Citation: | Ouyang Hegen, Xing Bo, Zhang Rongzhen, Li Xiaolong, Zhang Yongle, 2025. Discovery and Significance of Cobalt-Rich Sulfides in the Porphyry-Skarn Deposits of the Luanchuan Mo-Polymetallic Ore Field. Earth Science, 50(3): 1263-1272. doi: 10.3799/dqkx.2025.034 |
Bao, Z. W., Wang, C. Y., Zhao, T. P., et al., 2014. Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 57: 132-153. https://doi.org/10.1016/j.oregeorev.2013.09.008
|
Cao, M. J., Shan, P. F., Qin, K. Z., 2022. Cobalt-Rich Characteristics and Existing Problems of Porphyry Gold-Copper Deposit: A Case Study of Jinchang Deposit in Heilongjiang Province. Chinese Science Bulletin, 67(31): 3708-3723 (in Chinese). doi: 10.1360/TB-2021-1169
|
Carr, M. H., Turekian, K. K., 1961. The Geochemistry of Cobalt. Geochimica et Cosmochimica Acta, 23(1-2): 9-60. https://doi.org/10.1016/0016-7037(61)90087-4
|
Carroll, M. R., Webster, J. D., 1994. Solubilities of Sulfur, Noble Gases, Nitrogen, Chlorine, and Fluorine in Magmas. Reviews in Mineralogy and Geochemistry, 30: 231-231. https://doi.org/10.1515/9781501509674-013
|
Che, Y. Y., Su, H. M., Liu, T., et al., 2024. The Occurrence and Enrichment of Cobalt in Skarn Pb‒Zn Deposits: A Case Study of the Niukutou Cobalt-Rich Deposit, East Kunlun Metallogenic Belt, Western China. Ore Geology Reviews, 172: 106210. https://doi.org/10.1016/j.oregeorev.2024.106210
|
Foley, S. F., Prelevic, D., Rehfeldt, T., et al., 2013. Minor and Trace Elements in Olivines as Probes into Early Igneous and Mantle Melting Processes. Earth and Planetary Science Letters, 363: 181-191. https://doi.org/10.1016/j.epsl.2012.11.025
|
Gülaçar, O. F., Delaloye, M., 1976. Geochemistry of Nickel, Cobalt and Copper in Alpine-Type Ultramafic Rocks. Chemical Geology, 17: 269-280. https://doi.org/10.1016/0009-2541(76)90041-3
|
Guo, B., Yan, C. H., Zhang, S. T., et al., 2020. Geochemical and Geological Characteristics of the Granitic Batholith and Yuku Concealed Mo-W Deposit at the Southern Margin of the North China Craton. Geological Journal, 55(1): 95-116. https://doi.org/10.1002/gj.3372
|
Keith, M., Haase, K. M., Chivas, A. R., et al., 2022. Phase Separation and Fluid Mixing Revealed by Trace Element Signatures in Pyrite from Porphyry Systems. Geochimica et Cosmochimica Acta, 329: 185-205. https://doi.org/10.1016/j.gca.2022.05.015
|
Laubier, M., Grove, T. L., Langmuir, C. H., 2014. Trace Element Mineral/Melt Partitioning for Basaltic and Basaltic Andesitic Melts: An Experimental and Laser ICP-MS Study with Application to the Oxidation State of Mantle Source Regions. Earth and Planetary Science Letters, 392: 265-278. https://doi.org/10.1016/j.epsl.2014.01.053
|
Liang, X., Wang, F. Y., Zhang, L., et al., 2023. Cobalt Distribution and Enrichment in Skarn Iron Deposits: A Case Study of the Zhuchong Skarn Iron Deposit, Eastern China. Ore Geology Reviews, 163: 105778. https://doi.org/10.1016/j.oregeorev.2023.105778
|
Liu, W. H., Borg, S. J., Testemale, D., et al., 2011. Speciation and Thermodynamic Properties for Cobalt Chloride Complexes in Hydrothermal Fluids at 35-440 ℃ and 600 bar: An In-Situ XAS Study. Geochimica et Cosmochimica Acta, 75(5): 1227-1248. https://doi.org/10.1016/j.gca.2010.12.002
|
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
|
Liu, T., Jiang, S. Y., Cao, S., et al., 2024. Cobalt Enrichment and Metallogenic Mechanism of the Galinge Skarn Iron Deposit in the Eastern Kunlun Metallogenic Belt, Western China. Ore Geology Reviews, 170: 106147. https://doi.org/10.1016/j.oregeorev.2024.106147
|
Mao, J. W., Pirajno, F., Xiang, J. F., et al., 2011. Mesozoic Molybdenum Deposits in the East Qinling-Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geology Reviews, 43(1): 264-293. https://doi.org/10.1016/j.oregeorev.2011.07.009
|
Maslennikov, V. V., Maslennikova, S. P., Large, R. R., et al., 2009. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology, 104(8): 1111-1141. https://doi.org/10.2113/gsecongeo.104.8.1111
|
Migdisov, A. A., Zezin, D., Williams-Jones, A. E., 2011. An Experimental Study of Cobalt (Ⅱ) Complexation in Cl- and H2S-Bearing Hydrothermal Solutions. Geochimica et Cosmochimica Acta, 75(14): 4065-4079. https://doi.org/10.1016/j.gca.2011.05.003
|
Rajamani, V., Naldrett, A. J., 1978. Partitioning of Fe, Co, Ni, and Cu between Sulfide Liquid and Basaltic Melts and the Composition of Ni-Cu Sulfide Deposits. Economic Geology, 73(1): 82-93. https://doi.org/10.2113/gsecongeo.73.1.82
|
Reich, M., Deditius, A., Chryssoulis, S., et al., 2013. Pyrite as a Record of Hydrothermal Fluid Evolution in a Porphyry Copper System: A SIMS/EMPA Trace Element Study. Geochimica et Cosmochimica Acta, 104: 42-62. https://doi.org/10.1016/j.gca.2012.11.006
|
Salters, V. J. M., Stracke, A., 2004. Composition of the Depleted Mantle. Geochemistry, Geophysics, Geosystems, 5(5): 2003GC000597. https://doi.org/10.1029/2003gc000597
|
Shi, L., Zhou, T. F., Fan, Y., et al., 2023. Evaluation on the Current Status and Comprehensive Utilization Prospect of Associated Cobalt Resources in the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 39(4): 1144-1156 (in Chinese with English abstract). doi: 10.18654/1000-0569/2023.04.13
|
Slack, J. F., Kimball, B. E., Shedd, K. B., 2017, Cobalt. In: Schulz, K. J., DeYoung Jr., J. H., Seal II, R. R., et al., eds., Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. U. S. Geological Survey, Reston.
|
Vasyukova, O. V., Williams-Jones, A. E., 2022. Constraints on the Genesis of Cobalt Deposits: Part Ⅱ. Applications to Natural Systems. Economic Geology, 117(3): 529-544. https://doi.org/10.5382/econgeo.4888
|
Wallace, P. J., Edmonds, M., 2011. The Sulfur Budget in Magmas: Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions. Reviews in Mineralogy and Geochemistry, 73(1): 215-246. https://doi.org/10.2138/rmg.2011.73.8
|
Wänke, H., Dreibus, G., Jagoutz, E., 1984. Mantle Chemistry and Accretion History of the Earth. In: Kröner, A., Hanson, G. N., Goodwin, A. M., eds., Archaean Geochemistry. Springer, Berlin, 1-24.
|
Webster, J. D., Kinzler, R. J., Mathez, E. A., 1999. Chloride and Water Solubility in Basalt and Andesite Melts and Implications for Magmatic Degassing. Geochimica et Cosmochimica Acta, 63(5): 729-738. https://doi.org/10.1016/S0016-7037(99)00043-5
|
Williams-Jones, A. E., Vasyukova, O. V., 2022. Constraints on the Genesis of Cobalt Deposits: Part Ⅰ. Theoretical Considerations. Economic Geology, 117(3): 513-528. https://doi.org/10.5382/econgeo.4895
|
Wilson, S. A., Ridley, W. I., Koenig, A. E., 2002. Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique. Journal of Analytical Atomic Spectrometry, 17(4): 406-409. https://doi.org/10.1039/B108787H
|
Xiao, X., Zhou, T. F., Hollings, P., et al., 2023. Pyrite Geochemistry in a Porphyry-Skarn Cu (Au) System and Implications for Ore Formation and Prospecting: Perspective from Xinqiao Deposit, Eastern China. American Mineralogist, 108(6): 1132-1148. https://doi.org/10.2138/am-2022-8527
|
Xie, J. C., Ge, L. K., Qian, L., et al., 2020. Trace Element Characteristics of Pyrite in Dongguashan Cu (Au) Deposit, Tongling Region, China. Solid Earth Sciences, 5(4): 233-246. https://doi.org/10.1016/j.sesci.2020.09.002
|
Yaylali, B., Deveci, H., Yener Yazici, E., et al., 2023. Extraction of Cobalt from a Cobaltiferrous Pyrite Concentrate Using H2SO4-NaNO3 Lixiviant System. Minerals Engineering, 198: 108077. https://doi.org/10.1016/j.mineng.2023.108077
|
Zhang, P., Huang, X. W., Cui, B., et al., 2016. Re-Os Isotopic and Trace Element Compositions of Pyrite and Origin of the Cretaceous Jinchang Porphyry Cu-Au Deposit, Heilongjiang Province, NE China. Journal of Asian Earth Sciences, 129: 67-80. https://doi.org/10.1016/j.jseaes.2016.07.032
|
Zhang, Y. F., Fan, Y., Liu, Y. N., et al., 2024. Distribution and Enrichment Processes of Cobalt in the Longqiao Iron Skarn Deposit in Eastern China. Ore Geology Reviews, 174: 106277. https://doi.org/10.1016/j.oregeorev.2024.106277
|
Zhang, Y., Chen, H. Y., Cheng, J. M., et al., 2022. Pyrite Geochemistry and Its Implications on Au-Cu Skarn Metallogeny: An Example from the Jiguanzui Deposit, Eastern China. American Mineralogist, 107(10): 1910-1925. https://doi.org/10.2138/am-2022-8118
|
Zhao, J. X., Li, G. M., Qin, K. Z., et al., 2019. A Review of the Types and Ore Mechanism of the Cobalt Deposits. Chinese Science Bulletin, 64(24): 2484-2500 (in Chinese with English abstract). doi: 10.1360/N972019-00134
|
Zhou, T. F., Fan, Y., Chen, J., et al., 2020. Critical Metal Resources in the Middle-Lower Yangtze River Valley Metallogenic Belt. Chinese Science Bulletin, 65(33): 3665-3677 (in Chinese with English abstract). doi: 10.1360/TB-2020-0347
|
曹明坚, 单鹏飞, 秦克章, 2022. 富钴斑岩型金铜矿床地质特征及存在问题: 以黑龙江金厂矿床为例. 科学通报, 67(31): 3708-3723.
|
石磊, 周涛发, 范裕, 等, 2023. 长江中下游成矿带伴生钴资源现状及综合利用潜力评价. 岩石学报, 39(4): 1144-1156.
|
赵俊兴, 李光明, 秦克章, 等, 2019. 富含钴矿床研究进展与问题分析. 科学通报, 64(24): 2484-2500.
|
周涛发, 范裕, 陈静, 等, 2020. 长江中下游成矿带关键金属矿产研究现状与进展. 科学通报, 65(33): 3665-3677.
|
![]() |
![]() |