Citation: | Huang Yuangeng, Xin Bailun, Guo Zhen, Li Ziheng, Qiao Huijie, Huang Xinyue, Chen Zhong-Qiang, 2025. Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section. Earth Science, 50(3): 951-963. doi: 10.3799/dqkx.2025.022 |
Algeo, T. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates. Journal of Earth Science, 21(1): 107-110. https://doi.org/10.1007/s12583⁃010⁃0182⁃1
|
Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian⁃Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007
|
Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023⁃1026 https://doi.org/10.1130/G31203.1
|
Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth's Sixth Mass Extinction already Arrived? Nature, 471(7336), 51-57. https://doi.org/10.1038/nature09678
|
Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005
|
Cao, C. Q., Zheng, Q. F., 2009. Geological event sequences of the Permian⁃Triassic transition recorded in the microfacies in Meishan. Science in China (Series D), 39(4): 481-487 (in Chinese).
|
Chen, Z. ⁃Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475
|
Chen, Z. ⁃Q., Huang, Y. G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems during and after Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese).
|
Chen, Z. ⁃Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian⁃Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth⁃Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
|
Chen, Z. ⁃Q., Zhao, L. S., Wang, X. D., et al., 2018. Great Paleozoic⁃Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 29(4): 721-732. https://doi.org/10.1007/s12583⁃018⁃0797⁃1
|
Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1
|
Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa019
|
Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End⁃Permian Mass Extinction and Recovery. Nature Communications, 7(1): 12236. doi: 10.1038/ncomms12236.https://doi.org/ 10.1038/ncomms12236
|
Del Rey, A., Deckart, K., Arriagada, C., et al., 2016. Resolving the Paradigm of the Late Paleozoic⁃Triassic Chilean Magmatism: Isotopic Approach. Gondwana Research, 37: 172-181. https://doi.org/10.1016/j.gr.2016.06.008
|
Dunne, J. A., Williams, R. J., Martinez, N. D., 2004. Network Structure and Robustness of Marine Food Webs. Marine Ecology Progress Series, 273: 291-302. https://doi.org/10.3354/meps273291
|
Erwin, D. H., Bowring, S. A., Jin, Y. G., 2002. End⁃Permian Mass Extinctions: A Review. In: Koeberl, C., MacLeod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder.
|
Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10): 851-877. https://doi.org/10.1080/14772019.2016.1245680
|
Foster, W. J., Frank, A. B., Li, Q. J., et al., 2024. Thermal and Nutrient Stress Drove Permian⁃Triassic Shallow Marine Extinctions. Cambridge Prisms: Extinction, 2: e9. https://doi.org/10.1017/ext.2024.9
|
Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012
|
Gilarranz, L. J., Rayfield, B., Liñán⁃Cembrano, G., et al., 2017. Effects of Network Modularity on the Spread of Perturbation Impact in Experimental Metapopulations. Science, 357(6347): 199-201. https://doi.org/10.1126/science.aal4122
|
Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1
|
Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/G38487.1
|
Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and Stability in Ecological Communities. Nature Communications, 7: 12031. https://doi.org/10.1038/ncomms12031
|
Huang, Y. G., Chen, Z. Q., Algeo, T. J., et al., 2019. Two⁃Stage Marine Anoxia and Biotic Response during the Permian⁃Triassic Transition in Kashmir, Northern India: Pyrite Framboid Evidence. Global and Planetary Change, 172: 124-139. https://doi.org/10.1016/j.gloplacha.2018.10.002
|
Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2021. Ecological Dynamics of Terrestrial and Freshwater Ecosystems across Three Mid⁃Phanerozoic Mass Extinctions from Northwest China. Proceedings of the Royal Society B: Biological Sciences, 288: rspb. 20210148. https://doi.org/10.1098/rspb.2021.0148
|
Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2023. The Stability and Collapse of Marine Ecosystems during the Permian⁃Triassic Mass Extinction. Current Biology, 33(6): 1059-1070. https://doi.org/10.1016/j.cub.2023.02.007
|
Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1
|
Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian⁃Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
|
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1
|
Kaiho, K., Aftabuzzaman, M., Jones, D. S., et al., 2021. Pulsed Volcanic Combustion Events Coincident with the End⁃Permian Terrestrial Disturbance and the Following Global Crisis. Geology, 49(3): 289-293. https://doi.org/10.1130/g48022.1
|
Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273: 452-457. https://doi.org/10.1126/science.273.5274.452
|
Newman, M. E., 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23): 8577-8582. https://doi.org/10.1073/pnas.0601602103
|
Payne, J. L., Clapham, M. E., 2012. End⁃Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty⁃First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105329
|
Qiu, Z. P., 2019. Carbonate Thermoluminescence from Meishan Section, Zhejiang Province and Its Implication for Environmental Changes during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Roopnarine, P. D., 2009. Ecological Modeling of Paleocommunity Food Webs. In: Dietl, G. P., Flessa, K. W., eds., Conservation Paleobiology: Using the Past to Manage for the Future. Yale University Press, Yale, 195-220.
|
Roopnarine, P. D., 2010. Graphs, Networks, Extinction and Paleocommunity Food Webs. In: Alroy, J., Hunt, G., eds., Quantitative Methods in Paleobiology. Yale University Press, Yale, 143-161.
|
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., et al., 2007. Trophic Network Models Explain Instability of Early Triassic Terrestrial Communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622): 2077-2086. https://doi.org/10.1098/rspb.2007.0515
|
Roopnarine, P. D., Angielczyk, K. D., Olroyd, S. L., et al., 2017. Comparative Ecological Dynamics of Permian⁃Triassic Communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. Journal of Vertebrate Paleontology, 37(Suppl. ): 254-272. https://doi.org/10.1080/02724634.2018.1424714
|
Roopnarine, P. D., Dineen, A. A., 2018. Coral Reefs in Crisis: The Reliability of Deep⁃Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C. L., Schneider, C. L., eds., Marine Conservation Paleobiology. Springer International Publishing, Cham, 105-141.
|
Sanei, H., Grasby, S. E., Beauchamp, B., 2012. Latest Permian Mercury Anomalies. Geology, 40(1): 63-66. https://doi.org/10.1130/G32596.1
|
Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/G36227.1
|
Shen, J., Chen, J., Algeo, T. J., et al., 2019. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0
|
Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High⁃Resolution Digital Geological Timeline? Earth Science, 47(10): 3766-3769 (in Chinese with English abstract).
|
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454
|
Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events versus Global Changes: Progresses and Challenges. China Science Bulletin, 69(2): 268-285 (in Chinese with English abstract).
|
Silvestro, D., Salamin, N., Antonelli, A., et al., 2019. Improved Estimation of Macroevolutionary Rates from Fossil Data Using a Bayesian Framework. Paleobiology, 45(4): 546-570. https://doi.org/10.1017/pab.2019.23
|
Silvestro, D., Salamin, N., Schnitzler, J., 2014a. PyRate: A New Program to Estimate Speciation and Extinction Rates from Incomplete Fossil Data. Methods in Ecology and Evolution, 5(10): 1126-1131. https://doi.org/10.1111/2041⁃210X.12263
|
Silvestro, D., Schnitzler, J., Liow, L. H., et al., 2014b. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63(3): 349-367. https://doi.org/10.1093/sysbio/syu006
|
Song, H. J., 2012. Extinction and Recovery of Foraminifera and Calcareous Algae during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
|
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649
|
Song, Y., Tian, Y., Yu, J. X., et al., 2022. Wildfire Response to Rapid Climate Change during the Permian⁃Triassic Biotic Crisis. Global and Planetary Change, 215: 103872. https://doi.org/10.1016/j.gloplacha.2022.103872
|
Stouffer, D. B., Bascompte, J., 2011. Compartmentalization Increases Food⁃Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648-3652. https://doi.org/10.1073/pnas.1014353108
|
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126
|
Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044
|
Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End⁃Permian Mass Extinction. Paleobiology, 40(1): 113-129. https://doi.org/10.1666/13022
|
Ward, P. D., Montgomery, D. R., Smith, R., 2000. Altered River Morphology in South Africa Related to the Permian⁃Triassic Extinction. Science, 289(5485): 1740-1743. https://doi.org/10.1126/science.289.5485.1740
|
Wu, C. L., Liu, G., 2019. Big Data and Future Development of Geological Science. Geological Bulletin of China, 38(7): 1081-1088 (in Chinese with English abstract).
|
Xie, S. C., Pancost, R. D., Huang, J., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian⁃Triassic Crisis. Geology, 35(12): 1083-1086. https://doi.org/10.1130/G24224A.1
|
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004
|
Zhang, F. F., Algeo, T. J., Romaniello, S. J., et al., 2018. Congruent Permian⁃Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global⁃Oceanic Anoxia and Validation of the U⁃Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1
|
Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).
|
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390
|
Zhang, K. X., Lai, X. L., Tong, J. N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-6616.2009.03.018
|
Zhou, W. F., Algeo, T. J., Luo, G. M., et al., 2021. Hydrocarbon Compound Evidence in Marine Successions of South China for Frequent Wildfires during the Permian⁃Triassic Transition. Global and Planetary Change, 200: 103472. https://doi.org/10.1016/j.gloplacha.2021.103472
|
曹长群, 郑全锋, 2009. 煤山二叠纪‒三叠纪过渡期事件地层时序的微观地层记录. 中国科学(D辑), 39(4): 481-487.
|
陈中强, 黄元耕, 2022. 如何定量评价大灭绝时期生态系统的坍塌与重建过程? 地球科学, 47(10): 3827-3829. doi: 10.3799/dqkx.2022.827
|
沈树忠, 樊隽轩, 王向东, 等, 2022. 如何打造高精度地质时间轴?地球科学, 47(10): 3766-3769. doi: 10.3799/dqkx.2022.801
|
沈树忠, 张飞飞, 王文倩, 等, 2024. 深时重大生物和气候事件与全球变化: 进展与挑战. 科学通报, 69(2): 268-285.
|
吴冲龙, 刘刚, 2019. 大数据与地质学的未来发展. 地质通报, 38(7): 1081-1088.
|
张华, 蔡垚峰, 角升林, 等, 2024. 二叠纪‒三叠纪转折期升温事件与陆地生态系统. 第四纪研究, 44(5): 1093-1107.
|
张克信, 赖旭龙, 童金南, 等, 2009. 全球界线层型华南浙江长兴煤山剖面牙形石序列研究进展. 古生物学报, 48(3): 474-486. doi: 10.3969/j.issn.0001-6616.2009.03.018
|
![]() |
![]() |