• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Xu Yueren, Fu Guochao, Liang Zeyu, Hu Guiming, Zhou Xiaocheng, Shi Feng, Yao Yuan, 2025. Preliminary Study on the Characteristics of Landslides and Soil Liquefaction Triggered by the Dingri MS6.8 Earthquake on January 7, 2025, Southern Tibetan Plateau. Earth Science, 50(5): 1813-1829. doi: 10.3799/dqkx.2025.043
    Citation: Xu Yueren, Fu Guochao, Liang Zeyu, Hu Guiming, Zhou Xiaocheng, Shi Feng, Yao Yuan, 2025. Preliminary Study on the Characteristics of Landslides and Soil Liquefaction Triggered by the Dingri MS6.8 Earthquake on January 7, 2025, Southern Tibetan Plateau. Earth Science, 50(5): 1813-1829. doi: 10.3799/dqkx.2025.043

    Preliminary Study on the Characteristics of Landslides and Soil Liquefaction Triggered by the Dingri MS6.8 Earthquake on January 7, 2025, Southern Tibetan Plateau

    doi: 10.3799/dqkx.2025.043
    • Received Date: 2025-02-23
    • Publish Date: 2025-05-25
    • The rapid mapping of secondary effects triggered by strong earthquakes is crucial for understanding the disaster-causing mechanisms of mainshock events. The Tibetan Plateau, characterized by its higher altitude, sparse population, and challenging field conditions, presents significant difficulties for on-site investigations. Consequently, it is significant to analyze the distribution of earthquake-induced landslides and soil liquefaction utilizing post-earthquake emergency satellite imagery. We aim to systematically identify the spatial distribution characteristics of secondary hazards triggered by the MS6.8 Dingri earthquake on January 7, 2025. We utilized emergency imaging data from high-resolution Chinese satellite images. We employed manual visual interpretation through a comparative analysis of pre- and post-earthquake imagery supplemented by field investigations. The following results are obtained: (1) The mainshock triggered 2 869 coseismic landslides, with two major concentration zones in the north and south. Approximately 60% of these landslides occurred in high-altitude regions between 5 000-6 000 m, predominantly manifesting as slope debris flows and collapses with limited effect for far away the residents. (2) The mainshock also induced about 400, 000 soil liquefaction pits, primarily concentrated in the floodplains and low terraces of the Pengqu River at elevations of 4 100-4 300 m. These liquefaction sites are distributed across the Democuo Basin, Guojia Basin, and Dingjie Basin, with some occurrences in Quaternary tills at elevations reaching 5 200 m. The distribution pattern of coseismic landslides, primarily as slope debris flows in higher-altitude (about 5 000 m) areas, suggests a possible correlation with the topographic amplification effect. Meanwhile, the spatial extent of soil liquefaction, spanning three basins in the southern section of the Dingjie-Shenzha Rift system, indicates that single secondary-fault rupture event within a single basin can significantly impact other adjacent secondary-faulted basins, leading to severe secondary disasters, even the controlled faults without coseismal faulting.

       

    • loading
    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
      Chen, W. K., Rao, G., Kang, D. J., et al., 2023. Early Report of the Source Characteristics, Ground Motions, and Casualty Estimates of the 2023 Mw 7.8 and 7.5 Turkey Earthquakes. Journal of Earth Science, 34(2): 297-303. https://doi.org/10.1007/s12583-023-1316-6
      Deng, Q. D., Cheng, S. P., Ma, J., et al., 2014. Seismic Activities and Earthquake Potential in the Tibetan Plateau. Chinese Journal of Geophysics, 57(7): 2025-2042 (in Chinese with English abstract).
      Elliott, J. R., Walters, R. J., England, P. C., et al., 2010. Extension on the Tibetan Plateau: Recent Normal Faulting Measured by InSAR and Body Wave Seismology. Geophysical Journal International, 183(2): 503-535. https://doi.org/10.1111/j.1365-246x.2010.04754.x
      He, X. L., Xu, C., Qi, W. W., et al., 2021. Landslides Triggered by the 2020 Qiaojia Mw5.1 Earthquake, Yunnan, China: Distribution, Influence Factors and Tectonic Significance. Journal of Earth Science, 32(5): 1056-1068. https://doi.org/10.1007/s12583-021-1492-1
      Hu, G. M., Xu, Y. R., Liu, H., et al., 2025. Discussion on Seismic-Generating Potential and Seismic Risk of Normal Fault Zone in South Tibet Rift System. Earth Science, 50(5): 1794-1812(in Chinese).
      Li, Z. C., Sun, J. Z., Ji, Z. W., et al., 2025. Rapid Simulation of Acceleration Time History at the Qomolangma Seismic Station during the Ms6.8 Dingri Earthquake in Tibet on January 7, 2025. Earth Science, 50(2): 798-804 (in Chinese with English abstract).
      Liang, P., Xu, Y. R., Zhou, X. C., et al., 2025. Coseismic Surface Ruptures of MW7.8 and MW7.5 Earthquakes Occurred on February 6, 2023, and Seismic Hazard Assessment of the East Anatolian Fault Zone, Southeastern Türkiye. Science China Earth Sciences, 68(2): 611-625. https://doi.org/10.1007/s11430-024-1457-7
      Liu, J., Ji, C., Zhang, J. Y., et al., 2015. Seismogenic Tectonic Background and Characteristics of the Mw7.8 Earthquake in Nepal on April 25, 2015. Chinese Science Bulletin, 60(27): 2640-2655 (in Chinese with English abstract). doi: 10.1360/N972015-00559
      Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).
      Liu-Zeng, J., Zhang, Z., Rollins, C., et al., 2020. Postseismic Deformation Following the 2015 MW7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation. Journal of Geophysical Research: Solid Earth, 125(9). https://doi.org/10.1029/2020jb019852
      Lu, L. Y., Xu, Y. R., Tang, J. C., et al., 2024. Using High-Spatial-Resolution Images to Extract the Distribution of Coseismic Landslides and Soil Liquefaction Triggered by the 2024 Hualien MW7.4 Earthquake in Eastern Taiwan. Earthquake Research Advances. https://doi.org/10.1016/j.eqrea.2024.100356
      Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of Recent Continental Tectonics in Asia Can Be Interpreted as Results of the India-Eurasia Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
      Sheng, S. Z., Wan, Y. G., Jiang, C. S., et al., 2015. Preliminary Study on the Static Stress Triggering Effects on China Mainland with the 2015 Nepal MS8.1 Earthquake. Chinese Journal of Geophysics, 58(5): 1834-1842 (in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Structure and Coseismic Surface Rupture Characteristics of the M6.8 Dingri Earthquake in Tibet on January 7, 2025. Seismological Geology, 47(1): 1-15 (in Chinese).
      Wan, Y. G., Sheng, S. Z., Li, X., et al., 2015. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland. Chinese Journal of Geophysics, 58(11): 4277-4286 (in Chinese with English abstract).
      Wu, J. J., Chen, W. K., Jia, Y. J., et al., 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: An Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.035
      Wu, Z. H., Zhao, G. M., Liu, J., 2016. Tectonic Genesis of the 2015 MS8.1 Earthquake in Nepal and Its Impact on Future Strong Earthquake Trends in the Tibetan Plateau and Adjacent Areas. Acta Geologica Sinica, 90(6): 1062-1082 (in Chinese with English abstract).
      Xu, X. W., Wang, S. G., Cheng, J., et al., 2025. Shaking the Tibetan Plateau: Insights from the MW7.1 Dingri Earthquake and Its Implications for Active Fault Mapping and Disaster Mitigation. NPJ Natural Hazards, 2: 16. https://doi.org/10.1038/s44304-025-00074-7
      Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research: Solid Earth, 123(4): 3098-3121. https://doi.org/10.1002/2017jb014928
      Xu, Y. R., Liu‐Zeng, J., Allen, M. B., et al., 2022. Understanding Historical Earthquakes by Mapping Coseismic Landslides in the Loess Plateau, Northwest China. Earth Surface Processes and Landforms, 47(9): 2266-2282. https://doi.org/10.1002/esp.5375
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.033
      Zhang, P. Z., Wang, W. T., Gan, W. J., et al., 2022. Present Tectonic Deformation and Geodynamic Processes of the Tibetan Plateau. Acta Geologica Sinica, 96(10): 3297-3313 (in Chinese with English abstract).
      Zhao, B., Su, L. J., Xu, Q., et al., 2023. A Review of Recent Earthquake-Induced Landslides on the Tibetan Plateau. Earth-Science Reviews, 244. https://doi.org/10.1016/j.earscirev.2023.104534
      Zhou, J., Li, L., 2025. An Open Access 90 m Resolution VS30 Data and Map for Areas Affected by the January 2025 M6.8 Dingri Xizang, China Earthquake. Earthquake Science, 38. https://doi.org/10.29382/eqs-D-25-00004
      Zou, J. J., Shao, Z. G., He, H. L., et al., 2025. Surface Rupture Interpretation and Building Damage Statistics of the MS Earthquake in Dingri, Xizang Province, January 7, 2025. Seismological Geology, 47(1): 16-35 (in Chinese).
      邓起东, 程绍平, 马冀, 等, 2014. 青藏高原地震活动特征及当前地震活动形势. 地球物理学报, 57(7): 2025-2042.
      胡贵明, 徐岳仁, 刘晗, 等, 2025. 藏南裂谷系正断层带孕震潜力和地震危险性讨论. 地球科学, 50(5): 1794-1812.
      李宗超, 孙吉泽, 纪志伟, 等, 2025. 2025年1月7日西藏定日MS6.8地震珠峰地震台加速度时程快速模拟. 地球科学, 50(2): 798-804. doi: 10.3799/dqkx.2025.009
      刘静, 纪晨, 张金玉, 等, 2015. 2015年4月25日尼泊尔MW7.8级地震的孕震构造背景和特征. 科学通报, 60(27): 2640-2655.
      刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论. 地震学报, 45(4): 579-596.
      盛书中, 万永革, 蒋长胜, 等, 2015. 2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834-1842.
      石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15.
      万永革, 盛书中, 李祥, 等, 2015. 2015年尼泊尔强震序列对中国大陆的应力影响. 地球物理学报, 58(11): 4277-4286.
      吴佳杰, 陈文凯, 贾艺娇, 等, 2025. 基于密集台阵的地震烈度及灾情快速评估——以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781.
      吴中海, 赵根模, 刘杰, 2016. 2015年尼泊尔MS8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响. 地质学报, 90(6): 1062-1082.
      杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732.
      张培震, 王伟涛, 甘卫军, 等, 2022. 青藏高原的现今构造变形与地球动力过程. 地质学报, 96(10): 3297-3313.
      邹俊杰, 邵志刚, 何宏林, 等, 2025. 2025年1月7日西藏定日MS地震地表破裂解译与建筑物震害损毁统计. 地震地质, 47(1): 16-35.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(14)

      Article views (249) PDF downloads(43) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return