Citation: | Li Yabo, Hu Xinli, Xu Chu, Zhang Haiyan, Liu Xinyu, 2025. Study on the Reinforcement Effect for Anti-Slide Piles of the Multi-Sliding Zones Landslide Based on Soil Arching Effect. Earth Science, 50(8): 3153-3166. doi: 10.3799/dqkx.2025.056 |
Ashour, M., Ardalan, H., 2011. Analysis of Pile Stabilized Slopes Based on Soil-Pile Interaction. Computers and Geotechnics, 39: 85-97. https://doi.org/10.1016/j.compgeo.2011.09.001
|
Bao, N., Chen, J. F., Wang, G. H., et al., 2024. Analytical Prediction of Displacement-Dependent Lateral Earth Pressure against Stabilizing Piles in Sandy Slopes Considering Arching Effect. Computers and Geotechnics, 176: 106776. https://doi.org/10.1016/j.compgeo.2024.106776
|
Chen, C., Wang, W., Lu, H. Y., 2019. Stability Analysis of Slope Reinforced with Composite Anti-Slide Pile Model. Rock and Soil Mechanics, 40(8): 3207-3217 (in Chinese with English abstract).
|
Chen, L., Zeng, W. Q., Wang, X. B., et al., 2024. A Three-Dimensional DEM Method for Trajectory Simulations of Rockfall under Irregular-Shaped Slope Surface and Rock Blocks. Journal of Earth Science, 35(1): 306-312. https://doi.org/10.1007/s12583-023-1959-3
|
Ding, H., Xue, L., Shang, J. S., et al., 2024. Study on Synergistic Action of Tap-Like Arbor Root System and Anti-Slide Piles by Physical Model Experiment of Landslides. Landslides, 21(7): 1707-1717. https://doi.org/10.1007/s10346-024-02248-2
|
Fang, K., Jia, S. X., Tang, H. M., et al., 2024. Arching Effect in Slopes under Excavation: Classification and Features. Engineering Geology, 337: 107563. https://doi.org/10.1016/j.enggeo.2024.107563
|
Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanism in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.03.001
|
Jalalifar, H., Aziz, N., 2010. Analytical Behaviour of Bolt-Joint Intersection under Lateral Loading Conditions. Rock Mechanics and Rock Engineering, 43(1): 89-94. https://doi.org/10.1007/s00603-009-0032-6
|
Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522(in Chinese with English abstract).
|
Li, C. D., Wu, J. J., Tang, H. M., et al., 2015. A Novel Optimal Plane Arrangement of Stabilizing Piles Based on Soil Arching Effect and Stability Limit for 3D Colluvial Landslides. Engineering Geology, 195: 236-247. https://doi.org/10.1016/j.enggeo.2015.06.018
|
Li, S. J., Gao, H., Xu, D. M., et al., 2012. Comprehensive Determination of Reinforcement Parameters for High Cut Slope Based on Intelligent Optimization and Numerical Analysis. Journal of Earth Science, 23(2): 233-242. https://doi.org/10.1007/s12583-012-0250-9
|
Li, T., Chen, G., 2023. Analysis of Factors Influencing Anti-Slip Pile Support in Tunnel Landslide Systems for Tunnels with Different Burial Depths. Transportation Geotechnics, 42: 101079. https://doi.org/10.1016/j.trgeo. 2023.101079 doi: 10.1016/j.trgeo.2023.101079
|
Liu, D. Z., Hu, X. L., Zhou, C., et al., 2020. Deformation Mechanisms and Evolution of a Pile-Reinforced Landslide under Long-Term Reservoir Operation. Engineering Geology, 275: 105747. https://doi.org/10.1016/j.enggeo.2020.105747
|
Liu, D. Z., Gong, X. C., Wang, H. P., et al., 2024. Displacement Field Reconstruction in Landslide Physical Modeling by Using a Terrain Laser Scanner –Part 2: Application and Large Strain/Displacement and Water Effect Analysis. Journal of Rock Mechanics and Geotechnical Engineering, 16(10): 4077-4087. https://doi.org/10.1016/j.jrmge.2023.09.040
|
Liu, T., Zhang, H. K., Zhang, Y., et al., 2018. Minimum Pile Spacing between Stabilizing Piles in 3D Composite Multilayer Landslide. Chinese Journal of Rock Mechanics and Engineering, 37(2): 473-484 (in Chinese with English abstract)
|
Ma, X. C., Luo, G., Deng, J. H., et al., 2018. Study of Anchorage Depth of Anti-Sliding Piles for Steep-Sliding Accumulation Landslides. Rock and Soil Mechanics, 39(S2): 157-168 (in Chinese with English abstract)
|
Niu, L. F., Hu, X. L., Xu, C., et al., 2023. Physical Model Test of the Deformation Mechanism of the Multi-Sliding Zones Landslide Subjected to the Operated Reservoir. Bulletin of Engineering Geology and the Environment, 82(6): 213. https://doi.org/10.1007/s10064-023-03233-0
|
Sun, S. W., Ma, N., Hu, J. B., et al., 2019. Evolution Characteristics and Mechanism Analysis of Soil Arch of Anti-Slide Pile. Journal of Railway Engineering Society, 36(11): 7-12(in Chinese with English abstract)
|
Tang, C. Y., Tang, H. M., Fang, K., et al., 2023. Formation of the Soil Arch and Load Transfer Mechanism of a Slope due to Excavation by 3D Particle Flow Code Simulation. Journal of Earth Science. Online.
|
Fang, K., Tang, H. M., Su, X. X., et al., 2020. Geometry and Maximum Width of a Stable Slope Considering the Arching Effect. Journal of Earth Science, 31(6): 1087-1096. https://doi.org/10.1007/s12583-020-1052-0
|
Wang, C. T., Wang, H., Qin, W. M., et al., 2023. Behaviour of Pile-Anchor Reinforced Landslides under Varying Water Level, Rainfall, and Thrust Load: Insight from Physical Modelling. Engineering Geology, 325: 107293. https://doi.org/10.1016/j.enggeo.2023.107293
|
Wang, L., Sun, D. A., Yao, Y. P., et al., 2020. Kinematic Limit Analysis of Three-Dimensional Unsaturated Soil Slopes Reinforced with a Row of Piles. Computers and Geotechnics, 120: 103428. https://doi.org/10.1016/j.compgeo.2019.103428
|
Wang, X., Hu, X. L., Xu, C., et al., 2024. Probabilistic Stability Analyses of the Landslide-Stabilizing Piles System Considering the Spatial Variability of Geotechnical Parameters. Bulletin of Engineering Geology and the Environment, 83(9): 345. https://doi.org/10.1007/s10064-024-03842-3
|
Xu, C., 2022. Evolution Mode and Mechanical Characteristics of Multi-Sliding Zones Landslide-Stabilizing Pile System(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract)
|
Xu, C., Hu, X. L., Niu, L. F., et al., 2022. Physical Model Test of the Deformation Behavior and Evolutionary Process of the Multi-Sliding Zone Landslide. Bulletin of Engineering Geology and the Environment, 81(10): 401. https://doi.org/10.1007/s10064-022-02913-7
|
Xu, C., Xue, L., Cui, Y., et al., 2024. Numerical Analysis of Surcharge Effect on Stability and Interaction Mechanism of Slope-Pile-Footing System. Journal of Earth Science, 35(3): 955-969. https://doi.org/10.1007/s12583-023-1866-7
|
Zeng, J., Zhang, H. K., Yao, W. M., et al., 2019. Maximum Spacing of Stabilizing Piles in Multilayer Landfill Slope in Consideration of Groundwater Action. Journal of Yangtze River Scientific Research Institute, 36(9): 104-109.
|
Zhang, G., Wang, L. P., Wang, Y. L., 2017. Pile Reinforcement Mechanism of Soil Slopes. Acta Geotechnica, 12(5): 1035-1046. https://doi.org/10.1007/s11440-017-0543-3
|
Zhang, L., Chen, J. H., Zhao, M. H., 2019. Maximum Cantilever Anti-Slide Piles Spacing Determination with Consideration of Soil Arching Effect. Rock and Soil Mechanics, 40(11): 4497-4505 (in Chinese with English abstract).
|
陈冲, 王卫, 吕华永, 2019. 基于复合抗滑桩模型加固边坡稳定性分析. 岩土力学, 40(8): 3207–3217.
|
黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454.
|
贾志波, 陶连金, 边金, 等, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
|
刘涛, 张海宽, 张友, 等, 2018. 三维复合多层滑坡体中抗滑桩最小桩间距研究. 岩石力学与工程学报, 37(2): 473-484.
|
马显春, 罗刚, 邓建辉, 等, 2018. 陡倾滑面堆积层滑坡抗滑桩锚固深度研究. 岩土力学, 39(S2): 157-168.
|
孙书伟, 马宁, 胡家冰, 等, 2019. 抗滑桩土拱演化特征及机理分析. 铁道工程学报, 36(11): 7-12.
|
徐楚, 2022. 多层滑带滑坡-抗滑桩体系演化模式与抗滑桩受力特征研究(博士毕业论文). 武汉: 中国地质大学.
|
曾江波, 张海宽, 姚文敏, 等, 2019. 考虑地下水影响的多层渣土边坡抗滑桩最大桩间距研究. 长江科学院院报, 36(9): 104-109.
|
张玲, 陈金海, 赵明华, 2019. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定. 岩土力学, 40(11): 4497-4505
|