      常华进, 储雪蕾, 冯连君, 等, 2009. 氧化还原敏感微量元素对古海洋沉积环境的指示意义. 地质论评, 55(1): 91-99.
      陈骏, 姚素平, 2005. 地质微生物学及其发展方向. 高校地质学报, 11(2): 154-166.
      陈意, 胡兆初, 贾丽辉, 等, 2021. 微束分析测试技术十年(2011—2020)进展与展望. 矿物岩石地球化学通报, 40(1): 1-35.
      郝佳龙, 张刘平, 李照阳, 等, 2024. 矿物微‒纳尺度硫同位素分析及在东营凹陷油气成藏的应用示范. 岩石学报, 40(1): 313-322.
      胡行伟, 张丽梅, 贺纪正, 2013. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用. 生态学报, 33(2): 348-357.
      李秋立, 杨蔚, 刘宇, 等, 2013. 离子探针微区分析技术及其在地球科学中的应用进展. 矿物岩石地球化学通报, 32(3): 310-327.
      李文均, 蒋宏忱, 2018. 地质微生物学: 一门新兴的交叉学科. 微生物学报, 58(4): 521-524.
      林巍, 申建勋, 潘永信, 2022. 关于我国天体生物学研究的思考. 地球科学, 47(11): 4108-4113.
      仇鑫程, 2022. 华南早三叠世微生物岩和钙质鱼结核的微生物地质过程和古海洋环境分析(博士学位论文). 武汉: 中国地质大学.
      孙枢, 王成善, 2008. Gaia理论与地球系统科学. 地质学报, 82(1): 1-8.
      谢树成, 龚一鸣, 童金南, 等, 2006. 从古生物学到地球生物学的跨越. 科学通报, 51(19): 2327-2336.
      谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22.
      杨蔚, 胡森, 张建超, 等, 2015. 纳米离子探针分析技术及其在地球科学中的应用. 中国科学(D辑), 45(9): 1335-1346.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (232) PDF downloads(44) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return