• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 6
    Jun.  2025
    Turn off MathJax
    Article Contents
    Liu Chen, Gong Xulong, Liang Ying, Liu Yuan, Jiang Xue, Ma Kaige, Ma Rui, 2025. Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation. Earth Science, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053
    Citation: Liu Chen, Gong Xulong, Liang Ying, Liu Yuan, Jiang Xue, Ma Kaige, Ma Rui, 2025. Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation. Earth Science, 50(6): 2400-2415. doi: 10.3799/dqkx.2025.053

    Characteristics of Seasonal Changes in Organic Matter of Groundwater in Binhai, Jiangsu Province and Its Impact on Nitrogen Transport and Transformation

    doi: 10.3799/dqkx.2025.053
    • Received Date: 2024-12-24
    • Publish Date: 2025-06-25
    • Dissolved organic matter (DOM) plays a vital role in the carbon cycling process of coastal wetlands. Seasonal changes in hydrological process in the coastal area will affect DOM composition, thus controlling nitrogen transport and transformation pathways. In this study, the coastal area of Lianyungang, Jiangsu Province, was selected as the study area to investigate the seasonal characteristics of DOM and its impacts on nitrogen transformations based on the hydrochemical data of groundwater, river water, and seawater, combined with three-dimensional fluorescence spectroscopy and UV-visible spectroscopy. The results show that DOM in coastal area includes three components, terrestrial source-like fulvic acid (C1), terrestrial source-like humic acid (C2) and microbial source-like protein fraction (C3). In the study area, the NH4-N and DOC concentrations gradually increased with closer proximity to the coast, the N concentration is associated to the DOM component characteristics. During the wet season, the groundwater was recharged by rainfall and river water, with exogenous macromolecules DOM infiltrated accompanied by NH4-N into groundwater. The aquifer is in biased reducing condition, and the nitrification process is inhibited. During the dry season, the interaction between salty and fresh water was weak, at when the higher C3 component in the groundwater. Meanwhile, the aquifer is in more oxidizing environment, promoting nitrification. In the intertidal groundwaters, the DOM is characterized by higher degree of humification, the abundance of NH4-N and DOC suggests the mineralization of N contained soil organic matter. Also, a longer retention time of water as well as a strong microbial activity is likely to promote the dissimilatory nitrate reduction to ammonium (DNRA) and lead to further accumulation of NH4-N.

       

    • loading
    • Barnes, R. T., Sawyer, A. H., Tight, D. M., et al., 2019. Hydrogeologic Controls of Surface Water⁃Groundwater Nitrogen Dynamics within a Tidal Freshwater Zone. Journal of Geophysical Research: Biogeosciences, 124(11): 3343-3355. https://doi.org/10.1029/2019jg005164
      Bernhardt, E. S., Likens, G. E., 2002. Dissolved Organic Carbon Enrichment Alters Nitrogen Dynamics in a Forest Stream. Ecology, 83(6): 1689-1700. https://doi.org/10.1890/0012⁃9658(2002)083[1689:docean]2.0.CO;2
      Chen, M. L., Maie, N., Parish, K., et al., 2013. Spatial and Temporal Variability of Dissolved Organic Matter Quantity and Composition in an Oligotrophic Subtropical Coastal Wetland. Biogeochemistry, 115(1): 167-183. https://doi.org/10.1007/s10533⁃013⁃9826⁃4
      Derrien, M., Yang, L. Y., Hur, J., 2017. Lipid Biomarkers and Spectroscopic Indices for Identifying Organic Matter Sources in Aquatic Environments: A Review. Water Research, 112: 58z71. https://doi.org/10.1016/j.watres.2017.01.023
      Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial⁃Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      Fellman, J. B., Hood, E., Edwards, R. T., et al., 2009. Changes in the Concentration, Biodegradability, and Fluorescent Properties of Dissolved Organic Matter during Stormflows in Coastal Temperate Watersheds. Journal of Geophysical Research: Biogeosciences, 114(G1). https://doi.org/10.1029/2008jg000790
      Fellman, J. B., Hood, E., Spencer, R. G. M., 2010. Fluorescence Spectroscopy Opens New Windows into Dissolved Organic Matter Dynamics in Freshwater Ecosystems: A Review. Limnology and Oceanography, 55(6): 2452-2462. https://doi.org/10.4319/lo.2010.55.6.2452
      Gao, Z. P., Weng, H. C., Guo, H. M., 2021. Unraveling Influences of Nitrogen Cycling on Arsenic Enrichment in Groundwater from the Hetao Basin Using Geochemical and Multi⁃Isotopic Approaches. Journal of Hydrology, 595: 125981. https://doi.org/10.1016/j.jhydrol.2021.125981
      Han, Q., Chen, D. Y., Guo, Y. K., et al., 2018. Saltwater⁃Freshwater Mixing Fluctuation in Shallow Beach Aquifers. Estuarine, Coastal and Shelf Science, 207: 93-103. https://doi.org/10.1016/j.ecss.2018.03.027
      He, D. M., Wang, L. F., Zhu, Y. Y., et al., 2020. Distribution and Seasonal Dynamics of Soil Dissolved Organic Carbon in Coastal Wetlands of Jiangsu Province. Journal of Jiangsu Forestry Science & Technology, 47(3): 11-15(in Chinese with English abstract).
      Huguet, A., Vacher, L., Relexans, S., et al., 2009. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Organic Geochemistry, 40(6): 706-719. https://doi.org/10.1016/j.orggeochem.2009.03.002
      Ishii, S. K. L., Boyer, T. H., 2012. Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environmental Science & Technology, 46(4): 2006-2017. https://doi.org/10.1021/es2043504
      Jiao, J. J., Wang, Y., Cherry, J. A., et al., 2010. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer⁃Aquitard System in the Pearl River Delta, China. Environmental Science & Technology, 44(19): 7470-7475. https://doi.org/10.1021/es1021697
      Kim, M. J., Nriagu, J., Haack, S., 2000. Carbonate Ions and Arsenic Dissolution by Groundwater. Environmental Science & Technology, 34(15): 3094-3100. https://doi.org/10.1021/es990949p
      Lafrenière, M., Lamoureux, S., 2008. Seasonal Dynamics of Dissolved Nitrogen Exports from Two High Arctic Watersheds, Melville Island, Canada. Hydrology Research, 39(4): 323-335. https://doi.org/10.2166/nh.2008.008
      Lapworth, D. J., Gooddy, D. C., Butcher, A. S., et al., 2008. Tracing Groundwater Flow and Sources of Organic Carbon in Sandstone Aquifers Using Fluorescence Properties of Dissolved Organic Matter (DOM). Applied Geochemistry, 23(12): 3384-3390. https://doi.org/10.1016/j.apgeochem.2008.07.011
      Liang, Y., Ma, R., Prommer, H., et al., 2024. Unravelling Coupled Hydrological and Geochemical Controls on Long⁃Term Nitrogen Enrichment in a Large River Basin. Environmental Science & Technology, 58(48): 21315-21326. https://doi.org/10.1021/acs.est.4c05015
      Liang, Y., Ma, R., Wang, Y. X., et al., 2020. Hydrogeological Controls on Ammonium Enrichment in Shallow Groundwater in the Central Yangtze River Basin. Science of the Total Environment, 741: 140350. https://doi.org/10.1016/j.scitotenv.2020.140350
      Lun, J. Q., Zhou, W. X., Sun, M. Y., et al., 2024. Meta-Analysis: Global Patterns and Drivers of Denitrification, Anammox and DNRA Rates in Wetland and Marine Ecosystems. Science of the Total Environment, 954: 176694. https://doi.org/10.1016/j.scitotenv.2024.176694
      Mao, L. F., Fu, S., Liu, H., et al., 2023. Analysis of Recharge Source of Karst Spring Water Based on Stable Hydrogen and Oxygen Isotopes. Earth Science, 48(9): 3480-3493(in Chinese with English abstract).
      McKnight, D. M., Boyer, E. W., Westerhoff, P. K., et al., 2001. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnology and Oceanography, 46(1): 38-48. https://doi.org/10.4319/lo.2001.46.1.0038
      Porubsky, W. P., Weston, N. B., Joye, S. B., 2009. Benthic Metabolism and the Fate of Dissolved Inorganic Nitrogen in Intertidal Sediments. Estuarine, Coastal and Shelf Science, 83(4): 392-402. https://doi.org/10.1016/j.ecss.2009.04.012
      Rysgaard, S., Thastum, P., Dalsgaard, T., et al., 1999. Effects of Salinity on NH4+ Adsorption Capacity, Nitrification, and Denitrification in Danish Estuarine Sediments. Estuaries, 22(1): 21-30. https://doi.org/10.2307/1352923
      Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684 (in Chinese with English abstract).
      Singh, S., Dash, P., Silwal, S., et al., 2017. Influence of Land Use and Land Cover on the Spatial Variability of Dissolved Organic Matter in Multiple Aquatic Environments. Environmental Science and Pollution Research, 24(16): 14124-14141. https://doi.org/10.1007/s11356⁃017⁃8917⁃5
      Smith, M. A., Kominoski, J. S., Gaiser, E. E., et al., 2021. Stormwater Runoff and Tidal Flooding Transform Dissolved Organic Matter Composition and Increase Bioavailability in Urban Coastal Ecosystems. Journal of Geophysical Research: Biogeosciences, 126(7): e2020JG006146. https://doi.org/10.1029/2020jg006146
      Smith, M. A., Kominoski, J. S., Price, R. M., et al., 2023. Linking Seasonal Changes in Organic Matter Composition and Nutrients to Shifting Hydraulic Gradients in Coastal Urban Canals. Water Resources Research, 59(2): e2022WR033334. https://doi.org/10.1029/2022WR033334
      Stedmon, C. A., Markager, S., 2005a. Resolving the Variability in Dissolved Organic Matter Fluorescence in a Temperate Estuary and Its Catchment Using PARAFAC Analysis. Limnology and Oceanography, 50(2): 686-697. https://doi.org/10.4319/lo.2005.50.2.0686
      Stedmon, C. A., Markager, S., 2005b. Tracing the Production and Degradation of Autochthonous Fractions of Dissolved Organic Matter by Fluorescence Analysis. Limnology and Oceanography, 50(5): 1415-1426. https://doi.org/10.4319/lo.2005.50.5.1415
      Stedmon, C. A., Seredyńska⁃Sobecka, B., Boe⁃Hansen, R., et al., 2011. A Potential Approach for Monitoring Drinking Water Quality from Groundwater Systems Using Organic Matter Fluorescence as an Early Warning for Contamination Events. Water Research, 45(18): 6030-6038. https://doi.org/10.1016/j.watres.2011.08.066
      Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6part2): 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298
      van den Berg, E. M., Boleij, M., Kuenen, J. G., et al., 2016. DNRA and Denitrification Coexist over a Broad Range of Acetate/N⁃NO3- Ratios, in a Chemostat Enrichment Culture. Frontiers in Microbiology, 7: 1842. https://doi.org/10.3389/fmicb.2016.01842
      van den Berg, E. M., van Dongen, U., Abbas, B., et al., 2015. Enrichment of DNRA Bacteria in a Continuous Culture. The ISME Journal, 9(10): 2153-2161. https://doi.org/10.1038/ismej.2015.26
      Wang, S. Y., Pi, Y. X., Song, Y. P., et al., 2020. Hotspot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) Process in Freshwater Sediments of Riparian Zones. Water Research, 173: 115539. https://doi.org/10.1016/j.watres.2020.115539
      Wang, Y. X., Gan, Y. Q., Deng, Y. M., et al., 2020. Land⁃Ocean Interactions and Their Eco⁃Environmental Effects in the Coastal Zone: Current Progress and Future Perspectives. Bulletin of Geological Science and Technology, 39(1): 1-10(in Chinese with English abstract).
      Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., et al., 2003. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environmental Science & Technology, 37(20): 4702-4708. https://doi.org/10.1021/es030360x
      Xiao, Y. H., Sara⁃Aho, T., Hartikainen, H., et al., 2013. Contribution of Ferric Iron to Light Absorption by Chromophoric Dissolved Organic Matter. Limnology and Oceanography, 58(2): 653-662. https://doi.org/10.4319/lo.2013.58.2.0653
      Xu, J., Liang, Y., Zhang, Z. C., et al., 2023. Effects of Seasonal Variation in Organic Matter in Groundwater on Reactive Nitrogen Transport in the Jianghan Plain. Bulletin of Geological Science and Technology, 42(4): 228-240, 298 (in Chinese with English abstract).
      Yamashita, Y., Jaffé, R., Maie, N., et al., 2008. Assessing the Dynamics of Dissolved Organic Matter (DOM) in Coastal Environments by Excitation Emission Matrix Fluorescence and Parallel Factor Analysis (EEM⁃PARAFAC). Limnology and Oceanography, 53(5): 1900-1908. https://doi.org/10.4319/lo.2008.53.5.1900
      Zhang, L., Wang, S. R., Wu, Z. H., 2014. Coupling Effect of pH and Dissolved Oxygen in Water Column on Nitrogen Release at Water: Sediment Interface of Erhai Lake, China. Estuarine, Coastal and Shelf Science, 149: 178-186. https://doi.org/10.1016/j.ecss.2014.08.009
      Zhang, X. H., Cao, F., Huang, Y., et al., 2022. Variability of Dissolved Organic Matter in Two Coastal Wetlands along the Changjiang River Estuary: Responses to Tidal Cycles, Seasons, and Degradation Processes. Science of the Total Environment, 807: 150993. https://doi.org/10.1016/j.scitotenv.2021.150993
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2024. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai⁃Xizang Plateau. Earth Science, 49(3): 1177-1188(in Chinese with English abstract).
      Zsolnay, A., Baigar, E., Jimenez, M., et al., 1999. Differentiating with Fluorescence Spectroscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying. Chemosphere, 38(1): 45-50. https://doi.org/10.1016/s0045⁃6535(98)00166⁃0
      何冬梅, 王琳飞, 祝亚云, 等, 2020. 江苏滨海湿地土壤可溶性有机碳的分布和季节动态. 江苏林业科技, 47(3): 11-15.
      毛龙富, 付舒, 刘宏, 等, 2023. 基于氢氧稳定同位素的喀斯特泉水补给来源分析. 地球科学, 48(9): 3480-3493. doi: 10.3799/dqkx.2021.149
      沈帅, 马腾, 杜尧, 等, 2017. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律. 地球科学, 42(5): 674-684. doi: 10.3799/dqkx.2017.055
      王焰新, 甘义群, 邓娅敏, 等, 2020. 海岸带海陆交互作用过程及其生态环境效应研究进展. 地质科技通报, 39(1): 1-10.
      许洁, 梁莹, 张振超, 等, 2023. 江汉平原地下水中有机质季节变化对氮反应迁移的影响. 地质科技通报, 42(4): 228-240, 298.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流的溶解性碳输出特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(11)  / Tables(1)

      Article views (268) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return