• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Zhao Xiaoyan, He Suge, Kong Lingsong, Zhang Tianyu, Peng Guanling, Wang Guangming, Su Youjin, 2025. Rupture Characteristics of the Dingri MS6.8 Earthquake in Xizang and Prediction of Strong Aftershocks in the Sequence. Earth Science, 50(5): 1733-1743. doi: 10.3799/dqkx.2025.059
    Citation: Zhao Xiaoyan, He Suge, Kong Lingsong, Zhang Tianyu, Peng Guanling, Wang Guangming, Su Youjin, 2025. Rupture Characteristics of the Dingri MS6.8 Earthquake in Xizang and Prediction of Strong Aftershocks in the Sequence. Earth Science, 50(5): 1733-1743. doi: 10.3799/dqkx.2025.059

    Rupture Characteristics of the Dingri MS6.8 Earthquake in Xizang and Prediction of Strong Aftershocks in the Sequence

    doi: 10.3799/dqkx.2025.059
    • Received Date: 2025-03-08
    • Publish Date: 2025-05-25
    • The MS6.8 Dingri earthquake in Xizang on January 7, 2025, exhibited a spatially extensive and complex aftershock sequence, with a relatively small maximum aftershock magnitude. Additionally, the lack of comparable historical earthquake data in the region posed significant challenges for strong aftershock prediction. This study utilizes phase reports from the regional seismic network in Xizang and applies the double-difference relocation method to precisely relocate the Dingri MS6.8 earthquake sequence. The results reveal that the aftershock zone extends along a north-south (NS) trend, spanning approximately 80 km in length, with the actual rupture length exceeding empirical estimates. The sequence displays distinct segmentation characteristics, with dense clusters at the northern and southern ends and sparse activity in the central section. The spatial distribution of aftershocks with magnitudes ML≥4.5 is highly complex, influenced and controlled by multiple factors, including heterogeneous coseismic slip, local stress conditions, fault geometry, tectonic setting, and historical seismic rupture patterns. The largest aftershock recorded was MS5.0, yielding a magnitude difference of 1.8 from the mainshock. This observation supports the empirical relationship that "larger rupture lengths correlate with greater magnitude differences between the mainshock and its largest aftershock."

       

    • loading
    • Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
      Bai, L., Chen, Z. W., Wang, S. J., 2025. The 2025 Dingri MS 6.8 Earthquake in Xizang: Analysis of Tectonic Background and Discussion of Source Characteristics. Reviews of Geophysics and Planetary Physics, 56(3): 258-263 (in Chinese with English abstract).
      Cohee, B. P., Beroza, G. C., 1994. Slip Distribution of the 1992 Landers Earthquake and Its Implications for Earthquake Source Mechanics. Bulletin of the Seismological Society of America, 84 (3): 692-712. https://doi.org/10.1016/0148-9062(95)94486-9
      Das, S., Henry, C., 2003. Spatial Relation between Main Earthquake Slip and Its Aftershock Distribution. Reviews of Geophysics, 41(3): 156. https://doi.org/10.1029/2002RG000119
      Duo, B. L., Pu, Q., Luo, S., et al., 2023. The Construction and Development of Seismic Monitoring Network in Tibet. Seismological and Geomagnetic Observation and Research, 44(2): 73-78 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-3246.2023.02.009
      England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/JB094iB12p17561
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. 49(12): 4635-4658 (in Chinese with English abstract).
      He, H. L., Oguchi, T., Zhou, R., et al., 2001. Damage and Seismic Intensity of the 1996 Lijiang Earthquake, China. Geographical Review of Japan, Series B, 74(2): 187-198. https://doi.org/10.4157/grj1984b.74.187
      Helmstetter, A., Sornette, D., 2003. BÅTH'S Law Derived from the Gutenberg-Richter Law and from Aftershock Properties. Geophysical Research Letters, 30(20): 1-4. https://doi.org/10.1029/2003GL018186
      Jiang, H. K., Li, M. X., Wu, Q., et al., 2008. Features of the May 12 M8.0 Wenchuan Earthquake Sequence and Discussion on Relevant Problems. Seismology and Geology, 30(3): 746-758 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2008.03.013
      Jiang, H. K., Yang, M. L., Fu, H., et al., 2015. A Reference Guide for Post-Earthquake Trend Judgment. Seismological Press, Beijing (in Chinese).
      Kisslinger, C., Jones, L. M., 1991. Properties of Aftershock Sequences in Southern California. Journal of Geophysical Research: Solid Earth, 96(B7): 11947-11958. https://doi.org/10.1029/91JB01200
      Li, Q. H., Wan, Y. G., 2024. Geometry of Seismogenic Faults Determination of the 2021 Maduo Earthquake Sequence by Fuzzy Clustering Algorithm. Earth Science, 49(9): 3363-3376 (in Chinese with English abstract).
      Li, Y. S., Li, W. L., Xu, Q., et al., 2025. InSAR Coseismic Deformation Detection and Fault Slip Distribution Inversion of the MS 6.8 Earthquake in Dingri, Tibet on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 52(2): 199-211 (in Chinese with English abstract).
      Liang, M. J., Dong, Y. X., Zuo, H., et al., 2025. Surface Deformation Characteristics and Causes of the Dengmecuo Segment in the Xizang Dingri MS 6.8 Earthquake. Seismology and Geology, 47(1): 80-89 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.006
      Pei, S. P., Su, J. R., Zhang, H. J., et al., 2010. Three-Dimensional Seismic Velocity Structure across the 2008 Wenchuan Ms 8.0 Earthquake, Sichuan, China. Tectonophysics, 491(1-4): 211-217. https://doi.org/10.1016/j.tecto.2009.08.039
      Shao, Y. X., Wang, A. S., Liu, J., et al., 2025. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang. Earth Science, 50(5): 1677-1695 (in Chinese with English abstract).
      Shcherbakov, R., Goda, K., Ivanian, A., et al., 2013. Aftershock Statistics of Major Subduction Earthquakes. The Bulletin of the Seismological Society of America, 103(6): 3222-3234. https://doi.org/10.1785/0120120337
      Su, Y. J., Li, Z. H., Zhao, X. Y., et al., 2014. Study on Global Earthquake Sequences with Magnitude 7 and above. Yunnan University Press, Kunming (in Chinese with English abstract).
      Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
      Tian, Y., Zhao, D. P., Sun, R. M., et al., 2007. The 1992 Landers Earthquake: Effect of Crustal Heterogeneity on Earthquake Generation. Chinese Journal of Geophysics, 50(5): 1488-1496 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2007.05.025
      Tsapanos, T. M., 1990. B-Values of Two Tectonic Parts in the Circum-Pacific Belt. Pure and Applied Geophysics, 134(2): 229-242. https://doi.org/10.1007/BF00876999
      Utsu, T., 1961. A Statistical Study on the Occurrence of Aftershocks. Geophysical Magazine, 30: 521-605.
      Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
      Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Wu, K. T., Jiao, Y. B., Lyu, P. L., et al., 1990. Introduction to Seismic Series. Peking University Press, Beijing (in Chinese).
      Wu, Z. H., Long, C. X., Fan, T. Y., et al., 2015. The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2015.01.002
      Xiao, Z., 2019. Interior Structure of the Tibetan Plateau Revealed by Seismic Imaging (Dissertation). Institute of Geophysics, China Earthquake Administration, Beijing (in Chinese with English abstract).
      Xu, Z. S., Wen, X. T., Xi, N., et al., 2025. Aftershock Relocation and Intensity Distribution of the Dingri MS6.8 Earthquake in 2025. Earth Science, 50(5): 1759-1769 (in Chinese with English abstract).
      Yang, J. W., Jin, M. P., Ye, B., et al., 2025. Source Rupture Mechanism and Stress Changes to the Adjacent Area of January 7, 2025, MS 6.8 Dingri Earthquake, Xizang, China. Seismology and Geology, 47(1): 36-48 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.003
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS 6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract).
      Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 MS 6.8 Dingri, Xizang Earthquake. Journal of Earth Science, 36(2): 856-860. https://doi.org/10.1007/s12583-025-0210-9
      Žalohar, J., 2014. Explaining the Physical Origin of BÅTH'S Law. Journal of Structural Geology, 60: 30-45. https://doi.org/10.1016/j.jsg.2013.12.009
      Zhang, J. J., Ding, L., 2003. Eastwest Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Scientia Geologica Sinica, 38(2): 179-189 (in Chinese with English abstract).
      Zhang, J. W., Li, H. A., Zhang, H. P., et al., 2020. Research Progress in Cenozoic N-S Striking Rifts in Tibetan Plateau. Advances in Earth Science, 35(8): 848-862 (in Chinese with English abstract).
      Zhang, Q. W., Xu, Y., Wang, X. G., 2024. Characteristics of Global Gravitational Potential Energy and Its Geological Significance Analysis Based on the Crust1.0 Model. Chinese Journal of Geophysics, 67(1): 77-88 (in Chinese with English abstract).
      Zhao, X. Y., Han, L. B., Xu, F. K., et al., 2014. Research on Tracking Analysis for Ludian MS 6.5 Earthquake Sequence in Yunnan in 2014. Journal of Seismological Research, 37(4): 508-514 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0666.2014.04.004
      Zou, J. J., Shao, Z. G., He, H. L., et al., 2025. Surface Rupture Interpretation and Building Damage Assessment of Xizang Dingri MS 6.8 Earthquake on January 7, 2025. Seismology and Geology, 47(1): 16-35 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.002
      白玲, 陈治文, 王绍俊, 2025. 2025年西藏定日6.8级地震: 构造背景分析与震源特征探讨. 地球与行星物理论评(中英文), 56(3): 258-263.
      多布拉, 普穷, 洛桑罗布, 等, 2023. 西藏地震监测台网的建设与发展. 地震地磁观测与研究, 44(2): 73-78. doi: 10.3969/j.issn.1003-3246.2023.02.009
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658. doi: 10.3799/dqkx.2024.124
      蒋海昆, 黎明晓, 吴琼, 等, 2008. 汶川8.0级地震序列及相关问题讨论. 地震地质, 30(3): 746-758.
      蒋海昆, 杨马陵, 付虹, 等, 2015. 震后趋势判定参考指南. 北京: 地震出版社.
      李佺洪, 万永革, 2024. 采用模糊聚类算法确定2021年玛多地震序列的断层结构. 地球科学, 49(9): 3363-3376.
      李雨森, 李为乐, 许强, 等, 2025. 2025年1月7日西藏定日MS6.8级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版), 52(2): 199-211.
      梁明剑, 董芸希, 左洪, 等, 2025. 2025年西藏定日6.8级地震登么错段地表变形特征及其成因. 地震地质, 47(1): 80-89. doi: 10.3969/j.issn.0253-4967.2025.01.006
      邵延秀, 王爱生, 刘静, 等, 2025. 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学, 50(5): 1677-1695.
      苏有锦, 李忠华, 赵小艳, 等, 2014. 全球7级以上地震序列研究. 昆明: 云南大学出版社.
      田婷婷, 吴中海, 2023. 西藏申扎‒定结裂谷南段丁木错正断层的最新史前大地震事件及其地震地质意义. 地质论评, 69(S1): 53-55.
      田有, 赵大鹏, 孙若昧, 等, 2007.1992年美国加州兰德斯地震: 地壳结构不均匀性对地震发生的影响. 地球物理学报, 50(5): 1488-1496. doi: 10.3321/j.issn:0001-5733.2007.05.025
      吴开统, 焦远碧, 吕培苓, 等, 1990. 地震序列概论. 北京: 北京大学出版社.
      吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制. 地质通报, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002
      肖卓, 2019. 青藏高原深部结构的地震学成像(博士学位论文). 北京: 中国地震局地球物理研究所.
      徐志双, 文鑫涛, 席楠, 等, 2025. 2025年西藏定日MS6.8级地震余震序列精定位与地震烈度. 地球科学, 50(5): 1759-1769.
      杨建文, 金明培, 叶泵, 等, 2025. 2025年1月7日西藏定日6.8级地震震源破裂机理及邻区应力变化. 地震地质, 47(1): 36-48. doi: 10.3969/j.issn.0253-4967.2025.01.003
      杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732.
      张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义. 地质科学, 38(2): 179-189. doi: 10.3321/j.issn:0563-5020.2003.02.005
      张佳伟, 李汉敖, 张会平, 等, 2020. 青藏高原新生代南北走向裂谷研究进展. 地球科学进展, 35(8): 848-862.
      张倩文, 徐亚, 王信国, 2024. 全球重力势能特征及其地质意义: 基于Crust1.0模型的分析. 地球物理学报, 67(1): 77-88.
      赵小艳, 韩立波, 徐甫坤, 等, 2014. 2014年云南鲁甸6.5级地震序列跟踪分析研究. 地震研究, 37(4): 508-514. doi: 10.3969/j.issn.1000-0666.2014.04.004
      邹俊杰, 邵志刚, 何宏林, 等, 2025. 2025年1月7日西藏定日MS 6.8地震地表破裂解译与建筑物震害损毁统计. 地震地质, 47(1): 16-35. doi: 10.3969/j.issn.0253-4967.2025.01.002
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(5)  / Tables(1)

      Article views (165) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return