• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Hu Guiming, Xu Yueren, Liu Han, Yuan Ruimin, Lu Lingyu, 2025. Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones. Earth Science, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055
    Citation: Hu Guiming, Xu Yueren, Liu Han, Yuan Ruimin, Lu Lingyu, 2025. Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones. Earth Science, 50(5): 1794-1812. doi: 10.3799/dqkx.2025.055

    Estimation of the Maximum Magnitude of Normal Faults and Seismic Risk in the Southern Tibetan Rift Zones

    doi: 10.3799/dqkx.2025.055
    • Received Date: 2025-02-25
    • Publish Date: 2025-05-25
    • In the southern Tibetan rift zones, there are several approximately north-south trending rifts distributed from west to east. As important tectonic extensional zones within the blocks, these rifts have developed a series of normal faults and experienced multiple strong earthquakes. Since the Late Quaternary, this region has exhibited intense tectonic activity with frequent earthquakes causing serious disasters. For instance, the January 7, 2025 Mw7.1 (CENC: Ms6.9) Tingri earthquake demonstrated the characteristics of "small earthquake with major disaster consequences". To assess the seismogenic potential of normal faults within the rift zones and understand their disaster-inducing competence, this study divides 92 normal fault zones based on geometric characteristics and statistically analyzed fault trace lengths. Under the assumption of full-length surface rupture along fault traces during earthquakes, combined with empirical relationships between normal fault rupture length and moment magnitude, we estimated the maximum potential magnitudes of normal faults in the rift zones. Results indicate that these normal faults have upper seismogenic limits ranging from Mw6.5 to Mw7.5, with numerous historical seismic gaps. While generally demonstrating strong seismogenic competence, they exhibit an eastward-increasing strength pattern. Bounded by major fault zones to the north and south, and considering multiple historical seismic gaps along the southern magethrust (particularly in the context of accelerated Coulomb stress loading following the 2015 Nepal Mw7.8 earthquake and potential interaction/triggering effects between major boundary faults), the normal faults south of Yarlung Tsangpo River, especially those in the Tingri-Nyalam and Xiongqu fault, show high potential for future strong earthquakes.

       

    • loading
    • Ader, T., Avouac, J. P., Jing, L. Z., et al., 2012. Convergence Rate across the Nepal Himalaya and Interseismic Coupling on the Main Himalayan Thrust: Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 117(B4): B04403. https://doi.org/10.1029/2011JB009071
      Anderson, H., Jackson, J., 1987. Active Tectonics of the Adriatic Region. Geophysical Journal of the Royal Astronomical Society, 91(3): 937-983. https://doi.org/10.1111/j.1365-246X.1987.tb01675.x
      Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
      Bilham, R., 2019. Himalayan Earthquakes: A Review of Historical Seismicity and Early 21st Century Slip Potential, Himalayan Tectonics: A Modern Synthesis. Geological Society, London, 483.
      Bollinger, L., Tapponnier, P., Sapkota, S., 2015. Balance and Deficit of Seismic Slip in Central Nepal: Implication for a Repeat of the 1344 Earthquake in Nepal. Journal of Nepal Geology Society, 48: 25.
      Chen, H., Qu, C. Y., Zhao, D. Z., et al., 2024. Large-Scale Extensional Strain in Southern Tibet from Sentinel-1 InSAR and GNSS Data. Geophysical Research Letters, 51(19): e2024GL110512. https://doi.org/10.1029/2024GL110512
      Chen, J., Chen, Y. K., Ding, G. Y., et al., 2003. Surface Rupture Zones of the 2001 Earthquake Ms 8.1 West of Kunlun Pass, Northern Qinqhai-Xizang Plateau. Quaternary Sciences, 23(6): 629-639, 717-718 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2003.06.006
      Chen, Q. Z., Freymueller, J. T., Wang, Q., et al., 2004. A Deforming Block Model for the Present-Day Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 109(B1): 97. https://doi.org/10.1029/2002JB002151
      Cheng, J., Xu, C., Ma, J., et al., 2023. From Active Fault Segmentation to Risks of Earthquake Hazards and Property and Life Losses—A Case Study from the Xianshuihe-Xiaojiang Fault Zone. Science China Earth Sciences, 66(6): 1345-1364. https://doi.org/10.1007/s11430-022-1076-y
      Deng, Q. D., Gao, X., Chen, G. H., et al., 2010. Recent Tectonic Activity of Bayankala Fault-Block and the Kunlun-Wenchuan Earthquake Series of the Tibetan Plateau. Earth Science Frontiers, 17(5): 163-178 (in Chinese with English abstract).
      DePolo, C. M., Clark, D. G., Slemmons, D. B., et al., 1991. Historical Surface Faulting in the Basin and Range Province, Western North America: Implications for Fault Segmentation. Journal of Structural Geology, 13(2): 123-136. https://doi.org/10.1016/0191-8141(91)90061-m
      Di Giacomo, D., 2020. ISC-GEM Solution for the Haiyuan Earthquake of 16 December 1920. ISC Seismological Dataset Repository, Edinburgh.
      Doser, D. I., Smith, R. B., 1989. An Assessment of Source Parameters of Earthquakes in the Cordillera of the Western United States. Bulletin of the Seismological Society of America, 79: 1383-1409.
      Eaton, G. P., 1982. The Basin and Range Province: Origin and Tectonic Significance. Annual Review of Earth and Planetary Sciences, 10(1): 409. https://doi.org/10.1146/annurev.ea.10.050182.002205
      Elliott, J. L., Grapenthin, R., Parameswaran, R. M., et al., 2022. Cascading Rupture of a Megathrust. Science Advances, 8(18): eabm4131. https://doi.org/10.1126/sciadv.abm4131
      Elliott, J. R., Walters, R. J., England, P. C., et al., 2010. Extension on the Tibetan Plateau: Recent Normal Faulting Measured by InSAR and Body Wave Seismology. Geophysical Journal International, 183(2): 503-535. doi: 10.1111/j.1365-246X.2010.04754.x
      Feng, X., Ma, J., Zhou, Y., et al., 2020. Geomorphology and Paleoseismology of the Weinan Fault, Shaanxi, Central China, and the Source of the 1556 Huaxian Earthquake. Journal of Geophysical Research: Solid Earth, 125(12): e2019JB017848. https://doi.org/10.1029/2019JB017848
      Gao, Y., Li, M., Wu, Z. H., et al., 2024. Late Quaternary Normal Faulting along the Western Boundary Fault of Peiku Co Graben in Southern Nyalam-Coqen Rift: Implications for Extensional Deformation in Southern Tibet and Seismic Hazard. Journal of Structural Geology, 181: 105087. https://doi.org/10.1016/j.jsg.2024.105087
      Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569 (in Chinese with English abstract).
      Glasgow, M. E., Schmandt, B., Bilek, S. L., 2023. Cascading Multi-Segment Rupture in an Injection-Induced Earthquake Sequence with a Mw 5.3 Mainshock. Earth and Planetary Science Letters, 620: 118335. https://doi.org/10.1016/j.epsl.2023.118335
      Ha, G. H., Wu, Z. H., Gai, H. L., et al., 2019a. New Discovery of Surface Rupture of Large Paleo-Earthquake along Northern Pagri-Duoqing Co Graben, Southern Yadong-Gulu Rift. Acta Geologica Sinica-English Edition, 93(4): 1135-1136. https://doi.org/10.1111/1755-6724.13829
      Ha, G. H., Wu, Z. H., Liu, F., 2019b. Late Quaternary Vertical Slip Rates along the Southern Yadong-Gulu Rift, Southern Tibetan Plateau. Tectonophysics, 755: 75-90. https://doi.org/10.1016/j.tecto.2019.02.014
      Hou, J. J., Han, M. K., Chai, B. L., et al., 1998. Geomorphological Observations of Active Faults in the Epicentral Region of the Huaxian Large Earthquake in 1556 in Shaanxi Province, China. Journal of Structural Geology, 20(5): 549-557. https://doi.org/10.1016/S0191-8141(97)00112-0
      Hough, S. E., Hutton, K., 2008. Revisiting the 1872 Owens Valley, California, Earthquake. Bulletin of the Seismological Society of America, 98(2): 931-949. https://doi.org/10.1785/0120070186
      Hu, Y., Han, S., Wu, Z. H., et al., 2024. Major Active Faults and Recent Coseismic Surface Rupture Characteristics of the Horba-Tsam Tso Rift in Southern Tibet. Progress in Earthquake Sciences, 54(10): 649-660 (in Chinese with English abstract).
      Huang, T., Wu, Z. H., Han, S., et al., 2024. The Basic Characteristics of Active Faults in the Region of Xigaze, Xizang and the Assessment of Potential Earthquake Disaster Risks. Progress in Earthquake Sciences, 54(10): 696-711 (in Chinese with English abstract).
      Institute of Geology, National Seismological Administration, 1992. Active Faults in the Central Tibet. Seismological Press, Beijing (in Chinese with English abstract).
      Jackson, J., 1994. Active Tectonics of the Aegean Region. Annual Review of Earth and Planetary Sciences, 22: 239-271. https://doi.org/10.1146/annurev.ea.22.050194.001323
      Li, Y. B., Ran, Y. K., Wang, H., et al., 2016. Paleoseismic Records of Large Earthquakes on the Cross-Basin Fault in the Salt Lake Pull-apart Basin and Cascade Rupture Events on the Haiyuan Fault. Seismology and Geology, 38(4): 830-843 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2016.04.003
      Li, Y. C., Shan, X. J., Qu, C. Y., et al., 2025. Slip Deficit Rate and Seismic Potential on Crustal Faults in Tibet. Geophysical Research Letters, 52(1): e2024GL112122. https://doi.org/10.1029/2024GL112122
      Liang P., Xu, Y., Zhou, X., et al., 2025. Coseismic Surface Ruptures of MW7.8 and MW7.5 Earthquakes Occurred on February 6, 2023, and Seismic Hazard Assessment of the East Anatolian Fault Zone, Southeastern Türkiye. Scientia Sinica (Terrae), 55(2): 626-641 (in Chinese with English abstract).
      Liu, J., Ji, C., Zhang, J. Y., et al., 2015. Tectonic Setting and General Features of Coseismic Rupture of the 25 April, 2015 MW7.8 Gorkha, Nepal Earthquake. Chinese Science Bulletin, 60(27): 2640-2655 (in Chinese with English abstract). doi: 10.1360/N972015-00559
      Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).
      Liu, L., Shao, Y. X., Wang, W., et al., 2022. Study on the Tectonic Geomorphology and Fault Activity Characteristics of the Zhongba Rift, Southern Tibet. Earth Science, 47(8): 3029-3044 (in Chinese with English abstract).
      Liu-Zeng, J., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research: Solid Earth, 120(12): 8304-8333. https://doi.org/10.1002/2015JB012163
      Liu-Zeng, J., Zhang, Z., Rollins, C., et al., 2020. Postseismic Deformation Following the 2015 MW7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation. Journal of Geophysical Research: Solid Earth, 125(9): e2020JB019852. https://doi.org/10.1029/2020JB019852
      Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93RG02030
      Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
      Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019244. https://doi.org/10.1029/2019JB019244
      Ren, C. M., Wang, Z. X., Taymaz, T., et al., 2024. Supershear Triggering and Cascading Fault Ruptures of the 2023 Kahramanmaraş, Türkiye, Earthquake Doublet. Science, 383(6680): 305-311. https://doi.org/10.1126/science.adi1519
      Rodriguez Padilla, A. M., Oskin, M. E., Brodsky, E. E., et al., 2024. The Influence of Fault Geometrical Complexity on Surface Rupture Length. Geophysical Research Letters, 51(20): e2024GL109957. https://doi.org/10.1029/2024GL109957
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Science and Technology Commission of the Tibet Autonomous Region, 1982. Compilation of Historical Materials of Earthquakes in Tibet. Tibet People's Publishing House, Tibet (in Chinese).
      Shao, Y. X., Wang, A. S., Liu, J., et al. 2025. Preliminary Results of Surface Rupture Characteristics and Field Coseismic Displacement Measurement of the Dingri Earthquake in Tibet on January 7, 2025. Earth Science, 50(5): 1677-1695 (in Chinese with English abstract).
      Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese) doi: 10.3969/j.issn.0253-4967.2025.01.001
      Srivastava, H. N., Verma, M., Bansal, B. K., et al., 2013. Discriminatory Characteristics of Seismic Gaps in Himalaya. Geomatics, Natural Hazards and Risk, 6(3): 224-242. https://doi.org/10.1080/19475705.2013.839483
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Wan, Y. G., Sheng, S. Z., Li, X., et al., 2015. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland. Chinese Journal of Geophysics, 58(11): 4277-4286 (in Chinese with English abstract). doi: 10.6038/cjg20151132
      Wang, H., Wright, T. J., Jing, L. Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019GL081916
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wu, Z. H., 2024. The MW≥6.5 Strong Earthquake Events since 1990 around the Tibetan Plateau and Control-Earthquake Effect of Active Tectonic System. Progress in Earthquake Sciences, 54(1): 10-24 (in Chinese with English abstract).
      Wu, Z. H., Ha, G., Wang, H., et al., 2019. Abnormal Disappearance of Duoqing Co Lake between November 2015 and April 2016, Due to Far-Field Aseismic Creeping of the Southern Yadong-Gulu Rift of Tibet, Triggered by the 2015 MS8.1 Nepal Earthquake. International Geology Review, 61(18): 2313-2327. https://doi.org/10.1080/00206814.2019.1594410
      Wu, Z. H., Ye, P. S., Barosh, P. J., et al., 2011. The October 6, 2008 MW6.3 Magnitude Damxung Earthquake, Yadong-Gulu Rift, Tibet, and Implications for Present-Day Crustal Deformation within Tibet. Journal of Asian Earth Sciences, 40(4): 943-957. https://doi.org/10.1016/j.jseaes.2010.05.003
      Wu, Z. H., Zhang, Y. S., Hu, D. G., et al., 2008. Quaternary Normal Faulting and Its Dynamic Mechanism of the Cona-Nariyong Co Graben in South-Eastern Tibet. Quaternary Sciences, 28(2): 232-242 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2008.02.005
      Wu, Z. H., Zhao, G. M., Liu, J., 2016. Tectonic Genesis of the 2015 Ms8.1 Nepal Great Earthquake and Its Influence on Future Strong Earthquake Tendency of Tibetan Plateau and Its Adjacent Region. Acta Geologica Sinica, 90(6): 1062-1085 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2016.06.002
      Wu, Z. H., Zhao, G. M., Long, C. X., et al., 2014. The Seismic Hazard Assessment around South-East Area of Qinghai-Xizang Plateau: A Preliminary Results from Active Tectonics System Analysis. Acta Geologica Sinica, 88(8): 1401-1416 (in Chinese with English abstract).
      Wu, Z. M., Shentu, B. M., Cao, Z. Q., et al., 1990. The Surface Ruptures of Danxung (Tibet) Earthquake (M=8) in 1411. Seismology and Geology, 12(2): 98-108, 193-194.
      Xiong, W., Tan, K., Liu, G., et al., 2015. Effects of the 2015-2015 Mw7.9 Earthquake in Nepal on Co-Seismic and Post-Earthquake Stress of Active Faults on the Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 58(11): 4305-4316 (in Chinese with English abstract).
      Xu, J., Li, H. Y., Shao, Z. G., et al., 2016. Effects of the 2015 Nepal MS8.1 Earthquake on China's Mainland Based on Coulomb Stress Changes. Earthquake, 36(1): 69-77 (in Chinese with English abstract).
      Xu, X. W., Deng, Q. D., 1988. The Basin-Range Structure in the Tensile Area at the Northern Part of Shanxi Province and Its Mechanism of Formation. Earthquake Research in China, 4(2): 19-27 (in Chinese with English abstract).
      Xu, X. W., Li, F., Cheng, J., et al., 2023. Advances in Research on Active Faults and Exploration of Relevant Frontier Scientific Problems. Coal Geology & Exploration, 51(12): 1-16 (in Chinese with English abstract).
      Xu, X. Y., 2019. Late Quaternary Activity and Its Environmental Effects of the N-S Trend Kharta Fault in Xainza-Dinggye Rift, Southern Tibet (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese).
      Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research: Solid Earth, 123(4): 3098-3121. https://doi.org/10.1002/2017JB014928
      Xu, Y., Zhang, Y., 2023. Analysis of the Reasons Why Surface Wave Magnitude is Higher than Moment Magnitude in the Mainland of China from the Perspective of Source Rupture Parameters. Acta Scientiarum Naturalium Universitatis Pekinensis, 59(3): 407-414 (in Chinese with English abstract).
      Yang, P. X., Chen, Z. W., Zhang, J., et al., 2010. Structure and Activity between Cuoga Co and Nala Co of the Gyaring Co Fault Belt in Centeral Tibet Plateau. Quaternary Sciences, 30(5): 1012-1019 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2010.05.19
      Zhang, P. Z., Wang, W. T., Gan, W. J., et al., 2022. Present-Day Deformation and Geodynamic Processes of the Tibetan Plateau. Acta Geologica Sinica, 96(10): 3297-3313 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.10.003
      Zhang, P. Z., Slemmons, D. B., Mao, F. Y., 1991. Geometric Pattern, Rupture Termination and Fault Segmentation of the Dixie Valley—Pleasant Valley Active Normal Fault System, Nevada, U.S.A.. Journal of Structural Geology, 13(2): 165-176. https://doi.org/10.1016/0191-8141(91)90064-P
      Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017JB014465
      Zuo, J. M., Wu, Z. H., Gai, H. L., et al., 2020. The Latest Prehistoric Earthquake Relics and Its Age Evidence in Chongba Yumtso Fault Section of Duoqing Co Graben, Southern Tibet. Quaternary Sciences, 40(5): 1323-1333 (in Chinese with English abstract).
      Zuo, J. M., Wu, Z. H., Ha, G. H., et al., 2021. Spatial Variation of nearly NS-Trending Normal Faulting in the Southern Yadong-Gulu Rift, Tibet: New Constraints from the Chongba Yumtso Fault, Duoqing Co Graben. Journal of Structural Geology, 144: 104256. https://doi.org/10.1016/j.jsg.2020.104256
      陈杰, 陈宇坤, 丁国瑜, 等, 2003.2001年昆仑山口西8.1级地震地表破裂带. 第四纪研究, 23(6): 629-639, 717-718.
      邓起东, 高翔, 陈桂华, 等, 2010. 青藏高原昆仑‒汶川地震系列与巴颜喀喇断块的最新活动. 地学前缘, 17(5): 163-178.
      高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木‒措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569. doi: 10.3799/dqkx.2023.009
      胡渊, 韩帅, 吴中海, 等, 2024. 藏南霍尔巴: 仓木错裂谷的主要活动断层与最新地震地表破裂特征. 地震科学进展, 54(10): 649-660.
      黄婷, 吴中海, 韩帅, 等, 2024. 西藏日喀则地区的活断层基本特征及地震灾害潜在风险评估. 地震科学进展, 54(10): 696-711.
      国家地震局地质研究所, 1992. 西藏中部活动断层. 北京: 地震出版社.
      李彦宝, 冉勇康, 王虎, 等, 2016. 干盐池拉分盆地盆内新生断层大地震记录与海原断裂带级联破裂地震事件. 地震地质, 38(4): 830-843.
      梁朋, 徐岳仁, 周晓成, 等, 2025.2023年2月6日土耳其MW7.8和MW7.5双强震地表破裂与东安纳托利亚断裂带强震危险性. 中国科学: 地球科学, 55(2): 626-641.
      刘静, 纪晨, 张金玉, 等, 2015.2015年4月25日尼泊尔Mw7.8级地震的孕震构造背景和特征. 科学通报, 60(27): 2640-2655.
      刘静, 徐晶, 偶奇, 等, 2023. 关于1920年海原大地震震级高估的讨论. 地震学报, 45(4): 579-596.
      刘璐, 邵延秀, 王伟, 等, 2022. 藏南仲巴裂谷带地貌和断裂活动特征研究. 地球科学, 47(8): 3029-3044. doi: 10.3799/dqkx.2022.086
      西藏自治区科学技术委员会, 1982. 西藏地震史料汇编. 拉萨: 西藏人民出版社.
      邵延秀, 王爱生, 刘静, 等, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695.
      石峰, 梁明剑, 罗全星, 等, 2025.2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      万永革, 盛书中, 李祥, 等, 2015.2015年尼泊尔强震序列对中国大陆的应力影响. 地球物理学报, 58(11): 4277-4286.
      吴中海, 2024. 青藏高原1990年以来的MW≥6.5强震事件及活动构造体系控震效应. 地震科学进展, 54(1): 10-24.
      吴中海, 张永双, 胡道功, 等, 2008. 西藏错那‒拿日雍错地堑的第四纪正断层作用及其形成机制探讨. 第四纪研究, 28(2): 232-242.
      吴中海, 赵根模, 刘杰, 2016.2015年尼泊尔MS8.1地震构造成因及对青藏高原及邻区未来强震趋势的影响. 地质学报, 90(6): 1062-1085.
      吴中海, 赵根模, 龙长兴, 等, 2014. 青藏高原东南缘现今大震活动特征及其趋势: 活动构造体系角度的初步分析结果. 地质学报, 88(8) : 1401-1416.
      熊维, 谭凯, 刘刚, 等, 2015. 2015年尼泊尔MW7.9地震对青藏高原活动断裂同震、震后应力影响. 地球物理学报, 58(11): 4305-4316.
      徐晶, 李海艳, 邵志刚, 等, 2016. 基于库仑应力变化分析2015年尼泊尔MS8.1地震对中国大陆的影响. 地震, 36(1): 69-77.
      徐心悦, 2019. 藏南申扎—定结断裂系卡达正断裂晚第四纪活动性及其环境效应(硕士学位论文). 北京: 中国地震局地质研究所.
      徐锡伟, 邓起东, 1988. 晋北张性区盆岭构造及其形成的力学机制. 中国地震, 4(2): 19-27.
      徐锡伟, 李峰, 程佳, 等, 2023. 活动断层研究进展及其科学前沿问题讨论. 煤田地质与勘探, 51(12): 1-166.
      许月怡, 张勇, 2023. 从震源破裂过程角度分析中国大陆强震面波震级高于矩震级的原因. 北京大学学报(自然科学版), 59(3): 407-414.
      杨攀新, 陈正位, 张俊, 等, 2010. 西藏中部格仁错断裂带错嘎错‒那拉错段细结构及活动性. 第四纪研究, 30(5): 1012-1019.
      张培震, 王伟涛, 甘卫军, 等, 2022. 青藏高原的现今构造变形与地球动力过程. 地质学报, 96(10): 3297-3313.
      左嘉梦, 吴中海, 盖海龙, 等, 2020. 藏南多庆错地堑冲巴雍错段最新史前大地震遗迹及其年龄证据. 第四纪研究, 40(5): 1323-1333.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(2)

      Article views (177) PDF downloads(38) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return