• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Yang Ting, Wang Shiguang, Fang Lihua, Wang Weilai, Li Siqi, Xu Guangyin, Tang Fangtou, 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
    Citation: Yang Ting, Wang Shiguang, Fang Lihua, Wang Weilai, Li Siqi, Xu Guangyin, Tang Fangtou, 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033

    Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau

    doi: 10.3799/dqkx.2025.033
    • Received Date: 2025-02-01
    • Publish Date: 2025-05-25
    • On January 7, 2025, at 09:05, an MS6.8 earthquake struck Dingri County in the Xizang Autonomous Region, resulting in significant casualties and property damage. The epicenter of the main shock was located in the Dingmucuo graben, in the western segment of the southern Shenzha-Dingjie rift zone in the southern Tibetan Plateau, and the focal mechanism was identified as a typical normal faulting earthquake. The seismogenic fault is the normal faults in Dingmucuo graben, however, the distribution of surface rupture and geometry of normal faults, as well as the evolution model of this graben is relatively limited. This study discusses the seismogenic fault of the earthquake and the evolution model of the Shenzha-Dingjie rift through the interpretation of remote sensing images before and after the event, field investigations of surface ruptures, and the relocation of the seismic sequence. Earthquake investigations revealed significant surface ruptures developed on both the eastern and western sides of Dingmucuo, forming a typical graben structure, while the northern segment primarily developed in the eastern part of the Nixiacuo, exhibiting significant displacement and resembling a half-graben structure. Notably, the surface rupture extends about 30 km in the graben showing a migration of the graben boundary fault into the basin. Furthermore, based on the seismic phase data recorded by the permanent and temporary stations, 4 312 high-precision location results were determined by using a double-difference relocation method. The epicenter of the main shock was determined to be at 28.51°N, 87.52°E, with a focal depth of 11.3 km. The aftershock sequence was consistent with the direction of the surface rupture, showing a ~NS distribution, with depths concentrated around ~4‒17 km. The aftershock distribution revealed the coexistence of east-dipping and west-dipping fault characteristics. Based on the surface rupture and aftershock sequence, it concludes that the seismogenic fault for this earthquake is the eastern boundary fault of the Dingmucuo graben, with a dip angle of approximately 60°‒70°. The earthquake sequence is primarily concentrated in the upper crust and is likely a response to boundary stress resulting from the thrusting along Himalayan arc.

       

    • loading
    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
      Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
      England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561
      Fang, L. H., Wu, J. P., Su, J. R., et al., 2018. Relocation of Mainshock and Aftershock Sequence of the Ms7.0 Sichuan Jiuzhaigou Earthquake. Chinese Science Bulletin, 63(7): 649-662 (in Chinese). doi: 10.1360/N972017-01184
      Gan, W. J., Zhang, P. Z., Shen, Z. K., et al., 2007. Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research: Solid Earth, 112(B8): 2005JB004120. https://doi.org/10.1029/2005jb004120
      Gu, G. X., 1983. The Catalogue of Earthquakes in China (1831 BC-1969 AD). Science Press, Beijing, 894 (in Chinese).
      He, R. Z., Shang, X. F., Yu, C. Q., et al., 2014. A Unified Map of Moho Depth and Vp/Vs Ratio of Continental China by Receiver Function Analysis. Geophysical Journal International, 199(3): 1910-1918. https://doi.org/10.1093/gji/ggu365
      Hou, Z. Q., Wang, R., Zhang, H. J., et al., 2023. Formation of Giant Copper Deposits in Tibet Driven by Tearing of the Subducted Indian Plate. Earth-Science Reviews, 243: 104482. https://doi.org/10.1016/j.earscirev.2023.104482
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).
      Jiao, L. Q., Tapponnier, P., Coudurier-Curveur Mccallum, A., et al., 2024. The Shape of the Himalayan "Arc": An Ellipse Pinned by Syntaxial Strike-Slip Fault Tips. Proceedings of the National Academy of Sciences of the United States of America, 121(4): e2313278121. https://doi.org/10.1073/pnas.2313278121
      Kali, E., van der Woerd, J., Leloup, P. H., et al., 2010. Extension in Central-South Tibet, Insight from Cosmogenic Nuclide Dating. AGU Fall Meeting Abstracts, San Francisco, T41D-04.
      Kapp, P., Taylor, M., Stockli, D., et al., 2008. Development of Active Low-Angle Normal Fault Systems during Orogenic Collapse: Insight from Tibet. Geology, 36(1): 7. https://doi.org/10.1130/g24054a.1
      Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035
      Li, K., Tapponnier, P., Xu, X. W., et al., 2023. The 2022, MS6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412
      Li, N., Liu, L. Q., Zhu, L. D., et al., 2024. Quaternary Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51 (6): 1048-1056 (in Chinese with English abstract).
      Li, Z. C., Sun, J. Z., Ji, Z. M., et al., 2025. Rapid Simulation of Acceleration Waveform at Everest Seismic Station of Xizang Dingri MS6.8 Earthquake on January 7, 2025. Earth Science (in Chinese with English abstract).
      McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091-7613(1998)0260691:roocit>2.3.co;2 doi: 10.1130/0091-7613(1998)0260691:roocit>2.3.co;2
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Seeber, L., Armbruster, J. G., 1984. Some Elements of Continental Subduction along the Himalayan Front. Tectonophysics, 105(1-4): 263-278. https://doi.org/10.1016/0040-1951(84)90207-5
      Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
      Teng, J. W., Xiong, S. B., Yin, Z. X., et al., 1983. Structure of the Crust and Upper Mantle Pattern and Velocity Distributional Characteristics at Northern Region of the Himalayan Mountains. Chinese Journal of Geophysics, 26(6): 525-540 (in Chinese with English abstract).
      Tian, T. T., Wu, Z. H., 2023. The Latest Prehistoric Earthquake Event of Dingmucuo Normal Fault in the Southern Section of Shenzha-Dingjie Rift in Tibet and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
      Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014gc005369
      Wang, S. G., Chevalier, M. L., Tapponnier, P., et al., 2024. Timing and Characteristics of Co-Seismic Surface Ruptures in the Yadong Rift, Southern Tibet. Journal of Structural Geology, 188: 105264. https://doi.org/10.1016/j.jsg.2024.105264
      Wang, S. G., Replumaz, A., Chevalier, M. L., et al., 2022a. Decoupling between Upper Crustal Deformation of Southern Tibet and Underthrusting of Indian Lithosphere. Terra Nova, 34(1): 62-71. https://doi.org/10.1111/ter.12563
      Wang, S. G., Shen, X. M., Chevalier, M. L., et al., 2022b. Illite K-Ar and (U-Th)/He Low-Temperature Thermochronology Reveal Onset Timing of Yadong- Gulu Rift in Southern Tibetan Plateau. Frontiers in Earth Science, 10: 993796. https://doi.org/10.3389/feart.2022.993796
      Wang, W. L, Fang, L. H., Wu, J. P., et al, 2021. Aftershock Sequence Relocation of the 2021 Ms7.4 Maduo Earthquake, Qinghai, China. Science China Earth Science, 51(7): 1193-1202 (in Chinese).
      Wang, Y. Z., Chen, S., Chen, K., 2021. Source Model and Tectonic Implications of the 2020 Dingri MW5.7 Earthquake Constrained by InSAR Data. Earthquake, 41(1): 116-128 (in Chinese with English abstract).
      Xu, X. Y., 2019, Late Quaternary Activity and Its Environmental Effects of the N-S Trend Kharta Fault in Xaiinza-Dinggyr Rift, Southern Tibet. Institute of Geology, China Earthquake Administration (Dissertation), Beijing, 1-84 (in Chinese with English abstract).
      Yang, P. X., Ren, J. W., Chen, Z. W., et al., 2010. Tectonic Geomorphology of the Northern Segment of Shenzha-Dingjie Graben since Miocene in Middle Tibetan Plateau. Earthquake, 30(3): 81-89 (in Chinese with English abstract).
      Yang, T., Jia, K., Zhu, A. Y., et al., 2023. The 2022 MS5.8 and 6.0 Maerkang Earthquakes: Two Strike-Slip Events Occurred on V-Shaped Faults. Bulletin of the Seismological Society of America, 113(6): 2432-2446. https://doi.org/10.1785/0120220206
      Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0210-9
      Yu, C., Li, Z. H., Hu, X. N., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science. https://doi.org/10.1007/s12583-025-0175-8
      Zhang, Z., Klemperer, S., 2010. Crustal Structure of the Tethyan Himalaya, Southern Tibet: New Constraints from Old Wide-Angle Seismic Data. Geophysical Journal International, 181: 1247-1260. https://doi.org/10.1111/j.1365-246X.2010.04578.x
      房立华, 吴建平, 苏金蓉, 等, 2018. 四川九寨沟MS7.0地震主震及其余震序列精定位. 科学通报, 63(7): 649-662.
      顾功叙, 1983. 中国地震目录: 公元前1831——公元1969年. 北京: 科学出版社.
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      李楠, 刘陇强, 朱利东, 等, 2024. 喜马拉雅北缘丁木错地堑第四纪软沉积物变形构造. 成都理工大学学报(自然科学版), 51 (6): 1048-1056.
      李宗超, 孙吉泽, 纪志伟, 等, 2025. 2025年1月7日西藏定日MS6.8地震珠峰地震台加速度时程快速模拟. 地球科学. https://doi.org/10.3799/dqkx.2025.009
      滕吉文, 熊绍柏, 尹周勋, 等, 1983. 喜马拉雅山北部地区的地壳结构模型和速度分布特征. 地球物理学报, 26(6): 525-540.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      王未来, 房立华, 吴建平, 等, 2021.2021年青海玛多MS7.4地震序列精定位研究. 中国科学: 地球科学, 51(7): 1193-1202.
      王永哲, 陈石, 陈鲲, 2021. InSAR数据约束的2020年西藏定日MW5.7地震源模型及构造意义. 地震, 41(1): 116-128.
      徐心悦, 2019. 藏南申扎‒定结断裂西卡达正断裂晚第四纪活动性及其环境效应(硕士学位论文). 北京: 中国地震局地质研究所, 1-84.
      杨攀新, 任金卫, 陈正位, 等, 2010, 西藏中部申扎‒定结地堑系北段中新世以来构造地貌学研究. 地震, 30(3): 81-89.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)

      Article views (1662) PDF downloads(174) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return