Citation: | Lin Ruolan, Wu Tao, Tian Liyan, Lu Jianggu, 2025. Progress in Subduction-Related Boninite Research. Earth Science, 50(8): 2956-2976. doi: 10.3799/dqkx.2025.039 |
Arculus, R., Gurnis, M., Ishizuka, O., et al., 2019. How to Create New Subduction Zones: a Global Perspective. Oceanography, 32(1): 160-174. https://doi.org/10.5670/oceanog.2019.140
|
Arculus, R. J., Pearce, J. A., Murton, B., et al., 1992. Igneous Stratigraphy and Major Element Geochemistry of Holes 786A and 786B. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 143-169 https://doi.org/10.2973/odp.proc.sr.125.137.1992
|
Bédard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. Journal of Petrology, 40(12): 1853-1889. https://doi.org/10.1093/petroj/40.12.1853
|
Bénard, A., Arculus, R. J., Nebel, O., et al., 2017. Silica-Enriched Mantle Sources of Subalkaline Picrite-Boninite-Andesite Island Arc Magmas. Geochimica et Cosmochimica Acta, 199: 287-303. https://doi.org/10.1016/j.gca.2016.09.030
|
Bloomer, S. H., Hawkins, J. W., 1983. Gabbroic and Ultramafic Rocks from the Mariana Trench: An Island Arc Ophiolite. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington, D. C., 294-317.
|
Bloomer, S. H., Hawkins, J. W., 1987. Petrology and Geochemistry of Boninite Series Volcanic Rocks from the Mariana Trench. Contributions to Mineralogy and Petrology, 97(3): 361-377. https://doi.org/10.1007/BF00371999
|
Boily, M., Dion, C., 2002. Geochemistry of Boninite-Type Volcanic Rocks in the Frotet-Evans Greenstone Belt, Opatica Subprovince, Quebec: Implications for the Evolution of Archaean Greenstone Belts. Precambrian Research, 115(1/2/3/4): 349-371. https://doi.org/10.1016/S0301-9268(02)00016-5
|
Cameron, W. E., 1985. Petrology and Origin of Primitive Lavas from the Troodos Ophiolite, Cyprus. Contributions to Mineralogy and Petrology, 89(2): 239-255. https://doi.org/10.1007/BF00379457
|
Cameron, W. E., McCulloch, M. T., Walker, D. A., 1983. Boninite Petrogenesis: Chemical and Nd-Sr Isotopic Constraints. Earth and Planetary Science Letters, 65(1): 75-89. https://doi.org/10.1016/0012-821X(83)90191-7
|
Chen, J. H., 2020. Petrogenesis of the Cenozoic High-Mg Andesites in the Russian Far East: Geochemical Evidence(Dissertation). Jilin University, Jilin (in Chinese with English abstract).
|
Cluzel, D., Meffre, S., Maurizot, P., et al., 2006. Earliest Eocene (53Ma) Convergence in the Southwest Pacific: Evidence from Pre-Obduction Dikes in the Ophiolite of New Caledonia. Terra Nova, 18(6): 395-402. https://doi.org/10.1111/j.1365-3121.2006.00704.x
|
Cluzel, D., Ulrich, M., Jourdan, F., et al., 2016. Early Eocene Clinoenstatite Boninite and Boninite-Series Dikes of the Ophiolite of New Caledonia; AWitness of Slab-Derived Enrichment of the Mantle Wedge in a Nascent Volcanic Arc. Lithos, 260: 429-442. https://doi.org/10.1016/j.lithos.2016.04.031
|
Cooper, L. B., Plank, T., Arculus, R. J., et al., 2010. High-Ca Boninites from the Active Tonga Arc. Journal of Geophysical Research: Solid Earth, 115(B10): 2009JB006367. https://doi.org/10.1029/2009jb006367
|
Coulthard, D. A. Jr, Reagan, M. K., Shimizu, K., et al., 2021. Magma Source Evolution FollowingSubduction Initiation: Evidence fromthe Element Concentrations, StableIsotope Ratios, and Water Contentsof Volcanic Glasses from the Bonin Forearc (IODP Expedition 352). Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009054. https://doi.org/10.1029/2020gc009054
|
Crawford, A. J., 1989. Boninites and Related Rocks. Unwin Hyman, London, 465.
|
Cunningham, H., Gill, J., Turner, S., et al., 2012. Rapid MagmaticProcesses Accompany Arc-Continent Collision: The Western Bismarck Arc, Papua New Guinea. Contributions to Mineralogy and Petrology, 164(5): 789-804. https://doi.org/10.1007/s00410-012-0776-y
|
Davies, G. F., 1995. Punctuated Tectonic Evolution of the Earth. Earth and Planetary Science Letters, 136(3/4): 363-379. https://doi.org/10.1016/0012-821X(95)00167-B
|
DeBari, S. M., Taylor, B., Spencer, K., et al., 1999. A Trapped Philippine SeaPlate Origin for MORB from the Inner Slope of the Izu-Bonin Trench. Earth and Planetary Science Letters, 174(1/2): 183-197. https://doi.org/10.1016/S0012-821X(99)00252-6
|
Dilek, Y., Furnes, H., 2014. Ophiolites and Their Origins. Elements, 10(2): 93-100. https://doi.org/10.2113/gselements.10.2.93
|
Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 123(3/4): 387-411. https://doi.org/10.1130/B30446.1
|
Dobson, P. F., O'Neil, J. R., 1987. Stable Isotope Compositions and Water Contents of Boninite Series Volcanic Rocks from Chichi-Jima, Bonin Islands, Japan. Earth and Planetary Science Letters, 82(1/2): 75-86. https://doi.org/10.1016/0012-821X(87)90108-7
|
Dobson, P. F., Blank, J. G., Maruyama, S., et al., 2006. Petrology and Geochemistry of Boninite-Series Volcanic Rocks, Chichi-Jima, Bonin Islands, Japan. International Geology Review, 48(8): 669-701. https://doi.org/10.2747/0020-6814.48.8.669
|
Duncan, R. A., Green, D. H., 1987. The Genesis of Refractory Melts in the Formation of Oceanic Crust. Contributions to Mineralogy and Petrology, 96(3): 326-342. https://doi.org/10.1007/BF00371252
|
Escrig, S., Bézos, A., Langmuir, C. H., et al., 2012. Characterizing the Effect of Mantle Source, Subduction Input and Melting in the Fonualei Spreading Center, Lau Basin: Constraints on the Origin of the Boninitic Signature of the Back-Arc Lavas. Geochemistry, Geophysics, Geosystems, 13(10): 2012GC004130. https://doi.org/10.1029/2012gc004130
|
Falloon, T. J., Danyushevsky, L. V., 2000. Melting of Refractory Mantle at 1middle Dot5, 2 and 2middle Dot5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 41(2): 257-283. https://doi.org/10.1093/petrology/41.2.257
|
Falloon, T. J., Crawford, A. J., 1991. The Petrogenesis of High-Calcium Boninite Lavas Dredged from the Northern Tonga Ridge. Earth and Planetary Science Letters, 102(3/4): 375-394. https://doi.org/10.1016/0012-821X(91)90030-L
|
Falloon, T. J., Danyushevsky, L. V., Crawford, A. J., et al., 2008. Boninites and Adakites from the Northern Termination of the Tonga Trench: Implications for Adakite Petrogenesis. Journal of Petrology, 49(4): 697-715
|
Flower, M. F. J., Levine, H. M., 1987. Petrogenesis of a Tholeiite-Boninite Sequence from Ayios Mamas, Troodos Ophiolite: Evidence for Splitting of a Volcanic Arc? Contributions to Mineralogy and Petrology, 97(4): 509-524. https://doi.org/10.1007/BF00375328
|
Glancy, S. E., 2014. Petrology and Geochemistry of Boninites and Related Lavas from the MataVolcanoes, NE Lau Basin(Dissertation). University of Hawai'i at Manoa ProQuest, Hawaii, 292.
|
Golowin, R., Portnyagin, M., Hoernle, K., et al., 2017a. Boninite-Like Intraplate Magmas from Manihiki Plateau Require Ultra-Depleted and Enriched Source Components. Nature Communications, 8: 14322. https://doi.org/10.1038/ncomms14322
|
Golowin, R., Portnyagin, M., Hoernle, K., et al., 2017b. The Role and Conditions of Second-Stage Mantle Melting in the Generation of Low-Ti Tholeiites and Boninites: The Case of the Manihiki Plateau and the Troodos Ophiolite. Contributions to Mineralogy and Petrology, 172(11): 104. https://doi.org/10.1007/s00410-017-1424-3
|
Griffin, W. L., Shee, S. R., Ryan, C. G., et al., 1999. Harzburgite to Lherzolite andback Again: Metasomatic Processes in Ultramafic Xenoliths from the Wesselton Kimberlite, Kimberley, South Africa. Contributions to Mineralogy and Petrology, 134(2): 232-250. https://doi.org/10.1007/s004100050481
|
Hatton, C. J., Sharpe, M. R., 1989. Significance and Origin of Boninite-Like Rocks Associated with the Bushveld Complex. In: Crawford, A. J., ed., Boninites and Related Rocks. Unwin Hyman, London, 174-207.
|
Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Mantle and Slab Contributions in ARCMagmas. Annual Review of Earth and Planetary Sciences, 21: 175-204. https://doi.org/10.1146/annurev.ea.21.050193.001135
|
Herzberg, C., Asimow, P. D., 2015. PRIMELT3 MEGA. XLSM Software for Primary Magma Calculation: Peridotite Primary Magma MgO Contents from the Liquidus to the Solidus. Geochemistry, Geophysics, Geosystems, 16(2): 563-578. https://doi.org/10.1002/2014gc005631
|
Herzberg, C., Asimow, P. D., Arndt, N., et al., 2007. Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 8(2): 2006GC001390. https://doi.org/10.1029/2006gc001390
|
Hickey, R. L., Frey, F. A., 1982. Geochemical Characteristics of Boninite Series Volcanics: Implications for Their Source. Geochimica et Cosmochimica Acta, 46(11): 2099-2115. https://doi.org/10.1016/0016-7037(82)90188-0
|
Hirose, K., Kushiro, I., 1998. The Effect of Melt Segregation on Polybaric Mantle Melting: Estimation from the Incremental Melting Experiments. Physics of the Earth and Planetary Interiors, 107(1/2/3): 111-118. https://doi.org/10.1016/S0031-9201(97)00129-5
|
Hoernle, K., Hauff, F., van den Bogaard, P., et al., 2010. Age and Geochemistry of Volcanic Rocks from the Hikurangi and Manihiki Oceanic Plateaus. Geochimicaet Cosmochimica Acta, 74(24): 7196-7219. https://doi.org/10.1016/j.gca.2010.09.030
|
Huang, Z. H., Xiao, Y. Y., 2022. Comparison in Geochemical Characteristics and Genesis Models of Different Boninites between Qilian Orogen and Izu-Bonin Arc System. Marine Geology & Quaternary Geology, 42(4): 135-145(in Chinese with English abstract). http://engine.scichina.com/doi/pdf/33A2062747A3422EBAE98E9FE1EC01B8
|
Ingle, S., Mahoney, J. J., Sato, H., et al., 2007. Depleted Mantle Wedge and Sediment Fingerprint in Unusual Basalts from the Manihiki Plateau, Central Pacific Ocean. Geology, 35(7): 595. https://doi.org/10.1130/g23741a.1
|
Ishikawa, T., Nagaishi, K., Umino, S., 2002. Boninitic Volcanism in the Oman Ophiolite: Implications for Thermal Condition during Transition from Spreading Ridge to Arc. Geology, 30(10): 899. https://doi.org/10.1130/0091-7613(2002)0300899:bvitoo>2.0.co;2 doi: 10.1130/0091-7613(2002)0300899:bvitoo>2.0.co;2
|
Ishizuka, O., Kimura, J. I., Li, Y. B., et al., 2006. Early Stages in the Evolution of Izu-Bonin Arc Volcanism: New Age, Chemical, and Isotopic Constraints. Earth and Planetary Science Letters, 250(1/2): 385-401. https://doi.org/10.1016/j.epsl.2006.08.007
|
Ishizuka, O., Tani, K., Reagan, M. K., 2014. Izu-Bonin-Mariana Forearc Crust as a Modern Ophiolite Analogue. Elements, 10(2): 115-120. https://doi.org/10.2113/gselements.10.2.115
|
Johnson, R. W., Jaques, A. L., Hickey, R. L., et al., 1985. Manam Island, Papua New Guinea: Petrology and Geochemistry of a Low-TiO2 Basaltic Island-Arc Volcano. Journal of Petrology, 26(2): 283-323. https://doi.org/10.1093/petrology/26.2.283
|
Kanayama, K., Katamura, K., Umino, S., 2013. New Geochemical Classification of Global Boninites. IAVCEI 2013 Scientific Assembly Abstract 4W_1B-P13.
|
Kikuchi, Y., 1890. On Pyorxene Components in Certain Volcanic Rocksfrom Bonin Island. The Journal of the College of Science, 3: 67-89.
|
Kikuchi, Y., 1888. Geological Summary of the Bonin and Volcano Islands. Toyo Gakugeizasshi, 5: 64-69(in Japanese).
|
Kuroda, N., Shiraki, K., 1975. Boninite and Related Rocks of Chichijima, Bonin Islands, Japan. Research Report(10). Shizuoka University, Shizuoka, 145-155.
|
Kushiro, I., 2007. Origin of Magmas in Subduction Zones: aReview of Experimental Studies. Proceedings of the Japan AcademySeries B, Physical and Biological Sciences, 83(1): 1-15. https://doi.org/10.2183/pjab.83.1
|
Le Bas, M. J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. Journal of Petrology, 41(10): 1467-1470. https://doi.org/10.1093/petrology/41.10.1467
|
Li, H., Wang, M., Zeng, X. W., et al., 2020. Generation of Jurassic High-Mg Diorite and Plagiogranite Intrusions of the Asa Area, Tibet: Products of Intra-Oceanic Subduction of the Meso-Tethys Ocean. Lithos, 362: 105481. https://doi.org/10.1016/j.lithos.2020.105481
|
Li, H. Y., Li, X., Ryan, J. G., et al., 2022. Boron Isotopes in Boninites Document Rapid Changes in Slab Inputs during Subduction Initiation. Nature Communications, 13(1): 993. https://doi.org/10.1038/s41467-022-28637-6
|
Li, H. Y., Taylor, R. N., Prytulak, J., et al., 2019. Radiogenic Isotopes Document the Start of Subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197-210. https://doi.org/10.1016/j.epsl.2019.04.041
|
Ma, Y. L., Zhong, Y., Furnes, H., et al., 2021. Origin and Tectonic Implications of Boninite Dikes in the Shiquanhe Ophiolite, Western Bangong Suture, Tibet. Journal of Asian Earth Sciences, 205: 104594. https://doi.org/10.1016/j.jseaes.2020.104594
|
Meijer, A., Anthony, E., Reagan, M., 1982. Petrology of Volcanic-Rocks from the Fore-Arc Sites. Initial Reports of the Deep Sea Drilling Project, 60: 709-729. https://doi.org/10.2973/dsdp.proc.60.138.1982
|
Meijer, A., 1980. Primitive Arc Volcanism and a Boninite Series: Examples from Western Pacific Island Arcs. Geophysical Monograph Series, 23: 269-282. https://doi.org/10.1029/GM023p0269
|
Mitchell, A. L., Grove, T. L., 2015. Melting the Hydrous, Subarc Mantle: The Originof Primitive Andesites. Contributions to Mineralogy and Petrology, 170(2): 13. https://doi.org/10.1007/s00410-015-1161-4
|
Ohnenstetter, D., Brown, W. L., 1992. Overgrowth Textures, Disequilibrium Zoning, and Cooling History of a Glassy Four-Pyroxene Boninite Dyke from New Caledonia. Journal of Petrology, 33(1): 231-271. https://doi.org/10.1093/petrology/33.1.231
|
Ohta, H., Maruyama, S., Takahashi, E., et al., 1996. Field Occurrence, Geochemistry and Petrogenesis of the Archean Mid-Oceanic Ridge Basalts (AMORBs) of the Cleaverville Area, Pilbara Craton, Western Australia. Lithos, 37(2/3): 199-221. https://doi.org/10.1016/0024-4937(95)00037-2
|
Osozawa, S., Shinjo, R., Lo, C. H., et al., 2012. Geochemistry and Geochronology of the Troodos Ophiolite: an SSZ Ophiolite Generated by Subduction Initiation and an Extended Episode of Ridge Subduction? Lithosphere, 4(6): 497-510. https://doi.org/10.1130/l205.1
|
Pan, Q. Q., Xiao, Y., Su, B. X., et al., 2024. Tracing Material Transport during Subduction Inception: Insights from Potassium Isotopes in the Crustal Sequence of the Troodos Ophiolite. Geochimica et Cosmochimica Acta, 373: 259-270. https://doi.org/10.1016/j.gca.2024.04.005
|
Pearce, J. A., Arculus, R. J., 2021. Boninites. Encyclopedia of Geology. Elsevier, Amsterdam, 113-129. https://doi.org/10.1016/b978-0-08-102908-4.00152-1
|
Pearce, J. A., Reagan, M. K., 2019. Identification, Classification, and Interpretation of Boninites from Anthropocene to Eoarchean Using Si-Mg-Ti Systematics. Geosphere, 15(4): 1008-1037. https://doi.org/10.1130/GES01661.1
|
Pearce, J. A., Robinson, P. T., 2010. The Troodos Ophiolitic Complex Probably Formed in a Subduction Initiation, Slab Edge Setting. Gondwana Research, 18(1): 60-81. https://doi.org/10.1016/j.gr.2009.12.003
|
Pearce, J. A., Peate, D. W., 1992. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 23: 251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343
|
Pearce, J. A., van der Laan, S. R., Arculus, R. J., et al., 1992. Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 623-659. https://doi.org/10.2973/odp.proc.sr.125.172.1992
|
Pearson, D. G., Wittig, N., 2002. Formation of ArchaeanContinental Lithosphere and Its Diamonds: The Root of the Problem. Journal of the Geological Society, 165(5): 895-914. https://doi.org/10.1144/0016-76492008-003
|
Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-Arc Basaltsand Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3): 2009GC002871. https://doi.org/10.1029/2009gc002871
|
Reagan, M. K., McClelland, W. C., Girard, G., et al., 2013. The Geology of the Southern Mariana Fore-Arc Crust: Implications for the Scale of Eocene Volcanism in the Western Pacific. Earth and Planetary Science Letters, 380: 41-51. https://doi.org/10.1016/j.epsl.2013.08.013
|
Reagan, M. K., Pearce, J. A., and Petronotis, K., et al., 2015. Expedition 352 Summary. Proceedings of the International Ocean Discovery Program, 352: 1-32. https://doi.org/10.14379/iodp.proc.352.101.2015
|
Reagan, M. K., Pearce, J. A., Petronotis, K., et al., 2017. Subduction Initiation and Ophiolite Crust: New Insights from IODP Drilling. International Geology Review, 59(11): 1439-1450. https://doi.org/10.1080/00206814.2016.1276482
|
Reagan, M. K., Pearce, J. A., Shervais, J. W., et al., 2023. Subduction Initiation as Recorded in the Izu-Bonin-Mariana Forearc. Earth-Science Reviews, 246: 104573. https://doi.org/10.1016/j.earscirev.2023.104573
|
Resing, J. A., Rubin, K. H., Embley, R. W., et al., 2011. Active Submarine Eruption of Boninite in the Northeastern Lau Basin. Nature Geoscience, 4: 799-806. https://doi.org/10.1038/ngeo1275
|
Scholpp, J. L., 2020. Pre-Eruptive Evolution of Izu-Bonin Boninite Melts: Mixing, Cooling, and Crystallization. Utah State University, Logan.
|
Scholpp, J. L., Ryan, J. G., Shervais, J. W., et al., 2022. Petrologic Evolution of Boninite Lavas from the IBM Fore-Arc, IODP Expedition 352: Evidence for Open-System Processes during Early Subduction Zone Magmatism. American Mineralogist, 107(4): 572-586. https://doi.org/10.2138/am-2021-7733
|
Shen, F. Y., 2021. TheDepleted MantleHeterogeneity inElements and Sr-Nd-Pb-Hf-Fe Isotopes and Boninite Magma Evolution(Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
|
Shervais, J. W., Reagan, M. K., Godard, M., et al., 2021. Magmatic Response to Subduction Initiation, Part II: Boninites and Related Rocks of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 22(1): e2020GC009093. https://doi.org/10.1029/2020gc009093
|
Shervais, J. W., Reagan, M., Haugen, E., et al., 2019. Magmatic Response to Subduction Initiation: Part 1. Fore-Arc Basalts of the Izu-Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1): 314-338. https://doi.org/10.1029/2018GC007731
|
Smithies, R. H., Champion, D. C., Sun, S. S., 2004. The Case for Archaean Boninites. Contributions to Mineralogy and Petrology, 147(6): 705-721. https://doi.org/10.1007/s00410-004-0579-x
|
Smithies, R. H., 2002. Archaean Boninite-Like Rocks in an Intracratonic Setting. Earth and Planetary Science Letters, 197(1/2): 19-34. https://doi.org/10.1016/S0012-821X(02)00464-8
|
Sobolev, A. V., Portnyagin, M. V., Dmitriev, L. V., et al., 1993. Petrology of Ultramafic Lavas and Associated Rocks of the Troodos Massif, Cyprus. Petrology, 1(4): 331-361.
|
Srivastava, R. K., 2006. Geochemistry and Petrogenesis of Neoarchaean High-Mg Low-Ti MaficIgneous Rocks in an Intracratonic Setting, Central India Craton: Evidence for Boninite Magmatism. Geochemical Journal, 40(1): 15-31. https://doi.org/10.2343/geochemj.40.15
|
Srivastava, R. K., 2008. Global Intracratonic Boninite-Norite Magmatism during the Neoarchean-Paleoproterozoic: Evidence from the Central Indian Bastar Craton. International Geology Review, 50(1): 61-74. https://doi.org/10.2747/0020-6814.50.1.61
|
Stern, R. J., Bloomer, S. H., 1992. Subduction zone infancy: Examples from theEocene Izu-Bonin-Mariana and Jurassic California. Geological Society of America Bulletin, 104: 1621-1636. https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2 doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
|
Stern, R. J., Reagan, M., Ishizuka, O., et al., 2012. To Understand Subduction Initiation, Study Forearc Crust: To Understand Forearc Crust, Study Ophiolites. Lithosphere, 4(6): 469-483. https://doi.org/10.1130/L183.1
|
Sun, S. S., McDonough, W. F. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253.
|
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
|
Tatsumi, Y., Shukuno, H., Sato, K., et al., 2003. The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouchi Volcanic Belt, SW Japan. Journal of Petrology, 44(9): 1561-1578. https://doi.org/10.1093/petrology/egg049
|
Tatsumi, Y., 2006. High-Mg Andesites in the Setouchi Volcanic Belt, Southwestern Japan: Analogy to Archean Magmatism and Continental Crust Formation? Annual Review of Earth and Planetary Sciences, 34: 467-499. https://doi.org/10.1146/annurev.earth.34.031405.125014
|
Taylor, R. N., Nesbitt, R. W., Vidal, P., et al., 1994. Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. Journal of Petrology, 35(3): 577-617. https://doi.org/10.1093/petrology/35.3.577
|
Turner, S., Rushmer, T., Reagan, M., et al., 2014. Heading down Early On? Start of Subduction on Earth. Geology, 42(2): 139-142. https://doi.org/10.1130/g34886.1
|
Umino, S., 1986. Magma Mixing in Boninite Sequence of Chichijima, Bonin Islands. Journal of Volcanology and Geothermal Research, 29(1/2/3/4): 125-157. https://doi.org/10.1016/0377-0273(86)90042-9
|
Umino, S., Kanayama, K., Kitamura, K., et al., 2017. Did Boninite Originate from the Heterogeneous Mantle with Recycled Ancient Slab? Island Arc, 27(1): e12221. https://doi.org/10.1111/iar.12221
|
Umino, S., Kitamura, K., Kanayama, K., et al., 2015. Thermal and Chemical Evolution of the Subarc Mantle Revealed by Spinel-Hosted Melt Inclusions in Boninite from the Ogasawara (Bonin) Archipelago, Japan. Geology, 43(2): 151-154. https://doi.org/10.1130/g36191.1
|
Valetich, M. J., Le Losq, C., Arculus, R. J., et al., 2021. Compositions and Classification of Fractionated Boninite Series Melts from the Izu-Bonin-Mariana Arc: a Machine Learning Approach. Journal of Petrology, 62(1): 1-20. https://doi.org/10.1093/petrology/egab013
|
Van der Laan, S., Flower, M. F. J, Koster van Groos, A. E., 1989. Experimental Evidence for the Origin of Boninites: Near-Liquidus Phase Relations to 7.5 kbar. In: Crawford, A. J., ed., Boninites and Related Rocks, Unwin Hyman, London.
|
Van der Laan, S., Arculus, R. J., Pearce, J. A., et al., 1992. Petrography, Mineral Chemistry, and Phase Relations of the Basement Boninite Series of Site 786, Izu-Bonin Forearc. Proceedings of the Ocean Drilling Program, 125 Scientific Results. 125: 171-201. https://doi.org/10.2973/odp.proc.sr.125.139.1992
|
Wang, H. R., Li, C. W., Qian, Y. J., et al., 2025. The Multivariate Discriminant Analysis of High-Mg Andesitic Rock Types Based on Machine Learning. Journal of Chengdu University of Technology (Science & Technology Edition), (1): 44-63(in Chinese with English abstract).
|
Whattam, S. A., Shervais, J. W., Reagan, M. K., et al., 2020. Mineral Compositions and Thermobarometry of Basalts and Boninites Recovered during IODP Expedition 352 to the Bonin Forearc. American Mineralogist, 105(10): 1490-1507. https://doi.org/10.2138/am-2020-6640
|
Woelki, D., Regelous, M., Haase, K. M., et al., 2018. Petrogenesis of Boninitic Lavas from the Troodos Ophiolite, and Comparison with Izu-Bonin-Mariana Fore-Arc Crust. Earth and Planetary Science Letters, 498: 203-214. https://doi.org/10.1016/j.epsl.2018.06.041
|
Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite: Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1/2/3/4): 59-66. https://doi.org/10.1016/j.epsl.2009.03.032
|
Woodhead, J. D., Eggins, S. M., Johnson, R. W., 1998. Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes. Journal of Petrology, 39(9): 1641-1668 doi: 10.1093/petroj/39.9.1641
|
Woodhead, J., Hergt, J., Sandiford, M., et al., 2010. The Big Crunch: Physical and Chemical Expressions of Arc/Continent Collision in the Western Bismarck Arc. Journal of Volcanology and Geothermal Research, 190(1/2): 11-24. https://doi.org/10.1016/j.jvolgeores.2009.03.003
|
Xiao, Q. H., Li, T. D., Pan, G. T., et al., 2016. Petrologic Ideas for Identification of Ocean-Continent Transition: Recognition of Intra-Oceanic Arc and Initial Subduction. Geology in China, 43(3): 721-737(in Chinese with English abstract).
|
Xiao, Y. Y., Yao, Y. X., Huang, Z. H., et al., 2023. Heterogeneous Mantle Source Compositions for Boninite from Bonin and Troodos, Evidence from Iron Isotope Variations. Lithos, 452: 107214. https://doi.org/10.1016/j.lithos.2023.107214
|
Yogodzinski, G. M., Bizimis, M., Hickey-Vargas, R., et al., 2018. Implications of Eocene-Age Philippine Sea and Forearc Basalts for Initiation and Early History of the Izu-Bonin-Mariana Arc. Geochimica et Cosmochimica Acta, 228: 136-156. https://doi.org/10.1016/j.gca.2018.02.047
|
Yu, Y., Huang, X. L., Sun, M., et al., 2021. High-Mg Andesitic Rocks Formed through Crustal Magmatic Differentiation. Lithos, 388: 106069. https://doi.org/10.1016/j.lithos.2021.106069
|
Zhao, B., Shi, R. D., Zou, H. B., et al., 2021. Intra-Continental Boninite-Series Volcanic Rocks from the Bangong-Nujiang Suture Zone, Central Tibet. Lithos, 386: 106024. https://doi.org/10.1016/j.lithos.2021.106024
|
Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
|
陈佳卉, 2020. 俄罗斯远东地区新生代高镁安山岩的成因: 地球化学证据(硕士学位论文). 吉林: 吉林大学.
|
黄子航, 肖媛媛, 2022. 祁连与伊豆-小笠原玻安岩的地球化学特征和成因模型对比. 海洋地质与第四纪地质, 42(4): 135-145.
|
沈芳宇, 2021. 亏损地幔元素Sr-Nd-Pb-Hf-Fe同位素的不均一性及玻安岩的岩浆演化. 北京: 中国科学院大学.
|
王浩然, 李晨伟, 钱裕杰, 等, 2025. 基于机器学习的高镁安山质岩石类型的多元判别分析. 成都理工大学学报(自然科学版), (1): 44-63.
|
肖庆辉, 李廷栋, 潘桂棠, 等, 2016. 识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别. 中国地质, 43(3): 721-737.
|