• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 3
    Mar.  2025
    Turn off MathJax
    Article Contents
    Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022
    Citation: Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022

    Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section

    doi: 10.3799/dqkx.2025.022
    • Received Date: 2025-01-10
    • Publish Date: 2025-03-25
    • The Permian-Triassic (P-Tr) mass extinction, which occurred approximately 252 million years ago, represents the largest ecological crisis in Earth's geological history and is often regarded as a reference case for modern ecological crises. However, studies that integrate multiple taxa and systematically characterize the overall evolutionary trajectory of food web structures in communities remain scarce. In particular, the incompleteness of fossil records and their low temporal resolution within stratigraphic records pose significant challenges to using deep-time crises as analogs for modern ecological crises. This study focuses on the fossil-rich Meishan Section in Zhejiang Province, the global stratotype section and point (GSSP) for the P-Tr boundary. Using Bayesian modeling with the PyRate method, we recalculated the true first and last appearances of all fossil species within this section. The results reveal a three-phase decline in species diversity: rapid drops in the first and third phases, with a gradual decline in the second phase. Building on these results, we explored schemes for delineating paleocommunities at varying temporal resolutions, ranging from 50 ka per community down to 1 ka per community. We then analyzed species composition similarity between adjacent communities under each scheme. As the temporal resolution increases, adjacent communities exhibit increasingly similar species compositions. Notably, for resolutions of 1-4 ka years per community, over 5% of adjacent communities show identical species compositions. Adopting a temporal resolution of 5 ka per community, we constructed a continuous sequence of paleocommunities and quantitatively assessed the evolutionary dynamics of community composition, simulated food web stability, and resistance across the P-Tr boundary. The results indicate minimal changes in ecological structure and community stability during the first and second phases, followed by abrupt shifts in the third phase. Communities in the first and second phases retained relatively high resistance, likely due to the loss of redundant species that did not compromise the integrity of ecological structure and function. In contrast, the third phase witnessed the collapse and reorganization of ecological structures as multiple functional groups disappeared. This study provides a detailed examination of paleocommunity delineation at varying temporal resolutions and reconstructs the evolutionary trajectory of paleoecological structures at a resolution of 5 ka. These findings offer a novel approach for investigating high-resolution deep-time ecosystem evolution and facilitate comparative studies between ancient and modern ecological systems.

       

    • loading
    • Algeo, T. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates. Journal of Earth Science, 21(1): 107-110. https://doi.org/10.1007/s12583⁃010⁃0182⁃1
      Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian⁃Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
      Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023⁃1026 https://doi.org/10.1130/G31203.1
      Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471(7336), 51-57. https://doi.org/10.1038/nature09678
      Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
      Cao, C. Q., Zheng, Q. F., 2009. Geological event sequences of the Permian⁃Triassic transition recorded in the microfacies in Meishan. Science in China (Series D), 39(4): 481-487 (in Chinese).
      Chen, Z. ⁃Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
      Chen, Z. ⁃Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems during and after Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese).
      Chen, Z. ⁃Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian⁃Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth⁃Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
      Chen, Z. ⁃Q., Zhao, L. S., Wang, X. D., et al., 2018. Great Paleozoic⁃Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 29(4): 721-732. https://doi.org/10.1007/s12583⁃018⁃0797⁃1
      Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
      Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa019
      Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End⁃Permian Mass Extinction and Recovery. Nature Communications, 7(1): 12236. doi: 10.1038/ncomms12236.https://doi.org/ 10.1038/ncomms12236
      Del Rey, A., Deckart, K., Arriagada, C., et al., 2016. Resolving the Paradigm of the Late Paleozoic⁃Triassic Chilean Magmatism: Isotopic Approach. Gondwana Research, 37: 172-181. https://doi.org/10.1016/j.gr.2016.06.008
      Dunne, J. A., Williams, R. J., Martinez, N. D., 2004. Network Structure and Robustness of Marine Food Webs. Marine Ecology Progress Series, 273: 291-302. https://doi.org/10.3354/meps273291
      Erwin, D. H., Bowring, S. A., Jin, Y. G., 2002. End⁃Permian Mass Extinctions: A Review. In: Koeberl, C., MacLeod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2356⁃6.363
      Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10): 851-877. https://doi.org/10.1080/14772019.2016.1245680
      Foster, W. J., Frank, A. B., Li, Q. J., et al., 2024. Thermal and Nutrient Stress Drove Permian⁃Triassic Shallow Marine Extinctions. Cambridge Prisms: Extinction, 2: e9. https://doi.org/10.1017/ext.2024.9
      Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
      Gilarranz, L. J., Rayfield, B., Liñán⁃Cembrano, G., et al., 2017. Effects of Network Modularity on the Spread of Perturbation Impact in Experimental Metapopulations. Science, 357(6347): 199-201. https://doi.org/10.1126/science.aal4122
      Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
      Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/G38487.1
      Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and Stability in Ecological Communities. Nature Communications, 7: 12031. https://doi.org/10.1038/ncomms12031
      Huang, Y. G., Chen, Z. Q., Algeo, T. J., et al., 2019. Two⁃Stage Marine Anoxia and Biotic Response during the Permian⁃Triassic Transition in Kashmir, Northern India: Pyrite Framboid Evidence. Global and Planetary Change, 172: 124-139. https://doi.org/10.1016/j.gloplacha.2018.10.002
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2021. Ecological Dynamics of Terrestrial and Freshwater Ecosystems across Three Mid⁃Phanerozoic Mass Extinctions from Northwest China. Proceedings of the Royal Society B: Biological Sciences, 288: rspb. 20210148. https://doi.org/10.1098/rspb.2021.0148
      Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2023. The Stability and Collapse of Marine Ecosystems during the Permian⁃Triassic Mass Extinction. Current Biology, 33(6): 1059-1070. https://doi.org/10.1016/j.cub.2023.02.007
      Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
      Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian⁃Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
      Kaiho, K., Aftabuzzaman, M., Jones, D. S., et al., 2021. Pulsed Volcanic Combustion Events Coincident with the End⁃Permian Terrestrial Disturbance and the Following Global Crisis. Geology, 49(3): 289-293. https://doi.org/10.1130/g48022.1
      Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273: 452-457. https://doi.org/10.1126/science.273.5274.452
      Newman, M. E., 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23): 8577-8582. https://doi.org/10.1073/pnas.0601602103
      Payne, J. L., Clapham, M. E., 2012. End⁃Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty⁃First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105329
      Qiu, Z. P., 2019. Carbonate Thermoluminescence from Meishan Section, Zhejiang Province and Its Implication for Environmental Changes during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Roopnarine, P. D., 2009. Ecological Modeling of Paleocommunity Food Webs. In: Dietl, G. P., Flessa, K. W., eds., Conservation Paleobiology: Using the Past to Manage for the Future. Yale University Press, Yale, 195-220.
      Roopnarine, P. D., 2010. Graphs, Networks, Extinction and Paleocommunity Food Webs. In: Alroy, J., Hunt, G., eds., Quantitative Methods in Paleobiology. Yale University Press, Yale, 143-161.
      Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., et al., 2007. Trophic Network Models Explain Instability of Early Triassic Terrestrial Communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622): 2077-2086. https://doi.org/10.1098/rspb.2007.0515
      Roopnarine, P. D., Angielczyk, K. D., Olroyd, S. L., et al., 2017. Comparative Ecological Dynamics of Permian⁃Triassic Communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. Journal of Vertebrate Paleontology, 37(Suppl. ): 254-272. https://doi.org/10.1080/02724634.2018.1424714
      Roopnarine, P. D., Dineen, A. A., 2018. Coral Reefs in Crisis: The Reliability of Deep⁃Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C. L., Schneider, C. L., eds., Marine Conservation Paleobiology. Springer International Publishing, Cham, 105-141. https://doi.org/10.1007/978⁃3⁃319⁃73795⁃9_6
      Sanei, H., Grasby, S. E., Beauchamp, B., 2012. Latest Permian Mercury Anomalies. Geology, 40(1): 63-66. https://doi.org/10.1130/G32596.1
      Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/G36227.1
      Shen, J., Chen, J., Algeo, T. J., et al., 2019. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
      Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High⁃Resolution Digital Geological Timeline? Earth Science, 47(10): 3766-3769 (in Chinese with English abstract).
      Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
      Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events versus Global Changes: Progresses and Challenges. China Science Bulletin, 69(2): 268-285 (in Chinese with English abstract).
      Silvestro, D., Salamin, N., Antonelli, A., et al., 2019. Improved Estimation of Macroevolutionary Rates from Fossil Data Using a Bayesian Framework. Paleobiology, 45(4): 546-570. https://doi.org/10.1017/pab.2019.23
      Silvestro, D., Salamin, N., Schnitzler, J., 2014a. PyRate: A New Program to Estimate Speciation and Extinction Rates from Incomplete Fossil Data. Methods in Ecology and Evolution, 5(10): 1126-1131. https://doi.org/10.1111/2041⁃210X.12263
      Silvestro, D., Schnitzler, J., Liow, L. H., et al., 2014b. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63(3): 349-367. https://doi.org/10.1093/sysbio/syu006
      Song, H. J., 2012. Extinction and Recovery of Foraminifera and Calcareous Algae during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
      Song, Y., Tian, Y., Yu, J. X., et al., 2022. Wildfire Response to Rapid Climate Change during the Permian⁃Triassic Biotic Crisis. Global and Planetary Change, 215: 103872. https://doi.org/10.1016/j.gloplacha.2022.103872
      Stouffer, D. B., Bascompte, J., 2011. Compartmentalization Increases Food⁃Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648-3652. https://doi.org/10.1073/pnas.1014353108
      Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
      Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
      Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End⁃Permian Mass Extinction. Paleobiology, 40(1): 113-129. https://doi.org/10.1666/13022
      Ward, P. D., Montgomery, D. R., Smith, R., 2000. Altered River Morphology in South Africa Related to the Permian⁃Triassic Extinction. Science, 289(5485): 1740-1743. https://doi.org/10.1126/science.289.5485.1740
      Wu, C. L., Liu, G., 2019. Big Data and Future Development of Geological Science. Geological Bulletin of China, 38(7): 1081-1088 (in Chinese with English abstract).
      Xie, S. C., Pancost, R. D., Huang, J., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian⁃Triassic Crisis. Geology, 35(12): 1083-1086. https://doi.org/10.1130/G24224A.1
      Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
      Zhang, F. F., Algeo, T. J., Romaniello, S. J., et al., 2018. Congruent Permian⁃Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global⁃Oceanic Anoxia and Validation of the U⁃Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1
      Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
      Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
      Zhang, K. X., Lai, X. L., Tong, J. N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.018
      Zhou, W. F., Algeo, T. J., Luo, G. M., et al., 2021. Hydrocarbon Compound Evidence in Marine Successions of South China for Frequent Wildfires during the Permian⁃Triassic Transition. Global and Planetary Change, 200: 103472. https://doi.org/10.1016/j.gloplacha.2021.103472
      曹长群, 郑全锋, 2009. 煤山二叠纪‒三叠纪过渡期事件地层时序的微观地层记录. 中国科学(D辑), 39(4): 481-487.
      陈中强, 黄元耕, 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827
      沈树忠, 樊隽轩, 王向东, 等, 2022. 如何打造高精度地质时间轴?地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
      沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
      吴冲龙, 刘刚, 2019. 大数据与地质学的未来发展. 地质通报, 38(7): 1081-1088.
      张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
      张克信, 赖旭龙, 童金南, 等, 2009. 全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展. 古生物学报, 48(3): 474-486. doi: 10.3969/j.issn.0001-6616.2009.03.018
    • dqkxzx-50-3-951-附表1.xlsx
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(8)

      Article views (317) PDF downloads(49) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return