• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Sun Houyun, Ma Feng, Wang Guiling, Zhu Xi, Zhang Wei, Chen Liming, 2025. Formation Mode of Geothermal Resources in Fujian Province Ⅰ: Hydrogeochemical Characteristics and Genetic Mechanisms of Geothermal Fluids. Earth Science, 50(8): 3241-3269. doi: 10.3799/dqkx.2025.057
    Citation: Sun Houyun, Ma Feng, Wang Guiling, Zhu Xi, Zhang Wei, Chen Liming, 2025. Formation Mode of Geothermal Resources in Fujian Province Ⅰ: Hydrogeochemical Characteristics and Genetic Mechanisms of Geothermal Fluids. Earth Science, 50(8): 3241-3269. doi: 10.3799/dqkx.2025.057

    Formation Mode of Geothermal Resources in Fujian Province Ⅰ: Hydrogeochemical Characteristics and Genetic Mechanisms of Geothermal Fluids

    doi: 10.3799/dqkx.2025.057
    • Received Date: 2025-03-21
    • Publish Date: 2025-08-25
    • Fujian Province is one of the most important geothermal anomaly areas in China. It is of great significance for the scientific utilization of geothermal resources to reveal the formation mechanisms of geothermal system in the region. The changes in hydrochemical formation and water-rock interaction mechanism of geothermal fluidsin each hydrogeochemical zonewas clarified based on the implication of hydrochemical characteristics of 208 geothermal water samples and the machine learning methods of self-organizing map-K-means (SOM-KM) clustering. The results show that the water types of geothermal fluids from the uplifted mountainous recharge areas to the low-lying valleys and deep basin axis evolved from HCO3-Ca and HCO3-Na·Ca to HCO3·SO4-Naand HCO3-Na in each intact groundwater system in inland areas. While from the central mountainous areas to the eastern volcano-graben basin and coastal plain, the water types of geothermal fluids evolved from HCO3-Ca, HCO3-Na·Ca to HCO3·SO4-Na and HCO3-Na, and then Cl-Na·Ca, Cl-Na type. The SOM-KM analysis identified the spatial distribution of low-enthalpy and low-salinity shallow circulating geothermal water, high-enthalpy and P-F-SiO2 enriched deep circulating geothermal water, and deep circulation geothermal water with seawater mixing at the provincial scale effectively. Among them, the low-enthalpy shallow circulating geothermal water was significantly affected by the mixing of surface water and shallow groundwater, and mainly distributed along the steam systems of northwestern uplifted mountain region and the carbonate-clastic sedimentary basins of southeastern region. The hydrochemistry formation of high-enthalpy deep circulating geothermal water was significantly influenced by the upwelling mixing of endogenous water in igneous rocks, deep-seated faults, and ancient sealed fluids in volcanic edifice, and mainly distributed at the intersection of regional northwestern water-conducting faults with the northeastern thermal-conducting faults and the radioactive faults of the circular volcanic apparatus in eastern volcanic depression zone. The deep circulation geothermal fluid affected by seawater recharge undergone the first mixing process with the deep high-salinity seawater and the second mixing process with shallow cold water during the upwelling stage. The long-term supply end member of hydrochemistry in regional intrusive-volcanic geothermal reservoir is plagioclase, and the reservoir temperature indicated by mineral hydrothermal alteration is concentrated in the range of 100-150 ℃. The geothermal fluid tended to evolve towards HCO3-Na water with high pH, low-Na concentration and high-Ca concentration under the constraints of super saturation precipitation of calcite - carbonate buffer equilibrium system due to the preferential dissolution of olivine, pyroxene, and anorthite in the plagioclase. The geothermal system in the bulk horizons is turned out to be deep-circulation hydrothermal systems without magmatic heat source from the hydrogeochemical evidence.

       

    • loading
    • Apollaro, C., Accornero, M., Marini, L., et al., 2009. The Impact of Dolomite and Plagioclase Weathering on the Chemistry of Shallow Groundwaters Circulating in a Granodiorite-Dominated Catchment of the Sila Massif (Calabria, Southern Italy). Applied Geochemistry, 24(5): 957-979. https://doi.org/10.1016/j.apgeochem.2009.02.026
      April, R., Newton, R., Coles, L. T., 1986. Chemical Weathering in Two Adirondack watersheds: Past and Present-Day Rates. Geological Society of America Bulletin, 97(10): 1232. https://doi.org/10.1130/0016-7606(1986)971232:cwitaw>2.0.co;2 doi: 10.1130/0016-7606(1986)971232:cwitaw>2.0.co;2
      Banks, D., Frengstad, B., Midtgård, A. K., et al., 1998. The Chemistry of Norwegian groundwaters: Ⅰ. the Distribution of Radon, Major and Minor Elements in 1604 Crystalline Bedrock Groundwaters. Science of The Total Environment, 222(1/2): 71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
      Banks, D., Frengstad, B., 2006. Evolution of Groundwater Chemical Composition by Plagioclase Hydrolysis in Norwegian Anorthosites. Geochimica et Cosmochimica Acta, 70(6): 1337-1355. https://doi.org/10.1016/j.gca. 2005. 11.025 doi: 10.1016/j.gca.2005.11.025
      BGMRFP., 2010. Bureau of Geology and Mineral Resources of Fujian Province. Metallogenic Prognosis Types and Results of Gold Deposits in Fujian Province, Geological Map.
      Boschetti, T., Toscani, L., Barbieri, M., et al., 2017. Low Enthalpy Na-Chloride Waters from the Lunigiana and Garfagnana Grabens, Northern Apennines, Italy: Tracing Fluid Connections and Basement Interactions via Chemical and Isotopic Compositions. Journal of Volcanology and Geothermal Research, 348: 12-25. https://doi.org/10.1016/j.jvolgeores.2017.10.008
      Brantley, S. L., Kubicki, J. D., White, A. F., 2008. Kinetics of Water-Rock Interaction. Berlin Germany: Springer-Ⅴerlag, Berlin Heidelberg, 1-900.
      Brehme, M., Bauer, K., Nukman, M., et al., 2017. Self-Organizing Maps in Geothermal Exploration: A New Approach for Understanding Geochemical Processes and Fluid Evolution. Journal of Volcanology and Geothermal Research, 336: 19-32. https://doi.org/10.1016/j.jvolgeores.2017.01.013
      Bruce, V., Meunier, A. T., 2008. The Origin of Clay Minerals in Soils and Weathered Rocks. Springer-Ⅴerlag Berlin Heidelberg, 1-407. http://www.springer.com/cda/content/document/productFlyer/productFlyer-CN_978-3-540-75633-0.pdf?SGWID=0-0-1297-173763504-bookseller
      Chen, Y. T., Wang, Z. P., Huang, Q. T., et al., 1998. Downfaulted Basin, Plain, Bay and Earthquakes of Coastland in Fujian Province. Journal of Geodesy and Geodynamics, 18(4): 55-61 (in Chinese with English abstract).
      Chi, Z., Ni, P., Pan, J. Y., et al., 2020. Petrogenesis and Tectonic Setting of the Cretaceous Volcanic-Ⅰntrusive Complex in the Zijinshan Ore District, Southeast China: Implications for Different Stages of Mineralization. Journal of Asian Earth Sciences, 192: 104265. https://doi.org/10.1016/j.jseaes.2020.104265
      Davies, D. L., Bouldin, D. W., 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2): 224-227. https://doi.org/10.1109/TPAMI.1979.4766909
      Davisson, M., Criss, R. E., 1996. Na-Ca-Cl Relations in Basinal Fluids. Geochimica et Cosmochimica Acta, 60(15): 2743-2752. https://doi.org/10.1016/0016-7037(96)00143-3
      Deng, D. X., 2017. Generation Rule of Geothermal Resources in Fuzhou and Analysis of Potential Geothermal Anomaly Areas. East China Geology, 38(2): 132-137 (in Chinese with English abstract).
      Dong, S. W., Li, J. H., Cawood, P. A., et al., 2020. Mantle Influx Compensates Crustal Thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE Reflection Profiling. Earth and Planetary Science Letters, 544: 116360. https://doi.org/10.1016/j.epsl.2020.116360
      Ellis, A. J., 1971. Magnesium Ion Concentrations in the Presence of Magnesium Chlorite, Calcite, Carbon Dioxide, Quartz. American Journal of Science, 271(5): 481-489. https://doi.org/10.2475/ajs.271.5.481
      Gan, H. N., Wang, G. L., Wang, X., et al., 2019. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids, 2019: 3925462. https://doi.org/10.1155/2019/3925462
      Gan, H. N., 2023. Thermo-Rheological Structure of the Lithosphere and Geodynamic Evolution of the Coastal Fujian and Adjacent Region, China(Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Garrels, R. M., Mackenzie, F. T., 1967. Origin of the Chemical Composition of Some Springs and lakes. In: Stumm, W. ed., Equilibrium Concepts in Natural Water Systems. Advanced Chemical Series. American Chemical Society, 67: 222-242.
      Garrels, R. M., 1968. Genesis of Some Groundwaters from Igneous Rocks. Researches in Geochemistry, 2: 406-420. http://ci.nii.ac.jp/naid/10003617340
      Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
      Guo, Q. H., Liu, M. L., Luo, L., et al., 2019. Geochemical Controls on Magnesium and Its Speciation in Various Types of Geothermal Waters from Typical Felsic-Rock-Hosted Hydrothermal Systems in China. Geothermics, 81: 185-197. https://doi.org/10.1016/j.geothermics. 2019. 05.006 doi: 10.1016/j.geothermics.2019.05.006
      Guo, Q. H., 2020. Magma-Heated Geothermal Systems and Hydrogeochemical Evidence of Their Occurrence. Acta Geologica Sinica, 94(12): 3544-3554. https://doi.org/10.19762/j.cnki.dizhixuebao.2020195
      Hagedorn, B., Cartwright, I., 2009. Climatic and Lithologic Controls on the Temporal and Spatial Variability of CO2 Consumption via Chemical weathering: An Example from the Australian Victorian Alps. Chemical Geology, 260(3/4): 234-253. https://doi.org/10.1016/j.chemgeo.2008.12.019
      Hao, Q. C., Li, Y. S., Xiao, Y., et al., 2023. Hydrogeochemical Fingerprint, Driving Forces and Spatial Availability of Groundwater in a Coastal Plain, Southeast China. Urban Climate, 51: 101611. https://doi.org/10.1016/j.uclim.2023.101611
      Hentati, A., Kawamura, A., Amaguchi, H., et al., 2010. Evaluation of Sedimentation Vulnerability at Small Hillside Reservoirs in the Semi-Arid Region of Tunisia Using the Self-Organizing Map. Geomorphology, 122(1/2): 56-64. https://doi.org/10.1016/j.geomorph.2010.05.013
      Hochstein, M. P., Yang, Z. K., Ehara, S., 1990. The Fuzhou Geothermal System (People's Republic of China): Modelling Study of a Low Temperature Fracture-Zone System. Geothermics, 19(1): 43-60. https://doi.org/10.1016/0375-6505(90)90065-J
      Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3/4): 203-227. https://doi.org/10.1016/0377-0273(86)90014-4
      Kaleem, M., Naseem, S., Bashir, E., et al., 2021. Discrete Geochemical Behavior of Sr and Ba in the Groundwater of Southern Mor Range, Balochistan, a Tracer for Igneous and Sedimentary Rocks Weathering and Related Environmental Issues. Applied Geochemistry, 130: 104996. https://doi.org/10.1016/j.apgeochem.2021.104996
      Kim, K. H., Yun, S. T., Yu, S., et al., 2020. Geochemical Pattern Recognitions of Deep Thermal Groundwater in South Korea Using Self-Organizing map: Identified Pathways of Geochemical Reaction and Mixing. Journal of Hydrology, 589: 125202. https://doi.org/10.1016/j.jhydrol.2020.125202
      Kohonen, T., 1982. Self-Organized Formation of Topologically Correct Feature Maps. Biological Cybernetics, 43(1): 59-69. https://doi.org/10.1007/BF00337288
      Kohonen, T., 2001. Self-Organizing Maps. 3rd. ed. Springer, Berlin.
      Land, M., Ingri, J., Andersson, P. S., et al., 2000. Ba/Sr, Ca/Sr and 87Sr/86Sr Ratios in Soil Water and Groundwater: implications for Relative Contributions to Stream Water Discharge. Applied Geochemistry, 15(3): 311-325. https://doi.org/10.1016/S0883-2927(99)00054-2
      Langelier, W. F., Ludwig, H. F., 1942. Graphical Methods for Indicating the Mineral Character of Natural Waters. Journal AWWA, 34(3): 335-352. https://doi.org/10.1002/j.1551-8833.1942.tb19682.x
      Li, S., Han, J. T., Liu, L. J., et al., 2022. The Deep Electrical Structure and Thermal Characteristics of the Zhangshu-Ningde Magnetotelluric Profile in South China. Chinese Journal of Geophysics, 65(4): 1354-1375 (in Chinese with English abstract).
      Li, Y. S., Liu, C. L., Cao, S. W., et al., 2021. Br/Cl Ratio, Zn and Radon Constraints on the Origin and Fate of Geothermal Fluids in the Coastal Region of Southeastern China. Hydrogeology Journal, 29(6): 2211-2218. https://doi.org/10.1007/s10040-021-02373-5
      Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2012.01.009
      Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract).
      Liu, C. L., Li, Y. S., Cao, S. W., et al., 2022. Effects of Seawater Recharge on the Formation of Geothermal Resources in Coastal Areas and Their Mechanisms: A Case Study of Xiamen City, Fujian Province, China. Frontiers in Earth Science, 10: 872620. https://doi.org/10.3389/feart.2022.872620
      Liu, D. H., Wang, C. L., Zhang, X. H., et al., 2023. Implications for the Contribution of Pacific Plate Subduction to Fluorite Mineralization in Southeast China: Evidence from Nanzhou Large Fluorite Deposit, Fujian Province. Ore Geology Reviews, 156: 105385. https://doi.org/10.1016/j.oregeorev.2023.105385
      Liu, M. L., Guo, Q. H., Luo, L., et al., 2020. Environmental Impacts of Geothermal Waters with Extremely High Boron concentrations: Insight from a Case Study in Tibet, China. Journal of Volcanology and Geothermal Research, 397: 106887. https://doi.org/10.1016/j.jvolgeores.2020.106887
      Lu, G. P., Wang, X., Li, F. S., et al., 2017. Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal Xinzhou Geothermal Field, Guangdong, China. Physics of the Earth and Planetary Interiors, 264: 76-88. https://doi.org/10.1016/j.pepi.2016.12.004
      Mason, B., Moore, C. B., 1982. Principles of Geochemistry (Fourth Edition). John Wiley & Sons, Inc Toronto, Canada.
      Nakagawa, K., Yu, Z. Q., Berndtsson, R., et al., 2020. Temporal Characteristics of Groundwater Chemistry Affected by the 2016 Kumamoto Earthquake Using Self-Organizing Maps. Journal of Hydrology, 582: 124519. https://doi.org/10.1016/j.jhydrol.2019.124519
      Narvaez-Montoya, C., Mahlknecht, J., Torres-Martínez, J. A., et al., 2024. FlowSOM Clustering: a Novel Pattern Recognition Approach for Water research: Application to a Hyper-Arid Coastal Aquifer System. Science of The Total Environment, 915: 169988. https://doi.org/10.1016/j.scitotenv.2024.169988
      Nisi, B., Vaselli, O., Tassi, F., et al., 2013. Hydrogeochemistry of Surface and Spring Waters in the Surroundings of the CO2 Injection Site at Hontomín-Huermeces (Burgos, Spain). International Journal of Greenhouse Gas Control, 14: 151-168. https://doi.org/10.1016/j.ijggc.2013.01.012
      Noble, D. C., Smith, V. C., Peck, L. C., 1967. Loss of Halogens from Crystallized and Glassy Silicic Volcanic Rocks. Geochimica et Cosmochimica Acta, 31(2): 215-223. https://doi.org/10.1016/S0016-7037(67)8004-0
      Oliva, P., Dupré, B., Martin, F., et al., 2004. The Role of Trace Minerals in Chemical Weathering in a High-Elevation Granitic Watershed (Estibère, France): Chemical and Mineralogical Evidence. Geochimica et Cosmochimica Acta, 68(10): 2223-2243. https://doi.org/10.1016/j.gca.2003.10.043
      Pang, Z. H., 1987. Zhangzhou Basin Geothermal System-Genesis Model, Energy Potential and the Occurrence of Thermal Water(Dissertation). Institute of Geology and Geophysics, CAS, Beijing (in Chinese with English abstract).
      Poh, J., Tjiawi, H., Chidire, A., et al., 2025. Geothermal Development in South, Southeast and East Asia: A Review. Renewable and Sustainable Energy Reviews, 209: 115043. https://doi.org/10.1016/j.rser.2024.115043
      Pokrovskii, V. A., Helgeson, H. C., 1997. Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals at High Pressures and Temperatures: the System Al2O3-H2O-KOH. Chemical Geology, 137(3/4): 221-242. https://doi.org/10.1016/S0009-2541(96)00167-2
      Rahman, A. T. M. S., Kono, Y., Hosono, T., 2022. Self-Organizing Map Improves Understanding on the Hydrochemical Processes in Aquifer Systems. Science of The Total Environment, 846: 157281. https://doi.org/10.1016/j.scitotenv.2022.157281
      Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Source Analysis of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287 (in Chinese with English abstract).
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Shvartsev, S. L., Sun, Z., Borzenko, S. V., et al., 2018. Geochemistry of the Thermal Waters in Jiangxi Province, China. Applied Geochemistry, 96: 113-130. https://doi.org/10.1016/j.apgeochem.2018.06.010
      Souid, F., Telahigue, F., Agoubi, B., et al., 2020. Isotopic Behavior and Self-Organizing Maps for Identifying Groundwater Salinization Processes in Jerba Island, Tunisia. Environmental Earth Sciences, 79(8): 175. https://doi.org/10.1007/s12665-020-8899-3
      Stefansson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380
      Sun, H. Y., Ma, F., Zhu, X., et al., 2025a. Hydrogeochemical Evolution of Geothermal Fluids and Its Indications in the Yanshan Uplift-North China Fault Basin, Northern Hebei. Acta Geologica Sinica, 99(5): 1711-1742(in Chinese with English abstract).
      Sun, H. Y., Ma, F., Wang, G. L., et al., 2025b. Spatial Variation Characteristics and Source Apportionment of Geothermal Hydrochemical Components with Therapeutic benefits in Fujian Province based on Machine Learning. Acta Geologica Sinica, 50(10): 2862-2878(in Chinese with English abstract).
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Sun, H. Y., Wei, X. F., Sun, X. M., et al., 2020. Formation Mechanism and Geological Construction Constraints of Metasilicate Mineral Water in Yudaokou, Hannuoba Basalt Area. 45(11): 4236-4253 (in Chinese with English abstract).
      Sun, H. Y., 2023. Mechanism of Strontium Enrichment in Sallow Groundwater Driven by the Coupling of Rock Weathering and Water-Rock Interaction in Central Chengde(Dissertation). China University of Geosciences, Beijing, 1-187 (in Chinese with English abstract).
      Teng, J. W., Si, X., Zhuang, Q. X., et al., 2017. Abnormal Structure of Crust and Mantle and Analysis of Deep Thermal Potential in Fujian Continental Margin. Science Technology and Engineering, 17(17): 6-38 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2017.17.002
      Tian, J., Li, Y. M., Fan, Y. F., et al., 2023. Geochemical Characteristics and Circulation Conceptual Model of Geothermal Fluid in the Shenzao Coastal Hot Springs in Guangdong Province. Earth Science, 48(3): 894-907 (in Chinese with English abstract).
      Tian, J., Stefánsson, A., Li, Y. M., et al., 2023. Geochemistry of Thermal Fluids and the Genesis of Granite-Hosted Huangshadong Geothermal System, Southeast China. Geothermics, 109: 102647. https://doi.org/10.1016/j.geothermics.2023.102647
      Truesdell, A. H., Nathenson, M., Rye, R. O., 1977. The Effects of Subsurface Boiling and Dilution on the Isotopic Compositions of Yellowstone Thermal Waters. Journal of Geophysical Research (1896-1977), 82(26): 3694-3704. https://doi.org/10.1029/JB082i026p03694
      Vatuva, A., He, X. L., Zhang, X. M., et al., 2023. Genesis of Makeng-Type Fe-Polymetallic Deposits in SE China: New Constraints by Geochronological and Isotopic Data from the Dapai-Makeng Metallogenic System. Geoscience Frontiers, 14(5): 101614. https://doi.org/10.1016/j.gsf.2023.101614
      Vengosh, A., 2014. Salinization and Saline Environments. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry 2nd Edition: Environmental Geochemistry, 11: 325-378.
      Wan, T. F., Chu, M. J., Chen, M. Y., 1988. Thermal Regimes of the Lithosphere and Geothermal Resources Potential in Fujian Province. Acta Geologica Sinica, 2: 178-189 (in Chinese with English abstract).
      Wang, D. Z., Shu, L. S., 2012. Late Mesozoic Basin and Range Tectonics and Related Magmatism in Southeast China. Geoscience Frontiers, 3(2): 109-124. https://doi.org/10.1016/j.gsf.2011.11.007
      Wang, G. L., Gan, H. N., Lin, W. J., et al., 2023. Hydrothermal Systems Characterized by Crustal Thermally-Dominated Structures of Southeastern China. Acta Geologica Sinica-English Edition, 97(4): 1003-1013. https://doi.org/10.1111/1755-6724.15078
      Wang, G. L., Lin, W. J. 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.07.002
      Wang, G. L., Lin, W. J., Liu, F., et al., 2023. Geothermal Crust-Tectonic Thermal Control Theory and Exploration Practice. Acta Geologica Sinica, 97(3): 639-660 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2023.03.001
      Wang, X., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018(1): 8715080. https://doi.org/10.1155/2018/8715080
      Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristicsof the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Sun, M., et al., 2007. Geochronological, Geochemical and Geothermal Constraints on Petrogenesis of the Indosinian Peraluminous Granites in the South China Block: A Case Study in the Hunan Province. Lithos, 96(3/4): 475-502. https://doi.org/10.1016/j.lithos.2006.11.010
      Wang, Z., Guo, H. M., Xing, S. P., et al., 2021. Hydrogeochemical and Geothermal Controls on the Formation of High Fluoride Groundwater. Journal of Hydrology, 598: 126372. https://doi.org/10.1016/j.jhydrol.2021.126372
      Wei, D. G., Jie, Y. J., Huang, T. G., 1997. Regional Geological Structure of Fujian. Geological Bulletin of China, 16(2): 162-170 (in Chinese with English abstract).
      White, A. F., Blum, A. E., 1995. Effects of Climate on Chemical_ Weathering in Watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729-1747. https://doi.org/10.1016/0016-7037(95)00078-E
      Xu, S. Y., 1987. Hydrogeochemical Chractteristics of Fuzhou Geothermal Field. Geology of Fujian, 6(4): 288-303 (in Chinese with English abstract).
      Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2003. Enrichment of Upper Mantle Peridotite: petrological, Trace Element and Isotopic Evidence in Xenoliths from SE China. Chemical Geology, 198(3/4): 163-188. https://doi.org/10.1016/S0009-2541(03)00004-4
      Yao, Z. J., 1999. Recent Hydrothermal Activity along the Continental Margin of Southeast China. Bulletin of the Chinese Academy of Geological Sciences, 20(1): 145-148 (in Chinese with English abstract).
      Yuan, H. W., Jing, T. Y., Yin, Y. L., et al., 2024. Geothermal Model and Development Area of a Fault-Controlled Geothermal Zone along the Fujian Coastal Area of Southeastern China. Natural Gas Industry B, 11(1): 28-41. https://doi.org/10.1016/j.ngib.2024.01.005
      Zhang, J., He, Y. B., Fan, Y. X., 2024. Geophysical Analysis of Heat Source Composition in the Fujian Coastal Geothermal Anomaly Area. Earth Science Frontiers, 31(3): 392-401(in Chinese with English abstract).
      Zhang, Y., Zhang, Y. J., Yu, H., et al., 2020. Geothermal Resource Potential Assessment of Fujian Province, China, Based on Geographic Information System (GIS): Supported Models. Renewable Energy, 153: 564-579. https://doi.org/10.1016/j.renene.2020.02.044
      Zheng, H. R., Luo, J., 2024. Progress in Research on the Exploration and Evaluation of Deep Geothermal Resources in the Fujian-Guangdong-Hainan Region, China. Energy Geoscience, 5(2): 100232. https://doi.org/10.1016/j.engeos.2023.100232
      Zu, F. P., 2012. Evolution Features of Sedimentary and Structural Environment of Representative Basins since Late Palaeozoic in Southeast China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      陈园田, 王志鹏, 黄卿团, 等, 1998. 福建沿海的断陷盆地、平原、海湾与地震. 地壳形变与地震, 18(4): 57-63.
      邓鼎兴. 2017. 福州地区地热资源成生规律及潜在地热异常远景区分析. 华东地质, 38(2): 132-137. doi: 10.3969/j.issn.1674-3504.2017.02.005
      甘浩男. 2023. 福建沿海及邻区岩石圈热-流变结构及其构造演化(博士学位论文). 南京: 南京大学.
      郭清海. 2020. 岩浆热源型地热系统及其水文地球化学判据. 地质学报, 94(12): 3544-3554. doi: 10.3969/j.issn.0001-5717.2020.12.002
      李帅, 韩江涛, 刘立家, 等, 2022. 华南地区樟树-宁德大地电磁测深剖面深部电性结构及热特征. 地球物理学报, 65(4): 1354-1375.
      廖志杰. 2012. 福建无岩浆热源的深循环水热系统. 现代地质, 26(1): 85-98. doi: 10.3969/j.issn.1000-8527.2012.01.009
      蔺文静, 王贵玲, 甘浩男. 2024. 华南陆缘火成岩区差异性地壳热结构及地热意义. 地质学报, 98(2): 544-557.
      庞忠和, 1987. 漳州盆地地热系统-成因模式、热能潜力与热水分布规律的研究(博士学位论文). 北京: 中国科学院地质与地球物理研究所.
      史自德, 毛绪美, 叶建桥, 等, 2024. 中低温地热系统低盐度地热水高含量钠的地球化学成因: 以广东惠州黄沙洞地热田为例. 地球科学, 49(1): 271-287. doi: 10.3799/dqkx.2022.170
      孙厚云, 马峰, 朱喜, 等, 2025a. 冀北燕山隆起-华北断陷盆地地热流体地球化学特征及地热学意义. 地质学报, 99(5): 1711-1742.
      孙厚云, 马峰, 王贵玲, 等, 2025b. 基于机器学习的福建省地热温泉理疗热矿水元素空间分异特征与物源解析. 地质学报, 50(10): 2862-2878.
      孙厚云, 卫晓锋, 孙晓明, 等, 2020. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约. 地球科学, 45(11): 4236-4253. doi: 10.3799/dqkx.2020.011
      孙厚云. 2023. 承德中部浅层地下水锶富集的岩石风化与水岩作用驱动机制(博士学位论文). 中国地质大学, 北京, 1-187.
      滕吉文, 司芗, 庄庆祥, 等, 2017. 福建陆缘壳幔异常结构与深部热储潜能分析. 科学技术与工程, 17(17): 6-38. doi: 10.3969/j.issn.1671-1815.2017.17.002
      天娇, 李义曼, 范翼帆, 等, 2023. 广东神灶海上温泉的流体地球化学特征及循环模式. 地球科学, 48(3): 894-907. doi: 10.3799/dqkx.2022.222
      万天丰, 褚明记, 陈明佑. 1988. 福建省岩石圈的热状态与地热资源的远景评价. 地质学报, 2: 178-189.
      汪啸. 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文). 中国地质大学, 武汉.
      王贵玲, 等. 2018. 中国地热志——华南卷. 北京: 科学出版社.
      王贵玲, 蔺文静, 刘峰, 等, 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639-660. doi: 10.3969/j.issn.0001-5717.2023.03.001
      王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937. doi: 10.3969/j.issn.0001-5717.2020.07.002
      韦德光, 揭育金, 黄廷淦. 1997. 福建省区域地质构造特征. 中国区域地质, 16(2): 51-59.
      徐书勇. 1987. 福州地热田水文地球化学特征. 福建地质, 6(4): 288-303.
      姚足金. 1999. 中国东南部大陆边缘现代水热活动. 中国地质科学院院报, 20(1): 145-148.
      张健, 何雨蓓, 范艳霞. 2024. 福建沿海地区地热异常热源成因的地球物理分析. 地学前缘, 31(3): 392-401.
      中国科学院地球物理研究所. 1992. 福建地热地球物理研究. 北京: 中国科学技术出版社.
      庄庆祥. 2019. 漳州盆地及邻区地热资源与深部高温岩体的地质响应研究. 北京: 地质出版社.
      祖辅平. 2012. 中国东南部晚古生代以来典型盆地沉积构造环境演化特征(博士学位论文). 南京: 南京大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (178) PDF downloads(20) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return