Citation: | Wang Tongrong, Ji Xubo, Wang Jiangbo, Liu Yang, Shao Yubao, Wang Yongjun, Huang Xin, Gao Tao, Jiang Peng, Shan Jiangtao, Tan Jun, Zhao Zhixin, 2025. Implicit 3D Geological Modeling Based on Machine Learning: A Case Study of Lazigou Gold Deposit in Muping-Rushan Metallogenic Belt. Earth Science, 50(8): 3167-3181. doi: 10.3799/dqkx.2025.048 |
Benmahamed, Y., Teguar, M., Boubakeur, A., 2017. Application of SVM and KNN to Duval Pentagon 1 for Transformer Oil Diagnosis. IEEE Transactions on Dielectrics and Electrical Insulation, 24(6): 3443-3451. https://doi.org/10.1109/TDEI.2017.006841
|
|
Bi, L., Liu, X. M., Chen, X., et al., 2016. An Automatic 3D Modeling Method Based on Orebody Contours. Geomatics and Information Science of Wuhan University, 41(10): 1359-1365(in Chinese with English abstract).
|
|
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5-32. https://doi.org/10.1023/A:1010933404324
|
|
Brown, W. M., Gedeon, T. D., Groves, D. I., et al., 2000. Artificial Neural Networks: a New Method for Mineral Prospectivity Mapping. Australian Journal of Earth Sciences, 47(4): 757-770. https://doi.org/10.1046/j.1440-0952.2000.00807.x
|
|
Chen, J., Mao, X. C., Deng, H., 2020.3D Quantitative Mineral Prediction in the Depth of the Dayingezhuang Gold Deposit, Shandong Province. Acta Geoscientica Sinica, 41(2): 179-191(in Chinese with English abstract).
|
|
Coppi, R., Gil, M. A., Kiers, H. A. L., 2006. The Fuzzy Approach to Statistical Analysis. Computational Statistics & Data Analysis, 51(1): 1-14. https://doi.org/10.1016/j.csda.2006.05.012
|
|
Deng, J., Yang, L. Q., Groves, D. I., et al., 2020. An Integrated Mineral System Model for the Gold Deposits of the Giant Jiaodong Province, Eastern China. Earth-Science Reviews, 208: 103274. https://doi.org/10.1016/j.earscirev.2020.103274
|
|
Fu, J. M., Hu, M. S., Fang, F., et al., 2024. Complex Orebody 3D Modeling Using Radial Basis Function Surface Incorporating Stacking Integration Strategy. Earth Science, 49(3): 1165-1176(in Chinese with English abstract).
|
|
Gong, J. Y., Cheng, P. G., Wang, Y. D., 2004. Three-Dimensional Modeling and Application in Geological Exploration Engineering. Computers & Geosciences, 30(4): 391-404. https://doi.org/10.1016/j.cageo.2003.06.003
|
|
Gong, T., Yang, B., Xiang, Y. H., et al., 2017. Tectonic-Geochemical Characteristics and Prospecting Prediction of Lazigou Gold District in Jiaodong Region. Gold, 38(7): 6-9(in Chinese with English abstract).
|
|
Guo, J. T., Liu, Y. H., Han, Y. F., et al. 2019. Implicit 3 D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University(Natural Science), 40(9): 1337-1342(in Chinese with English abstract).
|
|
Hou, L. L., Wu, S., Yi, J. Z., et al., 2024. Discriminating Deposit Types Using Chlorite Trace Elements Based on Machine Learning. Earth Science, 49(12): 4303-4317(in Chinese with English abstract).
|
|
Houlding, S. W., 1993. 3D Geo-Science Modeling: Computer Techniques for Geological Characterization. Springer-Verlag, London, 1-2.
|
|
Huang, X. H., Li, Z. H., Deng, T., et al., 2023. Uranium Potential Evaluation of Zhuguangshan Granitic Pluton in South China Based on Machine Learning. Earth Science, 48(12): 4427-4440(in Chinese with English abstract).
|
|
Jessell, M., 2001. Three-Dimensional Geological Modelling of Potential-Field Data. Computers & Geosciences, 27(4): 455-465. https://doi.org/10.1016/s0098-3004(00)00142-4
|
|
Li, X. H., Yuan, F., Zhang, M. M., et al., 2015. Three-Dimensional Mineral Prospectivity Modeling for Targeting of Concealed Mineralization within the Zhonggu Iron Orefield, Ningwu Basin, China. Ore Geology Reviews, 71: 633-654. https://doi.org/10.1016/j.oregeorev. 2015. 06.001 doi: 10.1016/j.oregeorev.2015.06.001
|
|
[i] |
Li, J. M., Huang, X., Shi, W. J., et al. 2021. Three-Dimensional Comprehensive Model and Deep Prediction of the Jinqingding Gold Deposit, Muping-Rushan Metallogenic Belt, Shandong, China. Bulletin of Geological Science and Technology, 40(6): 151-164(in Chinese with English abstract).
|
Li, Q. Y., Zhang, L. Y., Cao, D. Y., et al., 2016. Usage, Status, Problems, Trends and Suggestions of 3D Geological Modeling. Geology and Exploration, 52(4): 759-767(in Chinese with English abstract).
|
|
Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007
|
|
Lou, Y. M. 2023. Study on Surface and Deep Metallogenic Prediction Based on Geological-Geochemical Information in Xiongcun District, Tibet(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
|
|
Mitchell, T. M., 1997. Machine Learning. McGraw-Hill, New York.
|
|
Niu, L. J., Shi, C. Y., Wang, Z. G., et al. 2024. InterfaceGrid: Gridding Representation of 3D Geological Models for Complex Geological Structures. Earth Science Frontiers, 31(4): 129-138(in Chinese with English abstract).
|
|
Shen, P., Shen, Y. C., Li, G. M., et al., 2004. A Study on Structure-Fluid-Mineralization System in the Jinniushan Gold Deposit, East Shandong. Chinese Journal of Geology, 39(2): 272-283(in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2004.02.014
|
|
Song, M. C., Ding, Z. J., Liu, X. D., et al. 2022. Structural Controls on the Jiaodong Type Gold Deposits and Metallogenic Mo. Acta Geologica Sinica, 96(5): 1774-1802(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.017
|
|
Sun, T., Chen, F., Zhong, L. X., et al., 2019. GIS-Based Mineral Prospectivity Mapping Using Machine Learning methods: A Case Study from Tongling Ore District, Eastern China. Ore Geology Reviews, 109: 26-49. https://doi.org/10.1016/j.oregeorev.2019.04.003
|
|
Wang, G. W., Li, R. X., Carranza, E. J. M., et al., 2015.3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, 71: 592-610. https://doi.org/10.1016/j.oregeorev.2015.03.002
|
|
Wang, H., Yan, J. Y., Qi, G., et al. 2023. Metallogenic Prediction Method Based on Gravity and Magnetic Three-Dimensional Modeling and Machine Learning: A Case Study of Zhuxi. Progress in Geophysics, 38(2): 734-747(in Chinese with English abstract).
|
|
Wu, Q., Xu, H., 2014. Three-Dimensional Geological Modeling and Its Application in Digital Mine. Science China Earth Sciences, 57(3): 491-502. https://doi.org/10.1007/s11430-013-4671-9
|
|
Wu, X. L., Zhou, S. Y., 2014. Study on Structural Ore-Controlling Law of Jinniushan Gold Deposit in Jiaodong. Mineral Deposits, 33(S1): 1093-1094(in Chinese with English abstract).
|
|
Xiang, J., Chen, J. P., Xiao, K. Y., et al., 2019.3D Metallogenic Prediction Based on Machine learning: A Case Study of the Lala Copper Deposit in Sichuan Province. Geological Bulletin of China, 38(12): 2010-2021(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2019.12.009
|
|
Xiong, J. Q. 2023. Research on Intelligent 3D Geological Modeling Method and Application(Dissertation). AnHui University of Science and Technology, Huainan(in Chinese with English abstract).
|
|
Yang, L. Q., Deng, J., Wang, Z. L., et al., 2014. Mesozoic Gold Metallogenic System of the Jiaodong Gold Province, Eastern China. Acta Petrologica Sinica, 30(9): 2447-2467(in Chinese with English abstract).
|
|
Ye, X. Y., Yang, B., Mao, X. C., et al., 2019. Mineralogical Characteristics of Rubefication Alteration Rocks in Lazigou Gold District, Jiaodong Region and Their Association to Gold Mineralization. Gold, 40(1): 18-21(in Chinese with English abstract).
|
|
Zhang, X. L., Wu, C. L., Zhou, Q., et al. 2020. Three-Dimensional Geological Modeling of Manganese Deposits Based on Exploration Big Data and Data Market. Bulletin of Geological Science and Technology, 39(4): 12-20(in Chinese with English abstract).
|
|
Zhao, Y. Y., Wu, C. X., Jie, S. W., et al. 2023. Three-Dimensional(3D) Geological Modeling and Deep Mineral Targeting of the Tongliishan-Tongshan Cu-Fe-Au Deposit in Southeastern Hubei Province. Bulletin of Geological Science and Technology, 42(1): 112-125(in Chinese with English abstract).
|
|
Zhou, Q., Wu, C. L., 2024. Experimental Research on Big Data-Based Intelligent Exploration Models and Advance. Earth Science Frontiers, 31(06): 350-367(in Chinese with English abstract).
|
|
Zhou, Y. Z., Xiao, F., 2024. Overview: A Glimpse of the Latest Advances in Artificial Intelligence and Big Data Geoscience Research. Earth Science Frontiers, 31(4): 1-6(in Chinese with English abstract).
|
|
Zuo, R. G., Peng, Y., Li, T., et al. 2021. Challenges of Geological Prospecting Big Data Mining and Integration Using Deep Learning Algorithms. Earth Science, 46(1): 350-358(in Chinese with English abstract).
|
|
毕林, 刘晓明, 陈鑫, 等, 2016. 一种基于矿体轮廓线的三维建模新方法. 武汉大学学报(信息科学版), 41(10): 1359-1365.
|
|
陈进, 毛先成, 邓浩, 2020. 山东大尹格庄金矿床深部三维定量成矿预测. 地球学报, 41(2): 179-191.
|
|
扶金铭, 胡茂胜, 方芳, 等, 2024. Stacking集成策略下的径向基函数曲面复杂矿体三维建模方法. 地球科学, 49(3): 1165-1176. doi: 10.3799/dqkx.2022.433
|
|
龚婷, 杨斌, 向胤合, 等, 2017. 胶东腊子沟金矿区构造地球化学特征与找矿预测. 黄金, 38(7): 6-9.
|
|
郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报(自然科学版), 40(9): 1337-1342.
|
|
侯霖莉, 吴松, 易建洲, 等, 2024. 基于机器学习的绿泥石微量元素判别矿床类型. 地球科学, 49(12): 4303-4317. doi: 10.3799/dqkx.2023.173
|
|
黄鑫怀, 李增华, 邓腾, 等, 2023. 基于机器学习的华南诸广山花岗岩体铀矿潜力评价. 地球科学, 48(12): 4427-4440. doi: 10.3799/dqkx.2022.006
|
|
李金岷, 黄鑫, 石文杰, 等, 2021. 山东牟乳成矿带金青顶矿区三维综合找矿模型的构建及深部预测. 地质科技通报, 40(6): 151-164.
|
|
李青元, 张洛宜, 曹代勇, 等. 2016. 三维地质建模的用途、现状、问题、趋势与建议. 地质与勘探, 52(04): 759-767.
|
|
娄渝明. 2023. 基于地质-地球化学信息的西藏雄村矿集区地表和深部成矿预测研究(博士学位论文). 成都: 成都理工大学.
|
|
牛露佳, 石成岳, 王占刚, 等, 2024. 三维复杂地质结构模型的InterfaceGrid表达方法. 地学前缘, 31(4): 129-138.
|
|
申萍, 沈远超, 李光明, 等, 2004. 胶东金牛山金矿床构造—流体—成矿作用体系研究. 地质科学(02): 272-283. doi: 10.3321/j.issn:0563-5020.2004.02.014
|
|
宋明春, 丁正江, 刘向东, 等, 2022. 胶东型金矿床断裂控矿及成矿模式. 地质学报, 96(5): 1774-1802. doi: 10.3969/j.issn.0001-5717.2022.05.017
|
|
王昊, 严加永, 祁光, 等, 2023. 基于重磁三维建模与机器学习的成矿预测方法——以朱溪外围为例. 地球物理学进展, 38(02): 734-747.
|
|
吴小雷, 周守余. 2014. 胶东金牛山金矿床构造控矿规律研究. 矿床地质, 33(S1): 1093-1094.
|
|
向杰, 陈建平, 肖克炎, 等, 2019. 基于机器学习的三维矿产定量预测——以四川拉拉铜矿为例. 地质通报, 38(12): 2010-2021. doi: 10.12097/j.issn.1671-2552.2019.12.009
|
|
熊玖琦, 2023. 智能三维地质建模方法与应用研究(博士学位论文). 淮南: 安徽理工大学.
|
|
杨立强, 邓军, 王中亮, 等, 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467.
|
|
叶晓玉, 杨斌, 毛先成, 等, 2019. 胶东腊子沟金矿区红化蚀变岩的矿物学特征及与金成矿关系. 黄金, 40(1): 18-21.
|
|
张夏林, 吴冲龙, 周琦, 等, 2020. 基于勘查大数据和数据集市的锰矿床三维地质建模. 地质科技通报, 39(4): 12-20.
|
|
赵岩岩, 吴昌雄, 石文杰, 等, 2023. 鄂东南矿集区铜绿山-铜山铜铁金矿床三维地质建模与深部预测. 地质科技通报, 42(1): 112-125.
|
|
周琦, 吴冲龙, 2024. 基于大数据的智慧探矿模式实验研究与进展. 地学前缘, 31(6): 350-367.
|
|
周永章, 肖凡, 2024. 管窥人工智能与大数据地球科学研究新进展. 地学前缘, 31(4): 1-6.
|
|
左仁广, 彭勇, 李童, 等, 2021. 基于深度学习的地质找矿大数据挖掘与集成的挑战. 地球科学, 46(1): 350-358. doi: 10.3799/dqkx.2020.111
|