• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Lin Ruolan, Wu Tao, Tian Liyan, Lu Jianggu, 2025. Progress in Subduction-Related Boninite Research. Earth Science, 50(8): 2956-2976. doi: 10.3799/dqkx.2025.039
    Citation: Lin Ruolan, Wu Tao, Tian Liyan, Lu Jianggu, 2025. Progress in Subduction-Related Boninite Research. Earth Science, 50(8): 2956-2976. doi: 10.3799/dqkx.2025.039

    Progress in Subduction-Related Boninite Research

    doi: 10.3799/dqkx.2025.039
    • Received Date: 2025-02-01
    • Publish Date: 2025-08-25
    • Boninite is a special type of magnesium-iron volcanic rock, primarily formed in unique geological environments associated with plate subduction. It serves as a direct geological record of the subduction initiation. The phenocryst are mainly olivine and pyroxene, with no plagioclase. Boninite is characterized by high Mg and Si, but lower Ti content. They are also and enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), but depleted in high field strength elements (HFSEs) and medium rare earth elements (MREEs). Typicalboninite exhibits a distinctive "U"-shaped rare earth element (REE) distribution pattern.The unique chemical composition of boninite reflects its uniquemantle melting conditions, such as high temperature, low pressure, and relatively high water content.Primarymagma was generated throughre-melting processes in the mantle source, which has already undergone partial melting before. This unique melting process provides crucial insights into mantle source composition, degree of melting, and the role of fluids in mantle melting and the initiation of subduction.In this review, we discuss the mineralogy, geochemical characteristics, and petrogenetic mechanisms of subduction-related boninite, emphasizing its significance in geodynamics and magma evolution processes. Finally, we also summarized the current research issuesand potential future directions in boninite studies.

       

    • loading
    • Arculus, R., Gurnis, M., Ishizuka, O., et al., 2019. How to Create New Subduction Zones: a Global Perspective. Oceanography, 32(1): 160-174. https://doi.org/10.5670/oceanog.2019.140
      Arculus, R. J., Pearce, J. A., Murton, B., et al., 1992. Igneous Stratigraphy and Major Element Geochemistry of Holes 786A and 786B. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 143-169 https://doi.org/10.2973/odp.proc.sr.125.137.1992
      Bédard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. Journal of Petrology, 40(12): 1853-1889. https://doi.org/10.1093/petroj/40.12.1853
      Bénard, A., Arculus, R. J., Nebel, O., et al., 2017. Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas. Geochimica et Cosmochimica Acta, 199: 287-303. https://doi.org/10.1016/j.gca.2016.09.030
      Bloomer, S. H., Hawkins, J. W., 1983. Gabbroic and Ultramafic Rocks from the Mariana Trench: An Island Arc Ophiolite. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C., 294-317. https://doi.org/10.1029/gm027p0294
      Bloomer, S. H., Hawkins, J. W., 1987. Petrology and Geochemistry of Boninite Series Volcanic Rocks from the Mariana Trench. Contributions to Mineralogy and Petrology, 97(3): 361-377. https://doi.org/10.1007/BF00371999
      Boily, M., Dion, C., 2002. Geochemistry of Boninite-Type Volcanic Rocks in the Frotet-Evans Greenstone Belt, Opatica Subprovince, Quebec: Implications for the Evolution of Archaean Greenstone Belts. Precambrian Research, 115(1/2/3/4): 349-371. https://doi.org/10.1016/S0301-9268(02)00016-5
      Cameron, W. E., 1985. Petrology and Origin of Primitive Lavas from the Troodos Ophiolite, Cyprus. Contributions to Mineralogy and Petrology, 89(2): 239-255. https://doi.org/10.1007/BF00379457
      Cameron, W. E., McCulloch, M. T., Walker, D. A., 1983. Boninite Petrogenesis: Chemical and Nd-Sr Isotopic Constraints. Earth and Planetary Science Letters, 65(1): 75-89. https://doi.org/10.1016/0012-821X(83)90191-7
      Chen, J. H., 2020. Petrogenesis of the Cenozoic High-Mg Andesites in the Russian Far East: Geochemical Evidence(Dissertation). Jilin University, Jilin (in Chinese with English abstract).
      Cluzel, D., Meffre, S., Maurizot, P., et al., 2006. Earliest Eocene (53Ma) Convergence in the Southwest Pacific: Evidence from Pre-Obduction Dikes in the Ophiolite of New Caledonia. Terra Nova, 18(6): 395-402. https://doi.org/10.1111/j.1365-3121.2006.00704.x
      Cluzel, D., Ulrich, M., Jourdan, F., et al., 2016. Early Eocene Clinoenstatite Boninite and Boninite-Series Dikes of the Ophiolite of New Caledonia; AWitness of Slab-Derived Enrichment of the Mantle Wedge in a Nascent Volcanic Arc. Lithos, 260: 429-442. https://doi.org/10.1016/j.lithos.2016.04.031
      Cooper, L. B., Plank, T., Arculus, R. J., et al., 2010. High-Ca Boninites from the Active Tonga Arc. Journal of Geophysical Research: Solid Earth, 115(B10): 2009JB006367. https://doi.org/10.1029/2009jb006367
      Coulthard, D. A. Jr, Reagan, M. K., Shimizu, K., et al., 2021. Magma Source Evolution FollowingSubduction Initiation: Evidence fromthe Element Concentrations, StableIsotope Ratios, and Water Contentsof Volcanic Glasses from the Bonin Forearc (IODP Expedition 352). Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009054. https://doi.org/10.1029/2020gc009054
      Crawford, A. J., 1989. Boninites and Related Rocks. Unwin Hyman, London, 465.
      Cunningham, H., Gill, J., Turner, S., et al., 2012. Rapid MagmaticProcesses Accompany Arc-Continent Collision: The Western Bismarck Arc, Papua New Guinea. Contributions to Mineralogy and Petrology, 164(5): 789-804. https://doi.org/10.1007/s00410-012-0776-y
      Davies, G. F., 1995. Punctuated Tectonic Evolution of the Earth. Earth and Planetary Science Letters, 136(3/4): 363-379. https://doi.org/10.1016/0012-821X(95)00167-B
      DeBari, S. M., Taylor, B., Spencer, K., et al., 1999. A Trapped Philippine SeaPlate Origin for MORB from the Inner Slope of the Izu-Bonin Trench. Earth and Planetary Science Letters, 174(1/2): 183-197. https://doi.org/10.1016/S0012-821X(99)00252-6
      Dilek, Y., Furnes, H., 2014. Ophiolites and Their Origins. Elements, 10(2): 93-100. https://doi.org/10.2113/gselements.10.2.93
      Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387-411. https://doi.org/10.1130/B30446.1
      Dobson, P. F., O'Neil, J. R., 1987. Stable Isotope Compositions and Water Contents of Boninite Series Volcanic Rocks from Chichi-Jima, Bonin Islands, Japan. Earth and Planetary Science Letters, 82(1/2): 75-86. https://doi.org/10.1016/0012-821X(87)90108-7
      Dobson, P. F., Blank, J. G., Maruyama, S., et al., 2006. Petrology and Geochemistry of Boninite-Series Volcanic Rocks, Chichi-Jima, Bonin Islands, Japan. International Geology Review, 48(8): 669-701. https://doi.org/10.2747/0020-6814.48.8.669
      Duncan, R. A., Green, D. H., 1987. The Genesis of Refractory Melts in the Formation of Oceanic Crust. Contributions to Mineralogy and Petrology, 96(3): 326-342. https://doi.org/10.1007/BF00371252
      Escrig, S., Bézos, A., Langmuir, C. H., et al., 2012. Characterizing the Effect of Mantle Source, Subduction Input and Melting in the Fonualei Spreading Center, Lau Basin: Constraints on the Origin of the Boninitic Signature of the Back-Arc Lavas. Geochemistry, Geophysics, Geosystems, 13(10): 2012GC004130. https://doi.org/10.1029/2012gc004130
      Falloon, T. J., Danyushevsky, L. V., 2000. Melting of Refractory Mantle at 1middle Dot5, 2 and 2middle Dot5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 41(2): 257-283. https://doi.org/10.1093/petrology/41.2.257
      Falloon, T. J., Crawford, A. J., 1991. The Petrogenesis of High-Calcium Boninite Lavas Dredged from the Northern Tonga Ridge. Earth and Planetary Science Letters, 102(3/4): 375-394. https://doi.org/10.1016/0012-821X(91)90030-L
      Falloon, T. J., Danyushevsky, L. V., Crawford, A. J., et al., 2008. Boninites and Adakites from the Northern Termination of the Tonga Trench: Implications for Adakite Petrogenesis. Journal of Petrology, 49(4): 697-715
      Flower, M. F. J., Levine, H. M., 1987. Petrogenesis of a Tholeiite-Boninite Sequence from Ayios Mamas, Troodos Ophiolite: Evidence for Splitting of a Volcanic Arc? Contributions to Mineralogy and Petrology, 97(4): 509-524. https://doi.org/10.1007/BF00375328
      Glancy, S. E., 2014. Petrology and Geochemistry of Boninites and Related Lavas from the MataVolcanoes, NE Lau Basin(Dissertation). University of Hawai'i at Manoa ProQuest, Hawaii, 292.
      Golowin, R., Portnyagin, M., Hoernle, K., et al., 2017a. Boninite-Like Intraplate Magmas from Manihiki Plateau Require Ultra-Depleted and Enriched Source Components. Nature Communications, 8: 14322. https://doi.org/10.1038/ncomms14322
      Golowin, R., Portnyagin, M., Hoernle, K., et al., 2017b. The Role and Conditions of Second-Stage Mantle Melting in the Generation of Low-Ti Tholeiites and Boninites: The Case of the Manihiki Plateau and the Troodos Ophiolite. Contributions to Mineralogy and Petrology, 172(11): 104. https://doi.org/10.1007/s00410-017-1424-3
      Griffin, W. L., Shee, S. R., Ryan, C. G., et al., 1999. Harzburgite to Lherzolite andback Again: Metasomatic Processes in Ultramafic Xenoliths from the Wesselton Kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology, 134(2): 232-250. https://doi.org/10.1007/s004100050481
      Hatton, C. J., Sharpe, M. R., 1989. Significance and Origin of Boninite-Like Rocks Associated with the Bushveld Complex. In: Crawford, A. J., ed., Boninites and Related Rocks. Unwin Hyman, London, 174-207.
      Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in ARCMagmas. Annual Review of Earth and Planetary Sciences, 21: 175-204. https://doi.org/10.1146/annurev.ea.21.050193.001135
      Herzberg, C., Asimow, P. D., 2015. PRIMELT3 MEGA. XLSM Software for Primary Magma Calculation: Peridotite Primary Magma MgO Contents from the Liquidus to the Solidus. Geochemistry, Geophysics, Geosystems, 16(2): 563-578. https://doi.org/10.1002/2014gc005631
      Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): 2006GC001390. https://doi.org/10.1029/2006gc001390
      Hickey, R. L., Frey, F. A., 1982. Geochemical Characteristics of Boninite Series Volcanics: Implications for Their Source. Geochimica et Cosmochimica Acta, 46(11): 2099-2115. https://doi.org/10.1016/0016-7037(82)90188-0
      Hirose, K., Kushiro, I., 1998. The Effect of Melt Segregation on Polybaric Mantle Melting: Estimation from the Incremental Melting Experiments. Physics of the Earth and Planetary Interiors, 107(1/2/3): 111-118. https://doi.org/10.1016/S0031-9201(97)00129-5
      Hoernle, K., Hauff, F., van den Bogaard, P., et al., 2010. Age and Geochemistry of Volcanic Rocks from the Hikurangi and Manihiki Oceanic Plateaus. Geochimicaet Cosmochimica Acta, 74(24): 7196-7219. https://doi.org/10.1016/j.gca.2010.09.030
      Huang, Z. H., Xiao, Y. Y., 2022. Comparison in Geochemical Characteristics and Genesis Models of Different Boninites between Qilian Orogen and Izu-Bonin Arc System. Marine Geology & Quaternary Geology, 42(4): 135-145(in Chinese with English abstract). http://engine.scichina.com/doi/pdf/33A2062747A3422EBAE98E9FE1EC01B8
      Ingle, S., Mahoney, J. J., Sato, H., et al., 2007. Depleted Mantle Wedge and Sediment Fingerprint in Unusual Basalts from the Manihiki Plateau, Central Pacific Ocean. Geology, 35(7): 595. https://doi.org/10.1130/g23741a.1
      Ishikawa, T., Nagaishi, K., Umino, S., 2002. Boninitic Volcanism in the Oman Ophiolite: Implications for Thermal Condition during Transition from Spreading Ridge to Arc. Geology, 30(10): 899. https://doi.org/10.1130/0091-7613(2002)0300899:bvitoo>2.0.co;2 doi: 10.1130/0091-7613(2002)0300899:bvitoo>2.0.co;2
      Ishizuka, O., Kimura, J. I., Li, Y. B., et al., 2006. Early Stages in the Evolution of Izu-Bonin Arc Volcanism: New Age, Chemical, and Isotopic Constraints. Earth and Planetary Science Letters, 250(1/2): 385-401. https://doi.org/10.1016/j.epsl.2006.08.007
      Ishizuka, O., Tani, K., Reagan, M. K., 2014. Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue. Elements, 10(2): 115-120. https://doi.org/10.2113/gselements.10.2.115
      Johnson, R. W., Jaques, A. L., Hickey, R. L., et al., 1985. Manam Island, Papua New Guinea: Petrology and Geochemistry of a Low-TiO2 Basaltic Island-Arc Volcano. Journal of Petrology, 26(2): 283-323. https://doi.org/10.1093/petrology/26.2.283
      Kanayama, K., Katamura, K., Umino, S., 2013. New Geochemical Classification of Global Boninites. IAVCEI 2013 Scientific Assembly Abstract 4W_1B-P13.
      Kikuchi, Y., 1890. On Pyorxene Components in Certain Volcanic Rocksfrom Bonin Island. The Journal of the College of Science, 3: 67-89.
      Kikuchi, Y., 1888. Geological Summary of the Bonin and Volcano Islands. Toyo Gakugeizasshi, 5: 64-69(in Japanese).
      Kuroda, N., Shiraki, K., 1975. Boninite and Related Rocks of Chichijima, Bonin Islands, Japan. Research Report(10). Shizuoka University, Shizuoka, 145-155.
      Kushiro, I., 2007. Origin of Magmas in Subduction Zones: aReview of Experimental Studies. Proceedings of the Japan AcademySeries B, Physical and Biological Sciences, 83(1): 1-15. https://doi.org/10.2183/pjab.83.1
      Le Bas, M. J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41(10): 1467-1470. https://doi.org/10.1093/petrology/41.10.1467
      Li, H., Wang, M., Zeng, X. W., et al., 2020. Generation of Jurassic High-Mg Diorite and Plagiogranite Intrusions of the Asa Area, Tibet: Products of Intra-Oceanic Subduction of the Meso-Tethys Ocean. Lithos, 362: 105481. https://doi.org/10.1016/j.lithos.2020.105481
      Li, H. Y., Li, X., Ryan, J. G., et al., 2022. Boron Isotopes in Boninites Document Rapid Changes in Slab Inputs during Subduction Initiation. Nature Communications, 13(1): 993. https://doi.org/10.1038/s41467-022-28637-6
      Li, H. Y., Taylor, R. N., Prytulak, J., et al., 2019. Radiogenic Isotopes Document the Start of Subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197-210. https://doi.org/10.1016/j.epsl.2019.04.041
      Ma, Y. L., Zhong, Y., Furnes, H., et al., 2021. Origin and Tectonic Implications of Boninite Dikes in the Shiquanhe Ophiolite, Western Bangong Suture, Tibet. Journal of Asian Earth Sciences, 205: 104594. https://doi.org/10.1016/j.jseaes.2020.104594
      Meijer, A., Anthony, E., Reagan, M., 1982. Petrology of Volcanic-Rocks from the Fore-Arc Sites. Initial Reports of the Deep Sea Drilling Project, 60: 709-729. https://doi.org/10.2973/dsdp.proc.60.138.1982
      Meijer, A., 1980. Primitive Arc Volcanism and a Boninite Series: Examples from Western Pacific Island Arcs. Geophysical Monograph Series, 23: 269-282. https://doi.org/10.1029/GM023p0269
      Mitchell, A. L., Grove, T. L., 2015. Melting the Hydrous, Subarc Mantle: The Originof Primitive Andesites. Contributions to Mineralogy and Petrology, 170(2): 13. https://doi.org/10.1007/s00410-015-1161-4
      Ohnenstetter, D., Brown, W. L., 1992. Overgrowth Textures, Disequilibrium Zoning, and Cooling History of a Glassy Four-Pyroxene Boninite Dyke from New Caledonia. Journal of Petrology, 33(1): 231-271. https://doi.org/10.1093/petrology/33.1.231
      Ohta, H., Maruyama, S., Takahashi, E., et al., 1996. Field Occurrence, Geochemistry and Petrogenesis of the Archean Mid-Oceanic Ridge Basalts (AMORBs) of the Cleaverville Area, Pilbara Craton, Western Australia. Lithos, 37(2/3): 199-221. https://doi.org/10.1016/0024-4937(95)00037-2
      Osozawa, S., Shinjo, R., Lo, C. H., et al., 2012. Geochemistry and Geochronology of the Troodos Ophiolite: an SSZ Ophiolite Generated by Subduction Initiation and an Extended Episode of Ridge Subduction? Lithosphere, 4(6): 497-510. https://doi.org/10.1130/l205.1
      Pan, Q. Q., Xiao, Y., Su, B. X., et al., 2024. Tracing Material Transport during Subduction Inception: Insights from Potassium Isotopes in the Crustal Sequence of the Troodos Ophiolite. Geochimica et Cosmochimica Acta, 373: 259-270. https://doi.org/10.1016/j.gca.2024.04.005
      Pearce, J. A., Arculus, R. J., 2021. Boninites. Encyclopedia of Geology. Elsevier, Amsterdam, 113-129. https://doi.org/10.1016/b978-0-08-102908-4.00152-1
      Pearce, J. A., Reagan, M. K., 2019. Identification, Classification, and Interpretation of Boninites from Anthropocene to Eoarchean Using Si-Mg-Ti Systematics. Geosphere, 15(4): 1008-1037. https://doi.org/10.1130/GES01661.1
      Pearce, J. A., Robinson, P. T., 2010. The Troodos Ophiolitic Complex Probably Formed in a Subduction Initiation, Slab Edge Setting. Gondwana Research, 18(1): 60-81. https://doi.org/10.1016/j.gr.2009.12.003
      Pearce, J. A., Peate, D. W., 1992. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
      Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 623-659. https://doi.org/10.2973/odp.proc.sr.125.172.1992
      Pearson, D. G., Wittig, N., 2002. Formation of ArchaeanContinental Lithosphere and Its Diamonds: The Root of the Problem. Journal of the Geological Society, 165(5): 895-914. https://doi.org/10.1144/0016-76492008-003
      Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basaltsand Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): 2009GC002871. https://doi.org/10.1029/2009gc002871
      Reagan, M. K., McClelland, W. C., Girard, G., et al., 2013. The Geology of the Southern Mariana Fore-Arc Crust: Implications for the Scale of Eocene Volcanism in the Western Pacific. Earth and Planetary Science Letters, 380: 41-51. https://doi.org/10.1016/j.epsl.2013.08.013
      Reagan, M. K., Pearce, J. A., and Petronotis, K., et al., 2015. Expedition 352 Summary. Proceedings of the International Ocean Discovery Program, 352: 1-32. https://doi.org/10.14379/iodp.proc.352.101.2015
      Reagan, M. K., Pearce, J. A., Petronotis, K., et al., 2017. Subduction Initiation and Ophiolite Crust: New Insights from IODP Drilling. International Geology Review, 59(11): 1439-1450. https://doi.org/10.1080/00206814.2016.1276482
      Reagan, M. K., Pearce, J. A., Shervais, J. W., et al., 2023. Subduction Initiation as Recorded in the Izu-Bonin-Mariana Forearc. Earth-Science Reviews, 246: 104573. https://doi.org/10.1016/j.earscirev.2023.104573
      Resing, J. A., Rubin, K. H., Embley, R. W., et al., 2011. Active Submarine Eruption of Boninite in the Northeastern Lau Basin. Nature Geoscience, 4: 799-806. https://doi.org/10.1038/ngeo1275
      Scholpp, J. L., 2020. Pre-Eruptive Evolution of Izu-Bonin Boninite Melts: Mixing, Cooling, and Crystallization. Utah State University, Logan.
      Scholpp, J. L., Ryan, J. G., Shervais, J. W., et al., 2022. Petrologic Evolution of Boninite Lavas from the IBM Fore-Arc, IODP Expedition 352: Evidence for Open-System Processes during Early Subduction Zone Magmatism. American Mineralogist, 107(4): 572-586. https://doi.org/10.2138/am-2021-7733
      Shen, F. Y., 2021. TheDepleted MantleHeterogeneity inElements and Sr-Nd-Pb-Hf-Fe Isotopes and Boninite Magma Evolution(Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      Shervais, J. W., Reagan, M. K., Godard, M., et al., 2021. Magmatic Response to Subduction Initiation, Part II: Boninites and Related Rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009093. https://doi.org/10.1029/2020gc009093
      Shervais, J. W., Reagan, M., Haugen, E., et al., 2019. Magmatic Response to Subduction Initiation: Part 1. Fore-Arc Basalts of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1): 314-338. https://doi.org/10.1029/2018GC007731
      Smithies, R. H., Champion, D. C., Sun, S. S., 2004. The Case for Archaean Boninites. Contributions to Mineralogy and Petrology, 147(6): 705-721. https://doi.org/10.1007/s00410-004-0579-x
      Smithies, R. H., 2002. Archaean Boninite-Like Rocks in an Intracratonic Setting. Earth and Planetary Science Letters, 197(1/2): 19-34. https://doi.org/10.1016/S0012-821X(02)00464-8
      Sobolev, A. V., Portnyagin, M. V., Dmitriev, L. V., et al., 1993. Petrology of Ultramafic Lavas and Associated Rocks of the Troodos Massif, Cyprus. Petrology, 1(4): 331-361.
      Srivastava, R. K., 2006. Geochemistry and Petrogenesis of Neoarchaean High-Mg Low-Ti MaficIgneous Rocks in an Intracratonic Setting, Central India Craton: Evidence for Boninite Magmatism. Geochemical Journal, 40(1): 15-31. https://doi.org/10.2343/geochemj.40.15
      Srivastava, R. K., 2008. Global Intracratonic Boninite-Norite Magmatism during the Neoarchean-Paleoproterozoic: Evidence from the Central Indian Bastar Craton. International Geology Review, 50(1): 61-74. https://doi.org/10.2747/0020-6814.50.1.61
      Stern, R. J., Bloomer, S. H., 1992. Subduction zone infancy: Examples from theEocene Izu-Bonin-Mariana and Jurassic California. Geological Society of America Bulletin, 104: 1621-1636. https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2 doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
      Stern, R. J., Reagan, M., Ishizuka, O., et al., 2012. To Understand Subduction Initiation, Study Forearc Crust: To Understand Forearc Crust, Study Ophiolites. Lithosphere, 4(6): 469-483. https://doi.org/10.1130/L183.1
      Sun, S. S., McDonough, W. F. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. https://doi.org/10.1093/petrology/egg049
      Tatsumi, Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34: 467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014
      Taylor, R. N., Nesbitt, R. W., Vidal, P., et al., 1994. Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35(3): 577-617. https://doi.org/10.1093/petrology/35.3.577
      Turner, S., Rushmer, T., Reagan, M., et al., 2014. Heading down Early On? Start of Subduction on Earth. Geology, 42(2): 139-142. https://doi.org/10.1130/g34886.1
      Umino, S., 1986. Magma Mixing in Boninite Sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research, 29(1/2/3/4): 125-157. https://doi.org/10.1016/0377-0273(86)90042-9
      Umino, S., Kanayama, K., Kitamura, K., et al., 2017. Did Boninite Originate from the Heterogeneous Mantle with Recycled Ancient Slab? Island Arc, 27(1): e12221. https://doi.org/10.1111/iar.12221
      Umino, S., Kitamura, K., Kanayama, K., et al., 2015. Thermal and Chemical Evolution of the Subarc Mantle Revealed by Spinel-Hosted Melt Inclusions in Boninite from the Ogasawara (Bonin) Archipelago, Japan. Geology, 43(2): 151-154. https://doi.org/10.1130/g36191.1
      Valetich, M. J., Le Losq, C., Arculus, R. J., et al., 2021. Compositions and Classification of Fractionated Boninite Series Melts from the Izu-Bonin-Mariana Arc: a Machine Learning Approach. Journal of Petrology, 62(1): 1-20. https://doi.org/10.1093/petrology/egab013
      Van der Laan, S., Flower, M. F. J, Koster van Groos, A. E., 1989. Experimental Evidence for the Origin of Boninites: Near-Liquidus Phase Relations to 7.5 kbar. In: Crawford, A. J., ed., Boninites and Related Rocks, Unwin Hyman, London.
      Van der Laan, S., Arculus, R. J., Pearce, J. A., et al., 1992. Petrography, Mineral Chemistry, and Phase Relations of the Basement Boninite Series of Site 786, Izu-Bonin Forearc. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 171-201. https://doi.org/10.2973/odp.proc.sr.125.139.1992
      Wang, H. R., Li, C. W., Qian, Y. J., et al., 2025. The Multivariate Discriminant Analysis of High-Mg Andesitic Rock Types Based on Machine Learning. Journal of Chengdu University of Technology (Science & Technology Edition), (1): 44-63(in Chinese with English abstract).
      Whattam, S. A., Shervais, J. W., Reagan, M. K., et al., 2020. Mineral Compositions and Thermobarometry of Basalts and Boninites Recovered during IODP Expedition 352 to the Bonin Forearc. American Mineralogist, 105(10): 1490-1507. https://doi.org/10.2138/am-2020-6640
      Woelki, D., Regelous, M., Haase, K. M., et al., 2018. Petrogenesis of Boninitic Lavas from the Troodos Ophiolite, and Comparison with Izu-Bonin-Mariana Fore-Arc Crust. Earth and Planetary Science Letters, 498: 203-214. https://doi.org/10.1016/j.epsl.2018.06.041
      Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1/2/3/4): 59-66. https://doi.org/10.1016/j.epsl.2009.03.032
      Woodhead, J. D., Eggins, S. M., Johnson, R. W., 1998. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39(9): 1641-1668 doi: 10.1093/petroj/39.9.1641
      Woodhead, J., Hergt, J., Sandiford, M., et al., 2010. The Big Crunch: Physical and Chemical Expressions of Arc/Continent Collision in the Western Bismarck Arc. Journal of Volcanology and Geothermal Research, 190(1/2): 11-24. https://doi.org/10.1016/j.jvolgeores.2009.03.003
      Xiao, Q. H., Li, T. D., Pan, G. T., et al., 2016. Petrologic Ideas for Identification of Ocean-Continent Transition: Recognition of Intra-Oceanic Arc and Initial Subduction. Geology in China, 43(3): 721-737(in Chinese with English abstract).
      Xiao, Y. Y., Yao, Y. X., Huang, Z. H., et al., 2023. Heterogeneous Mantle Source Compositions for Boninite from Bonin and Troodos, Evidence from Iron Isotope Variations. Lithos, 452: 107214. https://doi.org/10.1016/j.lithos.2023.107214
      Yogodzinski, G. M., Bizimis, M., Hickey-Vargas, R., et al., 2018. Implications of Eocene-Age Philippine Sea and Forearc Basalts for Initiation and Early History of the Izu-Bonin-Mariana Arc. Geochimica et Cosmochimica Acta, 228: 136-156. https://doi.org/10.1016/j.gca.2018.02.047
      Yu, Y., Huang, X. L., Sun, M., et al., 2021. High-Mg Andesitic Rocks Formed through Crustal Magmatic Differentiation. Lithos, 388: 106069. https://doi.org/10.1016/j.lithos.2021.106069
      Zhao, B., Shi, R. D., Zou, H. B., et al., 2021. Intra-Continental Boninite-Series Volcanic Rocks from the Bangong-Nujiang Suture Zone, Central Tibet. Lithos, 386: 106024. https://doi.org/10.1016/j.lithos.2021.106024
      Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
      陈佳卉, 2020. 俄罗斯远东地区新生代高镁安山岩的成因: 地球化学证据(硕士学位论文). 吉林: 吉林大学.
      黄子航, 肖媛媛, 2022. 祁连与伊豆-小笠原玻安岩的地球化学特征和成因模型对比. 海洋地质与第四纪地质, 42(4): 135-145.
      沈芳宇, 2021. 亏损地幔元素Sr-Nd-Pb-Hf-Fe同位素的不均一性及玻安岩的岩浆演化. 北京: 中国科学院大学.
      王浩然, 李晨伟, 钱裕杰, 等, 2025. 基于机器学习的高镁安山质岩石类型的多元判别分析. 成都理工大学学报(自然科学版), (1): 44-63.
      肖庆辉, 李廷栋, 潘桂棠, 等, 2016. 识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别. 中国地质, 43(3): 721-737.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (295) PDF downloads(62) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return