• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Wang Tongrong, Ji Xubo, Wang Jiangbo, Liu Yang, Shao Yubao, Wang Yongjun, Huang Xin, Gao Tao, Jiang Peng, Shan Jiangtao, Tan Jun, Zhao Zhixin, 2025. Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping-Rushan Metallogenic Belt. Earth Science, 50(8): 3167-3181. doi: 10.3799/dqkx.2025.048
    Citation: Wang Tongrong, Ji Xubo, Wang Jiangbo, Liu Yang, Shao Yubao, Wang Yongjun, Huang Xin, Gao Tao, Jiang Peng, Shan Jiangtao, Tan Jun, Zhao Zhixin, 2025. Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping-Rushan Metallogenic Belt. Earth Science, 50(8): 3167-3181. doi: 10.3799/dqkx.2025.048

    Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping-Rushan Metallogenic Belt

    doi: 10.3799/dqkx.2025.048
    • Received Date: 2025-02-23
    • Publish Date: 2025-08-25
    • This study aims to develop a methodology for implicit 3D geological modeling under the constraint of limited exploration data availability. Taking Lazigougold deposit as an example, we generate virtual grooving by distance weighting method based on the original grooving sampling data, and use the original grooving data to train and evaluate three machine learning models, namely K-nearest neighbor, random forest and gradient elevator, and select the random forest model with the best prediction performance to discriminate and predict the lithology of virtual grooving. Virtual encryption of groove data is realized by machine learning method, which provides a large number of sample data for implicit 3D modeling. On this basis, the orebody model and Au element grade numerical model of Lazigou gold mine were constructed in implicit modeling software using the original groove and virtual groove data. Five prospecting targets have been delimited, which have been proved reliable by engineering. The implicit 3D modeling based on machine learning can make full use of the known data to predict the unknown region and provide sufficient samples for the implicit 3D modeling, which is conducive to the construction of a higher precision geological model under the existing exploration engineering conditions, and then provide a basis for the deep edge prospecting prediction.

       

    • loading
    • Benmahamed, Y., Teguar, M., Boubakeur, A., 2017. Application of SVM and KNN to Duval Pentagon 1 for Transformer Oil Diagnosis. IEEE Transactions on Dielectrics and Electrical Insulation, 24(6): 3443-3451. https://doi.org/10.1109/TDEI.2017.006841
      Bi, L., Liu, X. M., Chen, X., et al., 2016. An Automatic 3D Modeling Method Based on Orebody Contours. Geomatics and Information Science of Wuhan University, 41(10): 1359-1365(in Chinese with English abstract).
      Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
      Brown, W. M., Gedeon, T. D., Groves, D. I., et al., 2000. Artificial Neural Networks: a New Method for Mineral Prospectivity Mapping. Australian Journal of Earth Sciences, 47(4): 757-770. https://doi.org/10.1046/j.1440-0952.2000.00807.x
      Chen, J., Mao, X. C., Deng, H., 2020.3D Quantitative Mineral Prediction in the Depth of the Dayingezhuang Gold Deposit, Shandong Province. Acta Geoscientica Sinica, 41(2): 179-191(in Chinese with English abstract).
      Coppi, R., Gil, M. A., Kiers, H. A. L., 2006. The Fuzzy Approach to Statistical Analysis. Computational Statistics & Data Analysis, 51(1): 1-14. https://doi.org/10.1016/j.csda.2006.05.012
      Deng, J., Yang, L. Q., Groves, D. I., et al., 2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
      Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176(in Chinese with English abstract).
      Gong, J. Y., Cheng, P. G., Wang, Y. D., 2004. Three-Dimensional Modeling and Application in Geological Exploration Engineering. Computers & Geosciences, 30(4): 391-404. https://doi.org/10.1016/j.cageo.2003.06.003
      Gong, T., Yang, B., Xiang, Y. H., et al., 2017. Tectonic-Geochemical Characteristics and Prospecting Prediction of Lazigou Gold District in Jiaodong Region. Gold, 38(7): 6-9(in Chinese with English abstract).
      Guo, J. T., Liu, Y. H., Han, Y. F., et al. 2019. Implicit 3 D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University(Natural Science), 40(9): 1337-1342(in Chinese with English abstract).
      Hou, L. L., Wu, S., Yi, J. Z., et al., 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317(in Chinese with English abstract).
      Houlding, S. W., 1993. 3D Geo-Science Modeling: Computer Techniques for Geological Characterization. Springer-Verlag, London, 1-2.
      Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440(in Chinese with English abstract).
      Jessell, M., 2001. Three-Dimensional Geological Modelling of Potential-Field Data. Computers & Geosciences, 27(4): 455-465. https://doi.org/10.1016/s0098-3004(00)00142-4
      Li, X. H., Yuan, F., Zhang, M. M., et al., 2015. Three-Dimensional Mineral Prospectivity Modeling for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin, China. Ore Geology Reviews, 71: 633-654. https://doi.org/10.1016/j.oregeorev. 2015. 06.001 doi: 10.1016/j.oregeorev.2015.06.001
      [i]
      Li, J. M., Huang, X., Shi, W. J., et al. 2021. Three-Dimensional Comprehensive Model and Deep Prediction of the Jinqingding Gold Deposit, Muping-Rushan Metallogenic Belt, Shandong, China. Bulletin of Geological Science and Technology, 40(6): 151-164(in Chinese with English abstract).
      Li, Q. Y., Zhang, L. Y., Cao, D. Y., et al., 2016. Usage, Status, Problems, Trends and Suggestions of 3D Geological Modeling. Geology and Exploration, 52(4): 759-767(in Chinese with English abstract).
      Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007
      Lou, Y. M. 2023. Study on Surface and Deep Metallogenic Prediction Based on Geological-Geochemical Information in Xiongcun District, Tibet(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      Mitchell, T. M., 1997. Machine Learning. McGraw-Hill, New York.
      Niu, L. J., Shi, C. Y., Wang, Z. G., et al. 2024. InterfaceGrid: Gridding Representation of 3D Geological Models for Complex Geological Structures. Earth Science Frontiers, 31(4): 129-138(in Chinese with English abstract).
      Shen, P., Shen, Y. C., Li, G. M., et al., 2004. A Study on Structure-Fluid-Mineralization System in the Jinniushan Gold Deposit, East Shandong. Chinese Journal of Geology, 39(2): 272-283(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2004.02.014
      Song, M. C., Ding, Z. J., Liu, X. D., et al. 2022. Structural Controls on the Jiaodong Type Gold Deposits and Metallogenic Mo. Acta Geologica Sinica, 96(5): 1774-1802(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.017
      Sun, T., Chen, F., Zhong, L. X., et al., 2019. GIS-Based Mineral Prospectivity Mapping Using Machine Learning methods: A Case Study from Tongling Ore District, Eastern China. Ore Geology Reviews, 109: 26-49. https://doi.org/10.1016/j.oregeorev.2019.04.003
      Wang, G. W., Li, R. X., Carranza, E. J. M., et al., 2015.3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 71: 592-610. https://doi.org/10.1016/j.oregeorev.2015.03.002
      Wang, H., Yan, J. Y., Qi, G., et al. 2023. Metallogenic Prediction Method Based on Gravity and Magnetic Three-Dimensional Modeling and Machine Learning: A Case Study of Zhuxi. Progress in Geophysics, 38(2): 734-747(in Chinese with English abstract).
      Wu, Q., Xu, H., 2014. Three-Dimensional Geological Modeling and Its Application in Digital Mine. Science China Earth Sciences, 57(3): 491-502. https://doi.org/10.1007/s11430-013-4671-9
      Wu, X. L., Zhou, S. Y., 2014. Study on Structural Ore-Controlling Law of Jinniushan Gold Deposit in Jiaodong. Mineral Deposits, 33(S1): 1093-1094(in Chinese with English abstract).
      Xiang, J., Chen, J. P., Xiao, K. Y., et al., 2019.3D Metallogenic Prediction Based on Machine learning: A Case Study of the Lala Copper Deposit in Sichuan Province. Geological Bulletin of China, 38(12): 2010-2021(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2019.12.009
      Xiong, J. Q. 2023. Research on Intelligent 3D Geological Modeling Method and Application(Dissertation). AnHui University of Science and Technology, Huainan(in Chinese with English abstract).
      Yang, L. Q., Deng, J., Wang, Z. L., et al., 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 30(9): 2447-2467(in Chinese with English abstract).
      Ye, X. Y., Yang, B., Mao, X. C., et al., 2019. Mineralogical Characteristics of Rubefication Alteration Rocks in Lazigou Gold District, Jiaodong Region and Their Association to Gold Mineralization. Gold, 40(1): 18-21(in Chinese with English abstract).
      Zhang, X. L., Wu, C. L., Zhou, Q., et al. 2020. Three-Dimensional Geological Modeling of Manganese Deposits Based on Exploration Big Data and Data Market. Bulletin of Geological Science and Technology, 39(4): 12-20(in Chinese with English abstract).
      Zhao, Y. Y., Wu, C. X., Jie, S. W., et al. 2023. Three-Dimensional(3D) Geological Modeling and Deep Mineral Targeting of the Tongliishan-Tongshan Cu-Fe-Au Deposit in Southeastern Hubei Province. Bulletin of Geological Science and Technology, 42(1): 112-125(in Chinese with English abstract).
      Zhou, Q., Wu, C. L., 2024. Experimental Research on Big Data-Based Intelligent Exploration Models and Advance. Earth Science Frontiers, 31(06): 350-367(in Chinese with English abstract).
      Zhou, Y. Z., Xiao, F., 2024. Overview: A Glimpse of the Latest Advances in Artificial Intelligence and Big Data Geoscience Research. Earth Science Frontiers, 31(4): 1-6(in Chinese with English abstract).
      Zuo, R. G., Peng, Y., Li, T., et al. 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358(in Chinese with English abstract).
      毕林, 刘晓明, 陈鑫, 等, 2016. 一种基于矿体轮廓线的三维建模新方法. 武汉大学学报(信息科学版), 41(10): 1359-1365.
      陈进, 毛先成, 邓浩, 2020. 山东大尹格庄金矿床深部三维定量成矿预测. 地球学报, 41(2): 179-191.
      扶金铭, 胡茂胜, 方芳, 等, 2024. Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法. 地球科学, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433
      龚婷, 杨斌, 向胤合, 等, 2017. 胶东腊子沟金矿区构造地球化学特征与找矿预测. 黄金, 38(7): 6-9.
      郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报(自然科学版), 40(9): 1337-1342.
      侯霖莉, 吴松, 易建洲, 等, 2024. 基于机器学习的绿泥石微量元素判别矿床类型. 地球科学, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173
      黄鑫怀, 李增华, 邓腾, 等, 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 48(12): 4427-4440. doi: 10.3799/dqkx.2022.006
      李金岷, 黄鑫, 石文杰, 等, 2021. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测. 地质科技通报, 40(6): 151-164.
      李青元, 张洛宜, 曹代勇, 等. 2016. 三维地质建模的用途、现状、问题、趋势与建议. 地质与勘探, 52(04): 759-767.
      娄渝明. 2023. 基于地质-地球化学信息的西藏雄村矿集区地表和深部成矿预测研究(博士学位论文). 成都: 成都理工大学.
      牛露佳, 石成岳, 王占刚, 等, 2024. 三维复杂地质结构模型的InterfaceGrid表达方法. 地学前缘, 31(4): 129-138.
      申萍, 沈远超, 李光明, 等, 2004. 胶东金牛山金矿床构造—流体—成矿作用体系研究. 地质科学(02): 272-283. doi: 10.3321/j.issn:0563-5020.2004.02.014
      宋明春, 丁正江, 刘向东, 等, 2022. 胶东型金矿床断裂控矿及成矿模式. 地质学报, 96(5): 1774-1802. doi: 10.3969/j.issn.0001-5717.2022.05.017
      王昊, 严加永, 祁光, 等, 2023. 基于重磁三维建模与机器学习的成矿预测方法——以朱溪外围为例. 地球物理学进展, 38(02): 734-747.
      吴小雷, 周守余. 2014. 胶东金牛山金矿床构造控矿规律研究. 矿床地质, 33(S1): 1093-1094.
      向杰, 陈建平, 肖克炎, 等, 2019. 基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例. 地质通报, 38(12): 2010-2021. doi: 10.12097/j.issn.1671-2552.2019.12.009
      熊玖琦, 2023. 智能三维地质建模方法与应用研究(博士学位论文). 淮南: 安徽理工大学.
      杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467.
      叶晓玉, 杨斌, 毛先成, 等, 2019. 胶东腊子沟金矿区红化蚀变岩的矿物学特征及与金成矿关系. 黄金, 40(1): 18-21.
      张夏林, 吴冲龙, 周琦, 等, 2020. 基于勘查大数据和数据集市的锰矿床三维地质建模. 地质科技通报, 39(4): 12-20.
      赵岩岩, 吴昌雄, 石文杰, 等, 2023. 鄂东南矿集区铜绿山-铜山铜铁金矿床三维地质建模与深部预测. 地质科技通报, 42(1): 112-125.
      周琦, 吴冲龙, 2024. 基于大数据的智慧探矿模式实验研究与进展. 地学前缘, 31(6): 350-367.
      周永章, 肖凡, 2024. 管窥人工智能与大数据地球科学研究新进展. 地学前缘, 31(4): 1-6.
      左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(2)

      Article views (206) PDF downloads(19) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return