Citation: | Dai Zonghui, Gao Jinrui, Wang Peng, An Yanru, Xu Liang, Li Dongmei, Li Cuiqin, Xu Changpeng, Tudeng Ciren, 2025. Rupture Process and Aftershock Distribution of the MS6.8 Earthquake in Dingri, Xizang, on January 7, 2025. Earth Science, 50(5): 1696-1708. doi: 10.3799/dqkx.2025.052 |
To investigate the rupture mechanism of the MS6.8 earthquake in Dingri, Xizang, it inverted the rupture process of the mainshock using teleseismic waveforms and refined the hypocenter locations of the aftershock sequence through the double-difference relocation method. The results indicate that the rupture process lasted approximately 22 seconds, with unilateral propagation northward along the causative fault.The rupture extended for about 60 km, and the maximum slip reached 2.4 m, located roughly 30 km north of the mainshock, forming a co-seismic surface rupture zone that is consistent with the results of field geological surveys. The aftershock sequence exhibits a characteristic north-south distribution, which can be roughly categorized into three clusters. The earthquake distribution in the southern and central clusters indicates a complex fault structure and suggests the co-seismic activation of multiple secondary faults. Early aftershocks are concentrated in the low-slip regions at the periphery of the main rupture zone, complementing the high-slip areas (> 1.5 m), consistent with the "stress shadow" effect. Subsequent aftershocks migrated southward and formed conjugate clusters trending NE-SW and NW-SE, revealing a multi-directional stress adjustment process in the post-seismic stage. These findings suggest that the regional tectonic stress field plays a significant role in controlling the rupture process, and that the aftershock distribution is closely related to post-rupture stress redistribution and regional tectonics.
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
|
Bai, L., Chen, Z. W., Wang, S. J., 2025. The 2025 Dingri MS6.8 Earthquake in Xizang: Analysis of Tectonic Background and Discussion of Source Characteristics. Reviews of Geophysics and Planetary Physics, 56(3): 258-263 (in Chinese with English abstract).
|
Chen, K., Yang, T., Wang, Y. Z., et al., 2025. Quick Output Parameters Related to the 7 January 2025 M6.8 Earthquake in Dingri County, Xizang. Progress in Earthquake Sciences, 55(3): 164-171 (in Chinese with English abstract).
|
Chu, Y., Guo, Y. L., Liu, T. J., et al., 2024. South Tibetan Detachment System Activity and Leucogranite Emplacement: Insights from the Shisha Pangma Regions. Acta Petrologica Sinica, 40(5): 1461-1474 (in Chinese with English abstract). doi: 10.18654/1000-0569/2024.05.08
|
Dreger, D. S., Gee, L., Lombard, P., et al., 2005. Rapid Finite-Source Analysis and Near-Fault Strong Ground Motions: Application to the 2003 Mw 6.5 San Simeon and 2004 Mw 6.0 Parkfield Earthquakes. Seismological Research Letters, 76(1): 40-48. https://doi.org/10.1785/gssrl.76.1.40
|
England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/JB094iB12p17561
|
Felzer, K. R., Brodsky, E. E., 2005. Testing the Stress Shadow Hypothesis. Journal of Geophysical Research: Solid Earth, 110(B5): B05S09. https://doi.org/10.1029/2004JB003277
|
Fielding, E. J., 1996. Tibet Uplift and Erosion. Tectonophysics, 260(1/2/3): 55-84. https://doi.org/10.1016/0040-1951(96)00076-5
|
Gao, R., Lu, Z. W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9(7): 555-560. https://doi.org/10.1038/ngeo2730
|
Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052): 1663-1670. https://doi.org/10.1126/science.255.5052.1663
|
Ichinose, G. A., 2000. Relative Importance of Near-, Intermediate- and Far-Field Displacement Terms in Layered Earth Synthetic Seismograms. Bulletin of the Seismological Society of America, 90(2): 531-536. https://doi.org/10.1785/0119990134
|
Ji, C., 2002. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4): 1192-1207. https://doi.org/10.1785/0120000916
|
Kusky, T. M., Meng, J. N., 2025. Perspectives on the M7.1 2025 Southern Tibetan Plateau (Xizang) Earthquake. Journal of Earth Science, 36(2): 843-846. doi: 10.1007/s12583-025-0174-9
|
Li, N., Liu, L. Q., Zhu, L. D., et al., 2024. Quaternary Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51(6): 1048-1056, 1069 (in Chinese with English abstract).
|
Li, S. L., Yue, H. F., Song, Z. L., 1986. Inferring the Tectonic Stress Field of Himalaya Arcuate Structure from the Multiple Focal Mechanisms. Chinese Journal of Geophysics, 29(4): 419-423 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.1986.04.012
|
Li, Y. S., Li, W. L., Xu, Q., et al., 2025. InSAR Co- Seismic Deformation Detection and Fault Slip Distribution Inversion of the MS6.8 Earthquake in Dingri, Tibet on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-13 (in Chinese with English abstract).
|
Liu, C., Dong, P. Y., Zhu, B. J., et al., 2018. Stress Shadow on the Southwest Portion of the Longmen Shan Fault Impacted the 2008 Wenchuan Earthquake Rupture. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. https://doi.org/10.1029/2018JB015633
|
Liu, H. S., 1985. Geodynamical Basis for Crustal Deformation under the Tibetan Plateau. Physics of the Earth and Planetary Interiors, 40(1): 43-60. https://doi.org/10.1016/0031-9201(85)90004-4
|
Liu, M., Yang, Y. Q., 2003. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling. Journal of Geophysical Research: Solid Earth, 108(B8): 2361. https://doi.org/10.1029/2002JB002248
|
Mercier, J. L., Armijo, R., Tapponnier, P., et al., 1987. Change from Late Tertiary Compression to Quaternary Extension in Southern Tibet during the India-Asia Collision. Tectonics, 6(3): 275-304. https://doi.org/10.1029/TC006i003p00275
|
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
|
Moratto, L., Saraò, A., Vuan, A., et al., 2017. The 2011 Mw 5.2 Lorca Earthquake as a Case Study to Investigate the Ground Motion Variability Related to the Source Model. Bulletin of Earthquake Engineering, 15(9): 3463-3482. https://doi.org/10.1007/s10518-017-0110-1
|
Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
|
Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1
|
Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
|
Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
|
Wang, G. C., Zhang, K. X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727 (in Chinese with English abstract).
|
Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014GC005369
|
Wang, L. J., Wu, Z. H., Wang, W., et al., 2006. Numerical Modeling of the Present Tectonic Stress Field in the Central Qinghai-Tibet Plateau. Journal of Geomechanics, 12(2): 140-149 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2006.02.005
|
Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the MS6.8 Earthquake on January 7, 2025 in Dingri(Xizang, China) Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411 (in Chinese with English abstract).
|
Wu, Z. H., Hu, D. G., Wu, Z. H., et al., 2005. Slip Rates and Driving Mechanism of Active Faults in Middle Tibetan Plateau. Acta Geosicientia Sinica, 26(2): 99-104 (in Chinese with English abstract).
|
Yang, X. Y., Zhang, J. J., Qi, G. W., et al., 2009. Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System. Science in China (Series D: Earth Sciences), 52(8): 1046-1058. https://doi.org/10.1007/s11430-009-0111-2
|
Yang, Z. G., Xu, T. R., Liang, J. H., 2024. Towards Fast Focal Mechanism Inversion of Shallow Crustal Earthquakes in the Chinese Mainland. Earthquake Research Advances, 4(2): 100273. https://doi.org/10.1016/j.eqrea.2023.100273
|
Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS6.8 Dingri, Xizang Earthquake. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0210-9
|
Yu, C., Li, Z. H., Hu, X. N., et al., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0175-8
|
Yue, H., Zhang, Y., Ge, Z. X., et al., 2020. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion. Science China Earth Sciences, 63(4): 492-511. https://doi.org/10.1007/s11430-019-9549-1.
|
Zhang, J. J., Ding, L., 2003. East-West Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Scientia Geologica Sinica, 38(2): 189-198 (in Chinese with English abstract).
|
Zhang, J. W., Li, H. A., Zhang, H. P., et al., 2020. Research Progress in Cenozoic N-S Striking Rifts in Tibetan Plateau. Advances in Earth Science, 35(8): 848-862 (in Chinese with English abstract).
|
Zhang, Y., Feng, W. P., Chen, Y. T., et al., 2012. The 2009 L'Aquila MW 6.3 Earthquake: A New Technique to Locate the Hypocentre in the Joint Inversion of Earthquake Rupture Process. Geophysical Journal International, 191(3): 1417-1426. https://doi.org/10.1111/j.1365-246X.2012.05694.x.
|
Zhao, W. H., Xu, Q., Ji, F., et al., 2025. Deformation Field Characteristics and Site Effect Analysis of the MS6.8 Dingri Earthquake in Xizang on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-12 (in Chinese with English abstract).
|
白玲, 陈治文, 王绍俊, 2025. 2025年西藏定日6.8级地震: 构造背景分析与震源特征探讨. 地球与行星物理论评(中英文), 56(3): 258-263.
|
陈鲲, 杨婷, 王永哲, 等, 2025. 2025年1月7日西藏定日6.8级地震的快速产出参数. 地震科学进展, 55(3): 164-171.
|
褚杨, 郭宜琳, 刘谭杰, 等, 2024. 藏南拆离系活动与淡色花岗岩就位: 以希夏邦马峰地区为例. 岩石学报, 40(5): 1461-1474.
|
李楠, 刘陇强, 朱利东, 等, 2024. 喜马拉雅北缘丁木错地堑第四纪软沉积物变形构造. 成都理工大学学报(自然科学版), 51(6): 1048-1056, 1069.
|
李松林, 岳华峰, 宋占龙, 1986. 由多个地震的震源机制解推断喜马拉雅弧形山系的构造应力场. 地球物理学报, 29(4): 419-423. doi: 10.3321/j.issn:0001-5733.1986.04.012
|
李雨森, 李为乐, 许强, 等, 2025. 2025年1月7日西藏定日MS6.8级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版), 1-13.
|
石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15. doi: 10.3969/j.issn.0253-4967.2025.01.001
|
田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
|
王国灿, 张克信, 曹凯, 等, 2010. 从青藏高原新生代构造隆升的时空差异性看青藏高原的扩展与高原形成过程. 地球科学, 35(5): 713-727. doi: 10.3799/dqkx.2010.086.
|
王连捷, 吴珍汉, 王薇, 等, 2006. 青藏高原中段现今构造应力场的数值模拟. 地质力学学报, 12(2): 140-149. doi: 10.3969/j.issn.1006-6616.2006.02.005
|
王楠, 李永生, 申文豪, 等, 2025.2025年1月7日西藏定日MS6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版), 50(2): 404-411.
|
吴珍汉, 胡道功, 吴中海, 等, 2005. 青藏高原中段活动断层运动速度及驱动机理. 地球学报, 26(2): 99-104. doi: 10.3321/j.issn:1006-3021.2005.02.001
|
张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义. 地质科学, 38(2): 179-189. doi: 10.3321/j.issn:0563-5020.2003.02.005
|
张佳伟, 李汉敖, 张会平, 等, 2020. 青藏高原新生代南北走向裂谷研究进展. 地球科学进展, 35(8): 848-862.
|
赵伟华, 许强, 吉锋, 等, 2025.2025年1月7日西藏定日MS6.8级地震形变场特征及场地效应分析. 成都理工大学学报(自然科学版), 1-12.
|