• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Li Yabo, Hu Xinli, Xu Chu, Zhang Haiyan, Liu Xinyu, 2025. Study on the Reinforcement Effect for Anti-Slide Piles of the Multi-Sliding Zones Landslide Based on Soil Arching Effect. Earth Science, 50(8): 3153-3166. doi: 10.3799/dqkx.2025.056
    Citation: Li Yabo, Hu Xinli, Xu Chu, Zhang Haiyan, Liu Xinyu, 2025. Study on the Reinforcement Effect for Anti-Slide Piles of the Multi-Sliding Zones Landslide Based on Soil Arching Effect. Earth Science, 50(8): 3153-3166. doi: 10.3799/dqkx.2025.056

    Study on the Reinforcement Effect for Anti-Slide Piles of the Multi-Sliding Zones Landslide Based on Soil Arching Effect

    doi: 10.3799/dqkx.2025.056
    • Received Date: 2025-02-03
    • Publish Date: 2025-08-25
    • Large landslides are typically characterized by the multi-sliding zones structure, influenced by engineering geological conditions.However, the impact of the soil arch effect on multi-sliding zones landslide is often overlooked in studies of anti-slide piles reinforcement.Therefore, numerical simulations of multi-sliding zones landslide-anti-sliding piles system under thrust loading were conducted. These simulations investigated the effects of pile spacing and embedment depth on the soil arching effect across different motion modes and evaluated the reinforcement effectiveness under various design parameters.The results show that: (1) During landslide movement in multi-sliding zones, the stress around the pile exhibits a bidirectional, multi-level soil arch distribution along the depth, manifesting as the phenomenon of "soil arch behind pile-soil arch in front of the pile-soil arch behind pile". (2) As the pile spacing decreases from six times to two times the pile diameter, the end-bearing soil arch effect at various depths becomes more pronounced, thereby improving the reinforcement effect. Conversely, when the pile spacing increases from two times to six times, the frictional soil arch between the piles gradually becomes the dominant anti-slide mechanism, diminishing the reinforcement effectiveness.(3) Changes in embedding depth do not alter the type of soil arch at different depths but affect the strength of the soil arch.(4) When shallow sliding dominates, reducing pile spacing enhances the reinforcement effect of anti-slide piles; when deep sliding dominates, increasing the embedment depth improves the reinforcement effect.

       

    • loading
    • Ashour, M., Ardalan, H., 2011. Analysis of Pile Stabilized Slopes Based on Soil-Pile Interaction. Computers and Geotechnics, 39: 85-97. https://doi.org/10.1016/j.compgeo.2011.09.001
      Bao, N., Chen, J. F., Wang, G. H., et al., 2024. Analytical Prediction of Displacement-Dependent Lateral Earth Pressure against Stabilizing Piles in Sandy Slopes Considering Arching Effect. Computers and Geotechnics, 176: 106776. https://doi.org/10.1016/j.compgeo.2024.106776
      Chen, C., Wang, W., Lu, H. Y., 2019. Stability Analysis of Slope Reinforced with Composite Anti-Slide Pile Model. Rock and Soil Mechanics, 40(8): 3207-3217 (in Chinese with English abstract).
      Chen, L., Zeng, W. Q., Wang, X. B., et al., 2024. A Three-Dimensional DEM Method for Trajectory Simulations of Rockfall under Irregular-Shaped Slope Surface and Rock Blocks. Journal of Earth Science, 35(1): 306-312. https://doi.org/10.1007/s12583-023-1959-3
      Ding, H., Xue, L., Shang, J. S., et al., 2024. Study on Synergistic Action of Tap-Like Arbor Root System and Anti-Slide Piles by Physical Model Experiment of Landslides. Landslides, 21(7): 1707-1717. https://doi.org/10.1007/s10346-024-02248-2
      Fang, K., Jia, S. X., Tang, H. M., et al., 2024. Arching Effect in Slopes under Excavation: Classification and Features. Engineering Geology, 337: 107563. https://doi.org/10.1016/j.enggeo.2024.107563
      Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanism in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2007.03.001
      Jalalifar, H., Aziz, N., 2010. Analytical Behaviour of Bolt-Joint Intersection under Lateral Loading Conditions. Rock Mechanics and Rock Engineering, 43(1): 89-94. https://doi.org/10.1007/s00603-009-0032-6
      Jia, Z. B., Tao, L. J., Bian, J., et al., 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522(in Chinese with English abstract).
      Li, C. D., Wu, J. J., Tang, H. M., et al., 2015. A Novel Optimal Plane Arrangement of Stabilizing Piles Based on Soil Arching Effect and Stability Limit for 3D Colluvial Landslides. Engineering Geology, 195: 236-247. https://doi.org/10.1016/j.enggeo.2015.06.018
      Li, S. J., Gao, H., Xu, D. M., et al., 2012. Comprehensive Determination of Reinforcement Parameters for High Cut Slope Based on Intelligent Optimization and Numerical Analysis. Journal of Earth Science, 23(2): 233-242. https://doi.org/10.1007/s12583-012-0250-9
      Li, T., Chen, G., 2023. Analysis of Factors Influencing Anti-Slip Pile Support in Tunnel Landslide Systems for Tunnels with Different Burial Depths. Transportation Geotechnics, 42: 101079. https://doi.org/10.1016/j.trgeo. 2023.101079 doi: 10.1016/j.trgeo.2023.101079
      Liu, D. Z., Hu, X. L., Zhou, C., et al., 2020. Deformation Mechanisms and Evolution of a Pile-Reinforced Landslide under Long-Term Reservoir Operation. Engineering Geology, 275: 105747. https://doi.org/10.1016/j.enggeo.2020.105747
      Liu, D. Z., Gong, X. C., Wang, H. P., et al., 2024. Displacement Field Reconstruction in Landslide Physical Modeling by Using a Terrain Laser Scanner –Part 2: Application and Large Strain/Displacement and Water Effect Analysis. Journal of Rock Mechanics and Geotechnical Engineering, 16(10): 4077-4087. https://doi.org/10.1016/j.jrmge.2023.09.040
      Liu, T., Zhang, H. K., Zhang, Y., et al., 2018. Minimum Pile Spacing between Stabilizing Piles in 3D Composite Multilayer Landslide. Chinese Journal of Rock Mechanics and Engineering, 37(2): 473-484 (in Chinese with English abstract)
      Ma, X. C., Luo, G., Deng, J. H., et al., 2018. Study of Anchorage Depth of Anti-Sliding Piles for Steep-Sliding Accumulation Landslides. Rock and Soil Mechanics, 39(S2): 157-168 (in Chinese with English abstract)
      Niu, L. F., Hu, X. L., Xu, C., et al., 2023. Physical Model Test of the Deformation Mechanism of the Multi-Sliding Zones Landslide Subjected to the Operated Reservoir. Bulletin of Engineering Geology and the Environment, 82(6): 213. https://doi.org/10.1007/s10064-023-03233-0
      Sun, S. W., Ma, N., Hu, J. B., et al., 2019. Evolution Characteristics and Mechanism Analysis of Soil Arch of Anti-Slide Pile. Journal of Railway Engineering Society, 36(11): 7-12(in Chinese with English abstract)
      Tang, C. Y., Tang, H. M., Fang, K., et al., 2023. Formation of the Soil Arch and Load Transfer Mechanism of a Slope due to Excavation by 3D Particle Flow Code Simulation. Journal of Earth Science. Online. https://doi.org/10.1007/s12583-023-1810-x
      Fang, K., Tang, H. M., Su, X. X., et al., 2020. Geometry and Maximum Width of a Stable Slope Considering the Arching Effect. Journal of Earth Science, 31(6): 1087-1096. https://doi.org/10.1007/s12583-020-1052-0
      Wang, C. T., Wang, H., Qin, W. M., et al., 2023. Behaviour of Pile-Anchor Reinforced Landslides under Varying Water Level, Rainfall, and Thrust Load: Insight from Physical Modelling. Engineering Geology, 325: 107293. https://doi.org/10.1016/j.enggeo.2023.107293
      Wang, L., Sun, D. A., Yao, Y. P., et al., 2020. Kinematic Limit Analysis of Three-Dimensional Unsaturated Soil Slopes Reinforced with a Row of Piles. Computers and Geotechnics, 120: 103428. https://doi.org/10.1016/j.compgeo.2019.103428
      Wang, X., Hu, X. L., Xu, C., et al., 2024. Probabilistic Stability Analyses of the Landslide-Stabilizing Piles System Considering the Spatial Variability of Geotechnical Parameters. Bulletin of Engineering Geology and the Environment, 83(9): 345. https://doi.org/10.1007/s10064-024-03842-3
      Xu, C., 2022. Evolution Mode and Mechanical Characteristics of Multi-Sliding Zones Landslide-Stabilizing Pile System(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract)
      Xu, C., Hu, X. L., Niu, L. F., et al., 2022. Physical Model Test of the Deformation Behavior and Evolutionary Process of the Multi-Sliding Zone Landslide. Bulletin of Engineering Geology and the Environment, 81(10): 401. https://doi.org/10.1007/s10064-022-02913-7
      Xu, C., Xue, L., Cui, Y., et al., 2024. Numerical Analysis of Surcharge Effect on Stability and Interaction Mechanism of Slope-Pile-Footing System. Journal of Earth Science, 35(3): 955-969. https://doi.org/10.1007/s12583-023-1866-7
      Zeng, J., Zhang, H. K., Yao, W. M., et al., 2019. Maximum Spacing of Stabilizing Piles in Multilayer Landfill Slope in Consideration of Groundwater Action. Journal of Yangtze River Scientific Research Institute, 36(9): 104-109.
      Zhang, G., Wang, L. P., Wang, Y. L., 2017. Pile Reinforcement Mechanism of Soil Slopes. Acta Geotechnica, 12(5): 1035-1046. https://doi.org/10.1007/s11440-017-0543-3
      Zhang, L., Chen, J. H., Zhao, M. H., 2019. Maximum Cantilever Anti-Slide Piles Spacing Determination with Consideration of Soil Arching Effect. Rock and Soil Mechanics, 40(11): 4497-4505 (in Chinese with English abstract).
      陈冲, 王卫, 吕华永, 2019. 基于复合抗滑桩模型加固边坡稳定性分析. 岩土力学, 40(8): 3207–3217.
      黄润秋, 2007.20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454.
      贾志波, 陶连金, 边金, 等, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
      刘涛, 张海宽, 张友, 等, 2018. 三维复合多层滑坡体中抗滑桩最小桩间距研究. 岩石力学与工程学报, 37(2): 473-484.
      马显春, 罗刚, 邓建辉, 等, 2018. 陡倾滑面堆积层滑坡抗滑桩锚固深度研究. 岩土力学, 39(S2): 157-168.
      孙书伟, 马宁, 胡家冰, 等, 2019. 抗滑桩土拱演化特征及机理分析. 铁道工程学报, 36(11): 7-12.
      徐楚, 2022. 多层滑带滑坡-抗滑桩体系演化模式与抗滑桩受力特征研究(博士毕业论文). 武汉: 中国地质大学.
      曾江波, 张海宽, 姚文敏, 等, 2019. 考虑地下水影响的多层渣土边坡抗滑桩最大桩间距研究. 长江科学院院报, 36(9): 104-109.
      张玲, 陈金海, 赵明华, 2019. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定. 岩土力学, 40(11): 4497-4505
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(15)  / Tables(3)

      Article views (109) PDF downloads(7) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return