Citation: | Su Yi, Li Shuning, Chen Renxu, Zheng Yongfei, 2025. Deep Carbon Cycle during Tectonic Evolution from Oceanic Subduction through Continental Collision to Post-Collisional Reworking at Convergent Plate Margins. Earth Science, 50(8): 3085-3116. doi: 10.3799/dqkx.2025.060 |
Ague, J. J., Nicolescu, S., 2014. Carbon Dioxide Released from Subduction Zones by Fluid-Mediated Reactions. Nature Geoscience, 7(5): 355-360. https://doi.org/10.1038/ngeo2143
|
Ague, J. J., Tassara, S., Holycross, M. E., et al., 2022. Slab-Derived Devolatilization Fluids Oxidized by Subducted Metasedimentary Rocks. Nature Geoscience, 15(4): 320-326. https://doi.org/10.1038/s41561-022-00904-7
|
Akam, S. A., Swanner, E. D., Yao, H. M., et al., 2023. Methane-Derived Authigenic Carbonates: a Case for a Globally Relevant Marine Carbonate Factory. Earth-Science Reviews, 243: 104487. https://doi.org/10.1016/j.earscirev.2023.104487
|
Albers, E., Bach, W., Pérez-Gussinyé, M., et al., 2021. Serpentinization-Driven H2 Production from Continental Break-Up to Mid-Ocean Ridge Spreading: Unexpected High Rates at the West Iberia Margin. Frontiers in Earth Science, 9: 673063. https://doi.org/10.3389/feart.2021.673063
|
Alt, J. C., Schwarzenbach, E. M., Früh-Green, G. L., et al., 2013. The Role of Serpentinites in Cycling of Carbon and sulfur: Seafloor Serpentinization and Subduction Metamorphism. Lithos, 178: 40-54. https://doi.org/10.1016/j.lithos.2012.12.006
|
Anenburg, M., Mavrogenes, J. A., Frigo, C., et al., 2020. Rare Earth Element Mobility in and around Carbonatites Controlled by Sodium, Potassium, and Silica. Science Advances, 6(41): eabb6570. https://doi.org/10.1126/sciadv.abb6570
|
Behn, M. D., Kelemen, P. B., Hirth, G., et al., 2011. Diapirs as the Source of the Sediment Signature in Arc Lavas. Nature Geoscience, 4(9): 641-646. https://doi.org/10.1038/ngeo1214
|
Beinlich, A., Mavromatis, V., Austrheim, H., et al., 2014. Inter-Mineral Mg Isotope Fractionation during Hydrothermal Ultramafic Rock Alteration: Implications for the Global Mg-Cycle. Earth and Planetary Science Letters, 392: 166-176. https://doi.org/10.1016/j.epsl.2014.02.028
|
Berner, R. A., 1995. Chemical Weathering and Its Effect on Atmospheric CO2 and Climate. Reviews in Mineralogy and Geochemistry, 31(1): 565-583.
|
Beyssac, O., Rumble, D., 2014. Graphitic Carbon: A Ubiquitous, Diverse, and Useful Geomaterial. Elements, 10(6): 415-420. https://doi.org/10.2113/gselements.10.6.415
|
Blank, J. G., Stolper, E. M., Carroll, M. R., 1993. Solubilities of Carbon Dioxide and Water in Rhyolitic Melt at 850 ℃ and 750 Bars. Earth and Planetary Science Letters, 119(1/2): 27-36. https://doi.org/10.1016/0012-821X(93)90004-S
|
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572
|
Borghini, A., Nicoli, G., Ferrero, S., et al., 2023. The Role of Continental Subduction in Mantle Metasomatism and Carbon Recycling Revealed by Melt Inclusions in UHP Eclogites. Science Advances, 9(6): eabp9482. https://doi.org/10.1126/sciadv.abp9482
|
Botcharnikov, R. E., Behrens, H., Holtz, F., 2006. Solubility and Speciation of C-O-H Fluids in Andesitic Melt at T=1 100-1 300 ℃ and P=200 and 500 MPa. Chemical Geology, 229(1/2/3): 125-143. https://doi.org/10.1016/j.chemgeo.2006.01.016
|
Boutier, A., Martinez, I., Sissmann, O., et al., 2024. Complexity of Graphite Formation in Response to Metamorphic Methane Generation and Transformation in an Orogenic Ultramafic Body. Geochimica et Cosmochimica Acta, 364: 166-183. https://doi.org/10.1016/j.gca.2023.10.028
|
Boutier, A., Vitale Brovarone, A., Martinez, I., et al., 2021. High-Pressure Serpentinization and Abiotic Methane Formation in Metaperidotite from the Appalachian Subduction, Northern Vermont. Lithos, 396: 106190. https://doi.org/10.1016/j.lithos.2021.106190
|
Brooker, R. A., 1994. Experimental Studies of Carbon Dioxide in Silicate Melts: Solubility, Speciation, and Stable Carbon Isotope Behavior. In: Jennifer, G. B., Richard, A. B., eds., Volatiles in Magmas, Walter de Gruyter GmbH, 157-186.
|
Burton, M. R., Sawyer, G. M., Granieri, D., 2013. Deep Carbon Emissions from Volcanoes. Reviews in Mineralogy and Geochemistry, 75(1): 323-354. https://doi.org/10.2138/rmg.2013.75.11
|
Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep-Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796
|
Carter, L. B., Dasgupta, R., 2018. Decarbonation in the Ca-Mg-Fe Carbonate System at Mid-Crustal Pressure as a Function of Temperature and Assimilation with Arc Magmas: Implications for Long-Term Climate. Chemical Geology, 492: 30-48. https://doi.org/10.1016/j.chemgeo.2018.05.024
|
Chen, T. N., Chen, R. X., Zheng, Y. F., et al., 2022. The Effect of Supercritical Fluids on Nb-Ta Fractionation in Subduction zones: Geochemical Insights from a Coesite-Bearing Eclogite-Vein System. Geochimica et Cosmochimica Acta, 335: 23-55. https://doi.org/10.1016/j.gca.2022.08.013
|
Chen, T. N., Chen, R. X., Zheng, Y. F., et al., 2025. Subduction Zone Rocks Oxidized by Supercritical fluid: Constraints from an Ultrahigh-Pressure Eclogite-Vein System in the Dabie Orogen, China. Geological Society of America Bulletin, 137(5/6): 2358-2374. https://doi.org/10.1130/b37979.1
|
Chen, C. F., Förster, M. W., Foley, S. F., et al., 2021. Massive Carbon Storage in Convergent Margins Initiated by Subduction of Limestone. Nature Communications, 12: 4463. https://doi.org/10.1038/s41467-021-24750-0
|
Chen, W., Keshav, S., Peng, W. G., et al., 2023. Coupled Cycling of Carbon and Water in the Form of Hydrous Carbonatitic Liquids in the Subarc Region. Journal of Geophysical Research: Solid Earth, 128(10): e2023JB026681. https://doi.org/10.1029/2023JB026681
|
Chen, C. F., Liu, Y. S., Foley, S. F., et al., 2016. Paleo-Asian Oceanic Slab under the North China Craton Revealed by Carbonatites Derived from Subducted Limestones. Geology, 44(12): 1039-1042. https://doi.org/10.1130/g38365.1
|
Chen, X. Q., Zhang, L. F., 2023. Carbon Sequestration, Transport, Transfer, and Degassing: Insights into the Deep Carbon Cycle. Geoscience Frontiers, 30(3): 313-339 (in Chinese with English abstract).
|
Clift, P. D., 2017. A Revised Budget for Cenozoic Sedimentary Carbon Subduction. Reviews of Geophysics, 55(1): 97-125. https://doi.org/10.1002/2016RG000531
|
Consuma, G., Aulbach, S., Braga, R., et al., 2021. Multi-Stage Sulfur and Carbon Mobility in Fossil Continental Subduction zones: New Insights from Carbonate-Bearing Orogenic Peridotites. Geochimica et Cosmochimica Acta, 306: 143-170. https://doi.org/10.1016/j.gca.2021.05.008
|
Consuma, G., Braga, R., Giovanardi, T., et al., 2020. In Situ Sr Isotope Analysis of Mantle Carbonates: Constraints on the Evolution and Sources of Metasomatic Carbon-Bearing Fluids in a Paleo-Collisional Setting. Lithos, 354: 105334. https://doi.org/10.1016/j.lithos.2019.105334
|
Dalai, T. K., Krishnaswami, S., Sarin, M. M., 2002. Major Ion Chemistry in the Headwaters of the Yamuna River system: Chemical Weathering, Its Temperature Dependence and CO2 Consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66(19): 3397-3416. https://doi.org/10.1016/S0016-7037(02)00937-7
|
Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. https://doi.org/10.1016/j.epsl.2010.06.039
|
Dasgupta, R., Aubaud, C., 2025. Major Volatiles in the Earth's Mantle beneath Mid-Ocean Ridges and Intraplate Ocean Islands. Treatise on Geochemistry. Elsevier, Amsterdam, 381-423.
|
Debret, B., Ménez, B., Walter, B., et al., 2022. High-Pressure Synthesis and Storage of Solid Organic Compounds in Active Subduction Zones. Science Advances, 8(37): eabo2397. https://doi.org/10.1126/sciadv.abo2397
|
Deng, L. X., Liu, Y. S., Zong, K. Q., et al., 2019. Carbonate Metasomatism and Its Identification Characteristics in Mantle Peridotite. Earth Science, 44(4): 1113-1127 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904005.htm
|
Deng, K., Yang, S. Y., Guo, Y. L., 2022. A Global Temperature Control of Silicate Weathering Intensity. Nature Communications, 13: 1781. https://doi.org/10.1038/s41467-022-29415-0
|
DePaolo, D. J., 2015. Sustainable Carbon emissions: The Geologic Perspective. MRS Energy & Sustainability, 2(1): 9. https://doi.org/10.1557/mre.2015.10
|
Derry, L. A., 2014. Organic Carbon Cycling and the Lithosphere. Treatise on Geochemistry. Elsevier, Amsterdam, 239-249.
|
Dixon, J. E., 1997. Degassing of Alkalic Basalts. American Mineralogist, 82(3/4): 368-378. https://doi.org/10.2138/am-1997-3-415
|
Dong, X. H., Wang, S. J., Wang, W. Z., et al., 2024. Highly Oxidized Intraplate Basalts and Deep Carbon Storage. Science Advances, 10(32): eadm8138. https://doi.org/10.1126/sciadv.adm8138
|
Duan, Z. H., Li, D. D., 2008. Coupled Phase and Aqueous Species Equilibrium of the H2O-CO2-NaCl-CaCO3 System from 0 to 250 ℃, 1 to 1000 bar with NaCl Concentrations up to Saturation of Halite. Geochimica et Cosmochimica Acta, 72(20): 5128-5145. https://doi.org/10.1016/j.gca.2008.07.025
|
Ducea, M. N., Currie, C. A., Balica, C., et al., 2022. Diapirism of Carbonate Platforms Subducted into the Upper Mantle. Geology, 50(8): 929-933. https://doi.org/10.1130/g50000.1
|
Dutkiewicz, A., Müller, R. D., Cannon, J., et al., 2018. Sequestration and Subduction of Deep-Sea Carbonate in the Global Ocean since the Early Cretaceous. Geology, 47(1): 91-94. https://doi.org/10.1130/g45424.1
|
Edmonds, M., Liu, E. J., Cashman, K. V., 2022. Open-Vent Volcanoes Fuelled by Depth-Integrated Magma Degassing. Bulletin of Volcanology, 84(3): 28. https://doi.org/10.1007/s00445-021-01522-8
|
Eichenseer, K., Balthasar, U., Smart, C. W., et al., 2019. Jurassic Shift from Abiotic to Biotic Control on Marine Ecological Success. Nature Geoscience, 12(8): 638-642. https://doi.org/10.1038/s41561-019-0392-9
|
Eickenbusch, P., Ken, T. K., Sissman, O., et al., 2019. Origin of Short-Chain Organic Acids in Serpentinite Mud Volcanoes of the Mariana Convergent Margin. Frontiers in Microbiology, 10: 1729. https://doi.org/10.3389/fmicb.2019.01729
|
Facq, S., Daniel, I., Montagnac, G., et al., 2014. In Situ Raman Study and Thermodynamic Model of Aqueous Carbonate Speciation in Equilibrium with Aragonite under Subduction Zone Conditions. Geochimica et Cosmochimica Acta, 132: 375-390. https://doi.org/10.1016/j.gca.2014.01.030
|
Falk, E. S., Kelemen, P. B., 2015. Geochemistry and Petrology of Listvenite in the Samail Ophiolite, Sultanate of Oman: Complete Carbonation of Peridotite during Ophiolite Emplacement. Geochimica et Cosmochimica Acta, 160: 70-90. https://doi.org/10.1016/j.gca.2015.03.014
|
Farsang, S., Louvel, M., Zhao, C. S., et al., 2021. Deep Carbon Cycle Constrained by Carbonate Solubility. Nature Communications, 12: 4311. https://doi.org/10.1038/s41467-021-24533-7
|
Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021
|
Feng, W. M., Zheng, Y. F., Zhou, J. B., 2003. Carbon and Oxygen Isotope Geochemistry of Marbles from the Dabie-Sulu Orogenic Belt. Acta Petrologica Sinica, 19(3): 468-478(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0012825202001332
|
Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China): Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223(1/2/3): 68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029
|
Fischer, T. P., Arellano, S., Carn, S., et al., 2019. The Emissions of CO2 and Other Volatiles from the World's Subaerial Volcanoes. Scientific Reports, 9: 18716. https://doi.org/10.1038/s41598-019-54682-1
|
Fischer, R. A., Cottrell, E., Hauri, E., et al., 2020. The Carbon Content of Earth and Its Core. Proceedings of the National Academy of Science, 117(16): 8743-8749. https://doi.org/10.1073/pnas.1919930117
|
Focru, R. A., Lcor, M., 2008. The Solubility of Carbon Dioxide in Rhyolitic Melts: A Quantitative FTIR Study. Geochimica et Cosmochimica Acta, 72(19): 4808-4826. https://doi.org/10.1016/j.gca.2008.06.014
|
Foley, S. F., Fischer, T. P., 2017. An Essential Role for Continental Rifts and Lithosphere in the Deep Carbon Cycle. Nature Geoscience, 10(12): 897-902. https://doi.org/10.1038/s41561-017-0002-7
|
Förster, B., Aulbach, S., Bebout, G. E., et al., 2024. Iron-Sulfur-Carbon Redox Interactions in the Continental Subduction Factory and Their Effect on Volatile Element Storage in the Mantle Wedge. Earth and Planetary Science Letters, 648: 119074. https://doi.org/10.1016/j.epsl.2024.119074
|
Frezzotti, M. L., 2019. Diamond Growth from Organic Compounds in Hydrous Fluids Deep within the Earth. Nature Communications, 10: 4952. https://doi.org/10.1038/s41467-019-12984-y
|
Frezzotti, M. L., Selverstone, J., Sharp, Z. D., et al., 2011. Carbonate Dissolution during Subduction Revealed by Diamond-Bearing Rocks from the Alps. Nature Geoscience, 4(10): 703-706. https://doi.org/10.1038/ngeo1246
|
Frost, D. A., Garnero, E. J., Creasy, N., et al., 2024. Heterogeneous Mantle Effects on the Behaviour of SmKS Waves and Outermost Core Imaging. Geophysical Journal International, 237(3): 1655-1673. https://doi.org/10.1093/gji/ggae135
|
Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36: 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
|
Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1/2/3/4): 3-30. https://doi.org/10.1016/S0009-2541(99)00031-5
|
Galvez, M. E., Beyssac, O., Martinez, I., et al., 2013. Graphite Formation by Carbonate Reduction during Subduction. Nature Geoscience, 6(6): 473-477. https://doi.org/10.1038/ngeo1827
|
Galvez, M. E., Connolly, J. A. D., Manning, C. E., 2016. Implications for Metal and Volatile Cycles from the pH of Subduction Zone Fluids. Nature, 539(7629): 420-424. https://doi.org/10.1038/nature20103
|
Galy, V., Beyssac, O., France-Lanord, C., et al., 2008. Recycling of Graphite during Himalayan Erosion: A Geological Stabilization of Carbon in the Crust. Science, 322(5903): 943-945. https://doi.org/10.1126/science.1161408
|
Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975. https://doi.org/10.1016/S0016-7037(98)00121-5
|
Gao, Y., Zong, K., Zhang, J., et al., 2024. Continental Subduction-Triggered Carbonate Metasomatism of the Lithospheric Mantle: Implications for the Deep Carbon Cycle. Chemical Geology, 660: 122159. https://doi.org/10.1016/j.chemgeo.2024.122159
|
Gerya, T. V., Connolly, J. A. D., Yuen, D. A., et al., 2006. Seismic Implications of Mantle Wedge Plumes. Physics of the Earth and Planetary Interiors, 156(1/2): 59-74. https://doi.org/10.1016/j.pepi.2006.02.005
|
Gerya, T. V., Meilick, F. I., 2011. Geodynamic Regimes of Subduction under an Active Margin: effects of Rheological Weakening by Fluids and Melts. Journal of Metamorphic Geology, 29(1): 7-31. https://doi.org/10.1111/j.1525-1314.2010.00904.x
|
Gerya, T. V., Yuen, D. A., 2003. Rayleigh-Taylor Instabilities from Hydration and Melting Propel 'Cold Plumes' at Subduction Zones. Earth and Planetary Science Letters, 212(1/2): 47-62. https://doi.org/10.1016/S0012-821X(03)00265-6
|
Gibson, S. A., McKenzie, D., 2023. On the Role of Earth's Lithospheric Mantle in Global Volatile Cycles. Earth and Planetary Science Letters, 602: 117946. https://doi.org/10.1016/j.epsl.2022.117946
|
Gillis, K. M., Coogan, L. A., 2011. Secular Variation in Carbon Uptake into the Ocean Crust. Earth and Planetary Science Letters, 302(3/4): 385-392. https://doi.org/10.1016/j.epsl.2010.12.030
|
Gorczyk, W., Gonzalez, C. M., 2019. CO2 Degassing and Melting of Metasomatized Mantle Lithosphere during Rifting: Numerical Study. Geoscience Frontiers, 10(4): 1409-1420. https://doi.org/10.1016/j.gsf.2018.11.003
|
Goudie, A. S., Viles, H. A., 2012. Weathering and the Global Carbon cycle: Geomorphological Perspectives. Earth-Science Reviews, 113(1/2): 59-71. https://doi.org/10.1016/j.earscirev.2012.03.005
|
Groppo, C., Rolfo, F., Castelli, D., et al., 2017. Metamorphic CO2 Production in Collisional Orogens: Petrological Constraints from Phase Diagram Modeling of Himalayan, Scapolite-Bearing, Calc-Silicate Rocks in the NKC(F)MAS(T)-HC System. Journal of Petrology, 58(1): 53-83. https://doi.org/10.1093/petrology/egx005
|
Groppo, C., Rolfo, F., Frezzotti, M. L., 2022. CO2 Outgassing during Collisional Orogeny Is Facilitated by the Generation of Immiscible Fluids. Communications Earth & Environment, 3: 13. https://doi.org/10.1038/s43247-022-00340-w
|
Guillot, S., Hattori, K., Agard, P., et al., 2009. Exhumation Processes in Oceanic and Continental Subduction Contexts: A Review. Subduction Zone Geodynamics. Berlin, Heidelberg: Springer, Berlin Heidelberg, 175-205.
|
Guo, S., Hermann, J., Chu, X., et al., 2025. Substantial Carbon Dioxide Release from Subducted Dolomitic Carbonate Driven by Episodic Infiltration of Eclogite-Facies Fluids. Geology, 53(4): 328-332. https://doi.org/10.1130/g52670.1
|
Guo, S., Hermann, J., Tang, P., et al., 2022. Formation of Carbon-Bearing Silicate Melts by Melt-Metacarbonate Interaction at Convergent Plate Margins. Earth and Planetary Science Letters, 597: 117816. https://doi.org/10.1016/j.epsl.2022.117816
|
Guo, Z. F., Wilson, M., Dingwell, D. B., et al., 2021. India-Asia Collision as a Driver of Atmospheric CO2 in the Cenozoic. Nature Communications, 12: 3891. https://doi.org/10.1038/s41467-021-23772-y
|
Hartmann, J., Dürr, H. H., Moosdorf, N., et al., 2012. The Geochemical Composition of the Terrestrial Surface (without Soils) and Comparison with the Upper Continental Crust. International Journal of Earth Sciences, 101(1): 365-376. https://doi.org/10.1007/s00531-010-0635-x
|
Hazen, R. M., Schiffries, C. M., 2013. Why Deep Carbon? Reviews in Mineralogy and Geochemistry, 75(1): 1-6. https://doi.org/10.2138/rmg.2013.75.1
|
Hilley, G. E., Porder, S., 2008. A Framework for Predicting Global Silicate Weathering and CO2 Drawdown Rates over Geologic Time-Scales. Proceedings of the National Academy of Sciences, 105: 16855-16859. https://doi.org/10.1073/pnas.0801462105
|
Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth's Core. Nature Reviews Earth and Environment, 2(9): 645-658. https://doi.org/10.1038/s43017-021-00203-6
|
Hirschmann, M. M., 2018. Comparative Deep Earth Volatile Cycles: The Case for C Recycling from Exosphere/Mantle Fractionation of Major (H2O, C, N) Volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb Exosphere Ratios. Earth and Planetary Science Letters, 502: 262-273. https://doi.org/10.1016/j.epsl.2018.08.023
|
Hu, H., Zhang, L., Lan, C., et al., 2023. Petrological Evidence for Deep Subduction of Organic Carbon to Subarc Depths. Communications Earth & Environment, 4: 418. https://doi.org/10.1038/s43247-023-01085-w
|
Huang, F., Daniel, I., Cardon, H., et al., 2017. Immiscible Hydrocarbon Fluids in the Deep Carbon Cycle. Nature Communications, 8(1): 15798. https://doi.org/10.1038/ncomms15798
|
Iacono-Marziano, G., Gaillard, F., Scaillet, B., et al., 2009. Role of Non-Mantle CO2 in the Dynamics of Volcano Degassing: The Mount Vesuvius Example. Geology, 37(4): 319-322. https://doi.org/10.1130/G25446A.1
|
Jablon, B. M., Navon, O., 2016. Most Diamonds were Created Equal. Earth and Planetary Science Letters, 443: 41-47. https://doi.org/10.1016/j.epsl.2016.03.013
|
James, N. P., Jones, B., 2016. Origin of Carbonate Sedimentary Rocks. Wiley, Chichester, 446.
|
Jin, D. S., Xiao, Y. L., Tan, D. B., et al., 2023. Supercritical Fluid in Deep Subduction Zones as Revealed by Multiphase Fluid Inclusions in an Ultrahigh-Pressure Metamorphic Vein. Proceedings of the National Academy of Sciences of the United States of America, 120. https://doi.org/10.1073/pnas.2219083120
|
Jull, M., Kelemen, P. B., 2001. On the Conditions for Lower Crustal Convective Instability. Journal of Geophysical Research: Solid Earth, 106: 6423-6446. https://doi.org/10.1029/2000JB900357
|
Kelemen, P. B., Manning, C. E., 2015. Reevaluating Carbon Fluxes in Subduction Zones, What Goes Down, Mostly Comes Up. Proceedings of the National Academy of Sciences, 112(3): 9564-9468. https://doi.org/10.1073/pnas.1507889112
|
Kelley, K. A., Fischer, T. P., 2025. Melt Inclusion and Gas Perspectives on Volatiles in Subduction Zones. In: Ariel, A., Dominique, W., eds., Treatise on Geochemistry (Third Edition), Elsevier, 745-771.
|
Keppler, H., Wiedenbeck, M., Shcheka, S., 2003. Carbon Solubility in Olivine and the Mode of Carbon Storage in the Earth's Mantle. Nature, 424: 414-416. https://doi.org/10.1038/nature01828
|
Kerrick, D. M., Caldeira, K., 1998. Metamorphic CO2 Degassing from Orogenic Belts. Chemical Geology, 145: 213-232. https://doi.org/10.1016/S0009-2541(97)00144-7
|
Kerrick, D. M., Connolly, J. A. D., 2001a. Metamorphic Devolatilization of Subducted Marine Sediments and the Transport of Volatiles into the Earth's Mantle. Nature, 411: 293-296. http://www.xueshufan.com/publication/1592718458
|
Kerrick, D. M., Connolly, J. A. D., 2001b. Metamorphic Devolatilization of Subducted Oceanic Metabasalts: Implications for Seismicity, Arc Magmatism and Volatile Recycling. Earth and Planetary Science Letters, 189: 19-29. https://doi.org/10.1016/S0012-821X(01)00347-8
|
King, P. L., Holloway, J. R., 2002. CO2 Solubility and Speciation in Intermediate (Andesitic) Melts: The Role of H2O and Composition. Geochimica et Cosmochimica Acta, 66: 1627-1640. https://doi.org/10.1016/S0016-7037(01)00872-9
|
Kohn, S. C., Brooker, R. A., Dupree, R., 1991. 13C MAS NMR: A Method for Studying CO2 Speciation in Glasses. Geochimica et Cosmochimica Acta, 55: 3879-3884. https://doi.org/10.1016/0016-7037(91)90082-G
|
Korsakov, A. V., Theunissen, K., Kozmenko, O. A., et al., 2006. Reaction Textures in Clinozoisite Gneisses. Russ. Geol. Geophys, 47(4): 499-512. http://www.researchgate.net/profile/Andrey_Korsakov/publication/230729722_Reaction_textures_in_clinozoisite_gneisses/links/0912f503a202e77442000000
|
Kotková, J., Čopjaková, R., Škoda, R., 2021. Multiphase Solid Inclusions Reveal the Origin and Fate of Carbonate-Silicate Melts in Metasomatised Peridotite. Lithos, 398-399: 106309. https://doi.org/10.1016/j.lithos.2021.106309
|
Lan, C., Tao, R., Huang, F., et al., 2023. High-Pressure Experimental and Thermodynamic Constraints on the Solubility of Carbonates in Subduction Zone Fluids. Earth and Planetary Science Letters, 603: 117989. https://doi.org/10.1016/j.epsl.2023.117989
|
Lan, C. Y., Tao, R. B., Zhang, L. F., et al., 2022. Carbon Releasing Mechanisms and Flux Estimation in Subducting Slabs: Problems and Progress. Acta Petrologica Sinica, 38(5): 1523-1540 (in Chinese with English abstract). http://www.semanticscholar.org/paper/d8bcd396e395a482e1d4ec2be7314b2d39dd4107
|
Lazar, C., Zhang, C., Manning, C. E., et al., 2014. Redox Effects on Calcite-Portlandite-Fluid Equilibria at Forearc Conditions: Carbon Mobility, Methanogenesis, and Reduction Melting of Calcite. American Mineralogist, 99(8-9): 1604-1615. https://doi.org/10.2138/am.2014.4696
|
Lee, C. T., Shen, B., Slotnick, B., et al., 2013. Continental Arc-Island Arc Fluctuations, Growth of Crustal Carbonates, and Long-Term Climate Change. Geosphere, 9: 21-36. https://doi.org/10.1130/GES00822.1
|
Lee, C. T. A., Lackey, J. S., 2015. Global Continental Arc Flare-Ups and Their Relation to Long-Term Greenhouse Conditions. Elements, 11: 125-130. https://doi.org/10.2113/gselements.11.2.125
|
Li, S. G., 2022. Tracing Deep Carbon Cycling by Metal Stable Isotopes. National Science Review, 9: nwac071. https://doi.org/10.1093/nsr/nwac071
|
Li, J., Ahmed, R., Li, X., 2018a. Thermodynamic Modeling of CO2-N2-O2-Brine-Carbonates in Conditions from Surface to High Temperature and Pressure. Energies, 11: 2627. https://doi.org/10.3390/en11102627
|
Li, J. L., Stewart, E. M., John, T., et al., 2024. Metasedimentary "Carbon Filter" and Its Implication for Subduction Zone Carbon Recycling. Earth and Planetary Science Letters, 646: 119007. https://doi.org/10.1016/j.epsl.2024.119007
|
Li, S. G., Wang, Y., Liu, S. A., 2024. Two Modes of Deep Carbon Cycling in a Big Mantle Wedge: Differences and Effects on Earth's Habitability. Geoscience Frontiers, 31(1): 15-27 (in Chinese with English abstract).
|
Li, S. G., Yang, W., Ke, S., et al., 2017. Deep Carbon Cycles Constrained by a Large-Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4: 111-120. https://doi.org/10.1093/nsr/nww070
|
Li, W. C., Wang, Q., 2022. In Situ Determination of Magnesite Solubility and Carbon Speciation in Water and NaCl Solutions under Subduction Zone Conditions. Solid Earth Sciences, 7: 200-214. https://doi.org/10.1016/j.sesci.2022.06.002
|
Liu, Y. S., Chen, C. F., He, D. T., et al., 2019. Deep Carbon Cycle in Subduction Zones. Science China Earth Sciences, 49(12): 1982-2003 (in Chinese). http://www.cqvip.com/QK/60111X/201911/7100270183.html
|
Liu, Y., He, D., Gao, C., et al., 2015. First Direct Evidence of Sedimentary Carbonate Recycling in Subduction-Related Xenoliths. Scientific Reports, 5: 11547. https://doi.org/10.1038/srep11547
|
Liu, S. A., Qu, Y. R., Wang, Z. Z., et al., 2022. The Fate of Subducting Carbon Tracked by Mg and Zn Isotopes: A Review and New Perspectives. Earth-Science Reviews, 228: 104010. https://doi.org/10.1016/j.earscirev.2022.104010
|
Liu, L., Zhang, J. F., Cao, Y. T., et al., 2018. Evidence Former Stishovite in UHP Eclogite from the South Altyn Tagh, Western China. Earth and Planetary Science Letters, 484: 353-362. http://www.keyanzhidian.com/doc/detail?id=2034181006
|
Liu, W., Zhang, M., Liu, Y., et al., 2024. Massive Crustal Carbon Mobilization and Emission Driven by India Underthrusting Asia. Communications earth & environment, 5: 271. https://doi.org/org/10.1038/s43247-024-01438-z
|
Lowenstern, J., 2001. Carbon Dioxide in Magmas and Implications for Hydrothermal Systems. Mineralium Deposita, 36: 490-502. https://doi.org/10.1007/s001260100185
|
Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249(3-4): 173-187. https://doi.org/10.1016/j.epsl.2006.07.017
|
Malaspina, N., Langenhorst, F., Tumiati, S., et al., 2017. The Redox Budget of Crust-Derived Fluid Phases at the Slab-Mantle Interface. Geochimica et Cosmochimica Acta, 209: 70-84. https://doi.org/10.1016/j.gca.2017.04.004
|
Malaspina, N., Poli, S., Fumagalli, P., 2009. The Oxidation State of Metasomatized Mantle Wedge: Insights from C-O-H-Bearing Garnet Peridotite. Journal of Petrology, 50: 1533-1552. https://doi.org/10.1093/petrology/egp040
|
Manning, C. E., 2013. Thermodynamic Modeling of Fluid-Rock Interaction at Mid-Crustal to Upper-Mantle Conditions. Reviews in Mineralogy and Geochemistry, 76(1): 135-164. https://doi.org/10.2138/rmg.2013.76.5
|
Marschall, H. R., Schumacher, J. C., 2012. Arc Magmas Sourced from Mélange Diapirs in Subduction Zones. Nature Geoscience, 5(12): 862-867. https://doi.org/10.1038/ngeo1634
|
Marty, B., Jambon, A., Sano, Y., 1989. Helium Isotopes and CO2 in Volcanic Gases of Japan. Chemical Geology, 76(1/2): 25-40. https://doi.org/10.1016/0009-2541(89)90125-3
|
Mason, E., Edmonds, M., Turchyn, A. V., 2017. Remobilization of Crustal Carbon may Dominate Volcanic Arc Emissions. Science, 357(6348): 290-294. https://doi.org/10.1126/science.aan5049
|
Mattey, D. P., 1991. Carbon Dioxide Solubility and Carbon Isotope Fractionation in Basaltic Melt. Geochimica et Cosmochimica Acta, 55(11): 3467-3473. https://doi.org/10.1016/0016-7037(91)90508-3
|
McCollom, T. M., 2016. Abiotic Methane Formation during Experimental Serpentinization of Olivine. Proceedings of the National Academy of Sciences of the United States of America, 113(49): 13965-13970. https://doi.org/10.1073/pnas.1611843113
|
McCollom, T. M., 2013. Laboratory Simulations of Abiotic Hydrocarbon Formation in Earth's Deep Subsurface. Reviews in Mineralogy and Geochemistry, 75(1): 467-494. https://doi.org/10.2138/rmg.2013.75.15
|
Ménez, B., 2020. Abiotic Hydrogen and Methane: Fuels for Life. Elements, 16(1): 39-46. https://doi.org/10.2138/gselements.16.1.39
|
Menzel, M. D., Garrido, C. J., López Sánchez-Vizcaíno, V., et al., 2018. Carbonation of Mantle Peridotite by CO2-Rich Fluids: the Formation of Listvenites in the Advocate Ophiolite Complex (Newfoundland, Canada). Lithos, 323: 238-261. https://doi.org/10.1016/j.lithos.2018.06.001
|
Menzel, M. D., Sieber, M. J., Godard, M., 2024. From Peridotite to Listvenite: Perspectives on the Processes, Mechanisms and Settings of Ultramafic Mineral Carbonation to Quartz-Magnesite Rocks. Earth-Science Reviews, 255: 104828. https://doi.org/10.1016/j.earscirev.2024.104828
|
Menzel, M. D., Urai, J. L., Ukar, E., et al., 2022. Ductile Deformation during Carbonation of Serpentinized Peridotite. Nature Communications, 13: 3478. https://doi.org/10.1038/s41467-022-31049-1
|
Molina, J. F., Poli, S., 2000. Carbonate Stability and Fluid Composition in Subducted Oceanic Crust: an Experimental Study on H2O-CO2-Bearing Basalts. Earth and Planetary Science Letters, 176(3/4): 295-310. https://doi.org/10.1016/S0012-821X(00)00021-2
|
Müller, R. D., Mather, B., Dutkiewicz, A., et al., 2022. Evolution of Earth's Tectonic Carbon Conveyor Belt. Nature, 605(7911): 629-639. https://doi.org/10.1038/s41586-022-04420-x
|
Mysen, B. O., Arculus, R. J., Eggler, D. H., 1975. Solubility of Carbon Dioxide in Melts of Andesite, Tholeiite, and Olivine Nephelinite Composition to 30 Kbar Pressure. Contributions to Mineralogy and Petrology, 53(4): 227-239. https://doi.org/10.1007/BF00382441
|
Newton, R. C., Manning, C. E., 2002. Experimental Determination of Calcite Solubility in H2O-NaCl Solutions at Deep Crust/Upper Mantle Pressures and temperatures: Implications for Metasomatic Processes in Shear Zones. American Mineralogist, 87(10): 1401-1409. https://doi.org/10.2138/am-2002-1016
|
Nicoli, G., Borghini, A., Ferrero, S., 2022. The Carbon Budget of Crustal Reworking during Continental collision: Clues from Nanorocks and Fluid Inclusions. Chemical Geology, 608: 121025. https://doi.org/10.1016/j.chemgeo.2022.121025
|
Nielsen, S. G., Marschall, H. R., 2017. Geochemical Evidence for Mélange Melting in Global Arcs. Science Advances, 3(4): e1602402. https://doi.org/10.1126/sciadv.1602402
|
Oyanagi, R., Okamoto, A., 2024. Subducted Carbon Weakens the Forearc Mantle Wedge in a Warm Subduction Zone. Nature Communications, 15: 7159. https://doi.org/10.1038/s41467-024-51476-6
|
Pan, D., Spanu, L., Harrison, B., et al., 2013. Dielectric Properties of Water under Extreme Conditions and Transport of Carbonates in the Deep Earth. Proceedings of the National Academy of Sciences of the United States of America, 110(17): 6646-6650. https://doi.org/10.1073/pnas.1221581110
|
Peña-Alvarez, M., Brovarone, A. V., Donnelly, M. E., et al., 2021. In-Situ Abiogenic Methane Synthesis from Diamond and Graphite under Geologically Relevant Conditions. Nature Communications, 12: 6387. http://pubmed.ncbi.nlm.nih.gov/34737292/
|
Peng, W. G., Zhang, L. F., Menzel, M. D., et al., 2020. Multistage CO2 Sequestration in the Subduction zone: Insights from Exhumed Carbonated Serpentinites, SW Tianshan UHP Belt, China. Geochimica et Cosmochimica Acta, 270: 218-243. https://doi.org/10.1016/j.gca.2019.11.025
|
Peng, W. G., Zhang, L. F., Tumiati, S., et al., 2021. Abiotic Methane Generation through Reduction of Serpentinite-Hosted dolomite: Implications for Carbon Mobility in Subduction Zones. Geochimica et Cosmochimica Acta, 311: 119-140. https://doi.org/10.1016/j.gca.2021.07.033
|
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., et al., 2020. Silicate Weathering as a Feedback and Forcing in Earth's Climate and Carbon Cycle. Earth-Science Reviews, 209: 103298. https://doi.org/10.1016/j.earscirev.2020.103298
|
Piccoli, F., Vitale Brovarone, A., Beyssac, O., et al., 2016. Carbonation by Fluid-Rock Interactions at High-Pressure conditions: Implications for Carbon Cycling in Subduction Zones. Earth and Planetary Science Letters, 445: 146-159. https://doi.org/10.1016/j.epsl.2016.03.045
|
Plank, T., 2014. The Chemical Composition of Subducting Sediments. Treatise on Geochemistry. Elsevier, Amsterdam, 607-629.
|
Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4): 325-394. https://doi.org/10.1016/S0009-2541(97)00150-2
|
Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586-019-1643-z
|
Plümper, O., King, H. E., Geisler, T., et al., 2017. Subduction Zone Forearc Serpentinites as Incubators for Deep Microbial Life. Proceedings of the National Academy of Sciences of the United States of America, 114(17): 4324-4329. https://doi.org/10.1073/pnas.1612147114
|
Poli, S., 2015. Carbon Mobilized at Shallow Depths in Subduction Zones by Carbonatitic Liquids. Nature Geoscience, 8(8): 633-636. https://doi.org/10.1038/ngeo2464
|
Poli, S., Schmidt, M. W., 2002. Petrology of Subducted Slabs. Annual Review of Earth and Planetary Sciences, 30: 207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550
|
Pradhan, S., Sen, I. S., 2024. Metamorphic CO2 Fluxes Offset the Net Geological Carbon Sink in the Himalayan-Tibetan Orogen. Earth and Planetary Science Letters, 647: 119018. https://doi.org/10.1016/j.epsl.2024.119018
|
Qiao, X. Y., Xiong, J. W., Chen, Y. X., et al., 2025. Magnesium and Boron Isotope Evidence for the Generation of Arc Magma through Serpentinite-Mélange Melting. National Science Review, 12(1): nwae363. https://doi.org/10.1093/nsr/nwae363
|
Qiu, K. F., Romer, R. L., Long, Z. Y., et al., 2024. The Role of an Oxidized Lithospheric Mantle in Gold Mobilization. Science Advances, 10(41): eado6262. https://doi.org/10.1126/sciadv.ado6262
|
Read, J. F., 1985. Carbonate Platform Facies Models. AAPG Bulletin, 69(1): 21. https://doi.org/10.1306/AD461B79-16F7-11D7-8645000102C1865D
|
Regier, M. E., Pearson, D. G., Stachel, T., et al., 2020. The Lithospheric-to-Lower-Mantle Carbon Cycle Recorded in Superdeep Diamonds. Nature, 585(7824): 234-238. https://doi.org/10.1038/s41586-020-2676-z
|
Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
|
Rudnick, R. L., McDonough, W. F., Chappell, B. W., 1993. Carbonatite Metasomatism in the Northern Tanzanian mantle: Petrographic and Geochemical Characteristics. Earth and Planetary Science Letters, 114(4): 463-475. https://doi.org/10.1016/0012-821X(93)90076-L
|
Sapienza, G. T., Scambelluri, M., Braga, R., 2009. Dolomite-Bearing Orogenic Garnet Peridotites Witness Fluid-Mediated Carbon Recycling in a Mantle Wedge (Ulten Zone, Eastern Alps, Italy). Contributions to Mineralogy and Petrology, 158(3): 401-420. https://doi.org/10.1007/s00410-009-0389-2
|
Scambelluri, M., Bebout, G. E., Belmonte, D., et al., 2016. Carbonation of Subduction-Zone Serpentinite (High-Pressure Ophicarbonate; Ligurian Western Alps) and Implications for the Deep Carbon Cycling. Earth and Planetary Science Letters, 441: 155-166. https://doi.org/10.1016/j.epsl.2016.02.034
|
Scambelluri, M., Van Roermund, H. L. M., Pettke, T., 2010. Mantle Wedge peridotites: Fossil Reservoirs of Deep Subduction Zone Processes Inferences from High and Ultrahigh-Pressure Rocks from Bardane (Western Norway) and Ulten (Italian Alps). Lithos, 120(1/2): 186-201. https://doi.org/10.1016/j.lithos.2010.03.001
|
Schmidt, M. W., Poli, S., 2014. Devolatilization during Subduction. Treatise on Geochemistry. Amsterdam: Elsevier: 669-701.
|
Schrenk, M. O., Brazelton, W. J., Lang, S. Q., 2013. Serpentinization, Carbon, and Deep Life. Reviews in Mineralogy and Geochemistry, 75(1): 575-606. https://doi.org/10.2138/rmg.2013.75.18
|
Sforna, M. C., Brunelli, D., Pisapia, C., et al., 2018. Abiotic Formation of Condensed Carbonaceous Matter in the Hydrating Oceanic Crust. Nature Communications, 9: 5049. https://doi.org/10.1038/s41467-018-07385-6
|
Shatskiy, A., Arefiev, A. V., Podborodnikov, I. V., et al., 2019. Origin of K-Rich Diamond-Forming Immiscible Melts and CO2 Fluid via Partial Melting of Carbonated Pelites at a Depth of 180-200 km. Gondwana Research, 75: 154-171. https://doi.org/10.1016/j.gr.2019.05.004
|
Shen, J., Li, S. G., Wang, S. J., et al., 2018. Subducted Mg-Rich Carbonates into the Deep Mantle Wedge. Earth and Planetary Science Letters, 503: 118-130. https://doi.org/10.1016/j.epsl.2018.09.011
|
Smith, K. V., Shirey, S. B., Stern, R. A., et al., 2016. Diamond Growth from C-H-N-O Recycled Fluids in the lithosphere: Evidence from CH4 Micro-Inclusions and δ13C-Δ 15N-N Content in Marange Mixed-Habit Diamonds. Lithos, 265: 68-81. https://doi.org/10.1016/j.lithos.2016.03.015
|
Smith, E. M., Shirey, S. B., Richardson, S. H., et al., 2018. Blue Boron-Bearing Diamonds from Earth's Lower Mantle. Nature, 560(7716): 84-87. https://doi.org/10.1038/s41586-018-0334-5
|
Song, S. G., Su, L., Niu, Y. L., et al., 2009. CH4 Inclusions in Orogenic harzburgite: Evidence for Reduced Slab Fluids and Implication for Redox Melting in Mantle Wedge. Geochimica et Cosmochimica Acta, 73(6): 1737-1754. https://doi.org/10.1016/j.gca.2008.12.008
|
Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc crust: A Review. Lithos, 170: 208-223. https://doi.org/10.1016/j.lithos.2013.02.016
|
Stern, C. R., 2020. The Role of Subduction Erosion in the Generation of Andean and Other Convergent Plate Boundary Arc Magmas, the Continental Crust and Mantle. Gondwana Research, 88: 220-249. https://doi.org/10.1016/j.gr.2020.08.006
|
Stewart, E. M., Ague, J. J., Ferry, J. M., et al., 2019. Carbonation and Decarbonation reactions: Implications for Planetary Habitability. American Mineralogist, 104(10): 1369-1380. https://doi.org/10.2138/am-2019-6884
|
Straub, S. M., Gómez-Tuena, A., Vannucchi, P., 2020. Subduction Erosion and Arc Volcanism. Nature Reviews Earth & Environment, 1(11): 574-589. https://doi.org/10.1038/s43017-020-0095-1
|
Su, B., Chen, Y., Guo, S., et al., 2016. Carbonatitic Metasomatism in Orogenic Dunites from Lijiatun in the Sulu UHP Terrane, Eastern China. Lithos, 262: 266-284. https://doi.org/10.1016/j.lithos.2016.07.007
|
Su, B., Chen, Y., Guo, S., et al., 2017. Dolomite Dissociation Indicates Ultra-Deep (> 150 Km) Subduction of a Garnet-Bearing Dunite Block (the Sulu UHP Terrane). American Mineralogist, 102(11): 2295-2306. https://doi.org/10.2138/am-2017-5982
|
Su, Y., Li, S. N., Chen, R. X., et al., 2025. Redox Processes at the Slab-Mantle interface: Evidence from Reduced Carbon Inclusions in Mantle Wedge Peridotites. Earth and Planetary Science Letters, 656: 119272. https://doi.org/10.1016/j.epsl.2025.119272
|
Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2013. Fluid and Melt Inclusions in the Mesozoic Fangcheng Basalt from North China Craton: implications for Magma Evolution and Fluid/Melt-Peridotite Reaction. Contributions to Mineralogy and Petrology, 165(5): 885-901. https://doi.org/10.1007/s00410-012-0840-7
|
Sverjensky, D. A., Harrison, B., Azzolini, D., 2014. Water in the Deep Earth: The Dielectric Constant and the Solubilities of Quartz and Corundum to 60kb and 1200℃. Geochimica et Cosmochimica Acta, 129: 125-145. https://doi.org/10.1016/j.gca.2013.12.019
|
Tan, D. B., Xiao, Y. L., Wang, Y. Y., et al., 2024. Carbon-Rich Polyphasic Inclusions in Postcollisional Mafic Magmatic Rocks from the Dabie Shan, China: Implications for the Carbon Cycle in Continental Subduction Zones. Geological Society of America Bulletin, 136(11/12): 4727-4736. https://doi.org/10.1130/B37103.1
|
Tao, R. B., Zhang, L. F., Li, S. G., et al., 2018. Significant Contrast in the Mg-C-O Isotopes of Carbonate between Carbonated Eclogite and Marble from the S. W. Tianshan UHP Subduction zone: Evidence for Two Sources of Recycled Carbon. Chemical Geology, 483: 65-77. https://doi.org/10.1016/j.chemgeo.2018.02.015
|
Tewksbury-Christle, C. M., Behr, W. M., Helper, M. A., 2021. Tracking Deep Sediment Underplating in a Fossil Subduction Margin: Implications for Interface Rheology and Mass and Volatile Recycling. Geochemistry, Geophysics, Geosystems, 22(3): e2020GC009463. https://doi.org/10.1029/2020GC009463
|
Tumiati, S., Tiraboschi, C., Miozzi, F., et al., 2020. Dissolution Susceptibility of Glass-Like Carbon versus Crystalline Graphite in High-Pressure Aqueous Fluids and Implications for the Behavior of Organic Matter in Subduction Zones. Geochimica et Cosmochimica Acta, 273: 383-402. https://doi.org/10.1016/j.gca.2020.01.030
|
Tumiati, S., Tiraboschi, C., Sverjensky, D. A., et al., 2017. Silicate Dissolution Boosts the CO2 Concentrations in Subduction Fluids. Nature Communications, 8: 616. https://doi.org/10.1038/s41467-017-00562-z
|
van Achterbergh, E., Griffin, W. L., Ryan, C. G., et al., 2002. Subduction Signature for Quenched Carbonatites from the Deep Lithosphere. Geology, 30(8): 743. https://doi.org/10.1130/0091-7613(2002)0300743:ssfqcf>2.0.co;2 doi: 10.1130/0091-7613(2002)0300743:ssfqcf>2.0.co;2
|
Van Roermund, H. L. M., Anthony Carswell, D., Drury, M. R., et al., 2002. Microdiamonds in a Megacrystic Garnet Websterite Pod from Bardane on the Island of Fjørtoft, Western Norway: Evidence for Diamond Formation in Mantle Rocks during Deep Continental Subduction. Geology, 30(11): 959. https://doi.org/10.1130/0091-7613(2002)0300959:miamgw>2.0.co;2 doi: 10.1130/0091-7613(2002)0300959:miamgw>2.0.co;2
|
Varekamp, J. C., Kreulen, R., Poorter, R. P. E., et al., 1992. Carbon Sources in Arc Volcanism, with Implications for the Carbon Cycle. Terra Nova, 4(3): 363-373. https://doi.org/10.1111/j.1365-3121.1992.tb00825.x
|
Vitale Brovarone, A., Chu, X., Martin, L., et al., 2018. Intra-Slab COH Fluid Fluxes Evidenced by Fluid-Mediated Decarbonation of Lawsonite Eclogite-Facies Altered Oceanic Metabasalts. Lithos, 304: 211-229. https://doi.org/10.1016/j.lithos.2018.01.028
|
Vitale Brovarone, A., Martinez, I., Elmaleh, A., et al., 2017. Massive Production of Abiotic Methane during Subduction Evidenced in Metamorphosed Ophicarbonates from the Italian Alps. Nature Communications, 8: 14134. https://doi.org/10.1038/ncomms14134
|
Vitale Brovarone, A., Wong, K., Giovannelli, D., et al., 2025. Forms and Fluxes of carbon: Surface to Deep. Treatise on Geochemistry. Elsevier, Amsterdam, 647-698.
|
Walton, C. R., Shorttle, O., 2024. Phanerozoic Biological Reworking of the Continental Carbonate Rock Reservoir. Earth and Planetary Science Letters, 632: 118640. https://doi.org/10.1016/j.epsl.2024.118640
|
Wang, C. Y., Foley, S. F., Liu, Y. S., et al., 2023a. Origin of Carbonate Melts in Orogenic Belts by Anatexis of Downthrust Carbonate Sediments. Earth and Planetary Science Letters, 619: 118303. https://doi.org/10.1016/j.epsl.2023.118303
|
Wang, J., Foley, S., Wang, X. F., et al., 2024a. Melting Behavior of Impure Limestone under H2O-Poor conditions: Implications for the Contribution of Carbonate-Rich Sediments to Arc Magmatic Carbon Output. Chemical Geology, 654: 122066. https://doi.org/10.1016/j.chemgeo.2024.122066
|
Wang, J. M., Larson, K. P., Zhang, J. J., et al., 2024b. Buchan-Type Metamorphic Decarbonation during the Upward Expansion of the South Tibetan Detachment System: A New Carbon Source in the Himalaya. Lithos, 464: 107428. https://doi.org/10.1016/j.lithos.2023.107428
|
Wang, Y. C., Quan, S. Y., Tang, X., et al., 2024c. Organic and Inorganic Carbon Sinks Reduce Long-Term Deep Carbon Emissions in the Continental Collision Margin of the Southern Tibetan Plateau: Implications for Cenozoic Climate Cooling. Journal of Geophysical Research: Solid Earth, 129(4): e2024JB028802. https://doi.org/10.1029/2024JB028802
|
Wang, C., Tao, R. B., Walters, J. B., et al., 2022. Favorable P-T-CO2 Conditions for Abiotic CH4 Production in Subducted Oceanic Crusts: A Comparison between CH4-Bearing Ultrahigh- and CO2-Bearing High-Pressure Eclogite. Geochimica et Cosmochimica Acta, 336: 269-290. https://doi.org/10.1016/j.gca.2022.09.010
|
Wang, J., Tappe, S., Wang, Q., et al., 2024d. Carbon Cycling during the India-Asia Collision Revealed by δ26Mg-Δ66Zn-Δ98Mo Evidence from Ultrapotassic Volcanoes in NW Tibet. Geology, 52(9): 672-677. https://doi.org/10.1130/g52267.1
|
Wang, S. J., Teng, F. Z., Li, S. G., 2014. Tracing Carbonate-Silicate Interaction during Subduction Using Magnesium and Oxygen Isotopes. Nature Communications, 5: 5328. https://doi.org/10.1038/ncomms6328
|
Wang, X. X., Xiao, Y. L., Schertl, H. P., et al., 2023b. Deep Carbon Cycling during Subduction Revealed by Coexisting Diamond-Methane-Magnesite in Peridotite. National Science Review, 10(10): nwad203. https://doi.org/10.1093/nsr/nwad203
|
Wang, X. X., Zhao, L., Yang, J. F., et al., 2024e. Carbon Storage in the Forearc Produced by Buoyant Diapirs of Subducted Sediment. Geophysical Research Letters, 51(3): e2023GL107011. https://doi.org/10.1029/2023GL107011
|
Wedepohl, K., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016-7037(95)00038-2
|
Wieser, P. E., Iacovino, K., Matthews, S., et al., 2022. VESIcal: 2. a Critical Approach to Volatile Solubility Modeling Using an Open-Source Python3 Engine. Earth and Space Science, 9(2): e2021EA001932. https://doi.org/10.1029/2021EA001932
|
Wilson, J. L., 1975. Carbonate Facies in Geologic History. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-65923-2
|
Wolf, M., Breitkopf, O., Puk, R., 1989. Solubility of Calcite in Different Electrolytes at Temperatures between 10° and 60℃ and at CO2 Partial Pressures of about 1 kPa. Chemical Geology, 76(3/4): 291-301. https://doi.org/10.1016/0009-2541(89)90097-1
|
Xu, C., Kynický, J., Song, W. L., et al., 2018. Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab. Nature Communications, 9: 2790. https://doi.org/10.1038/s41467-018-05140-5
|
Yaroshevsky, A. A., 2006. Abundances of Chemical Elements in the Earth's Crust. Geochemistry International, 44(1): 48-55. https://doi.org/10.1134/S001670290601006X
|
Ye, K., Song, Y. R., Chen, Y., et al., 2009. Multistage Metamorphism of Orogenic Garnet-Lherzolite from Zhimafang, Sulu UHP Terrane, E. China: Implications for Mantle Wedge Convection during Progressive Oceanic and Continental Subduction. Lithos, 109(3/4): 155-175. https://doi.org/10.1016/j.lithos.2008.08.005
|
Yin, Z. Z., Chen, R. X., Zheng, Y. F., et al., 2023. Serpentinization and Deserpentinization of the Mantle Wedge at a Convergent Plate Margin: Evidence of Orogenic Peridotites from a Composite Oceanic-Continental Subduction Zone. Journal of Petrology, 64(3): 323-330
|
Zhang, W., Chen, C. M., Su, P. B., et al., 2023. Formation and Implication of Cold-Seep Carbonates in the Southern South China Sea. Journal of Asian Earth Sciences, 241: 105485. https://doi.org/10.1016/j.jseaes.2022.105485
|
Zhang, R. Y., Li, T., Rumble, D., et al., 2007. Multiple Metasomatism in Sulu Ultrahigh-P Garnet Peridotite Constrained by Petrological and Geochemical Investigations. Journal of Metamorphic Geology, 25(2): 149-164. https://doi.org/10.1111/j.1525-1314.2006.00683.x
|
Zhang, N. Z., Lin, M., Snyder, G. T., et al., 2019. Clumped Isotope Signatures of Methane-Derived Authigenic Carbonate Presenting Equilibrium Values of Their Formation Temperatures. Earth and Planetary Science Letters, 512: 207-213. https://doi.org/10.1016/j.epsl.2019.02.005
|
Zhang, R. Y., Liou, J. G., Cong, B. L., 1994. Petrogenesis of Garnet-Bearing Ultramafic Rocks and Associated Eclogites in the Su-Lu Ultrahigh-P Metamorphic Terrane, Eastern China. Journal of Metamorphic Geology, 12(2): 169-186. https://doi.org/10.1111/j.1525-1314.1994.tb00012.x
|
Zhang, L. F., Tao, R. B., Zhu, J. J., 2017. Some Problems of Deep Carbon Cycle in Subduction Zone. Bulletin of Mineralogy, Petrology and Geochemistry, 36(2): 185-196 (in Chinese with English abstract).
|
Zhang, L., Wang, Q., Ding, X., et al., 2021. Diverse Serpentinization and Associated Abiotic Methanogenesis within Multiple Types of Olivine-Hosted Fluid Inclusions in Orogenic Peridotite from Northern Tibet. Geochimica et Cosmochimica Acta, 296: 1-17. https://doi.org/10.1016/j.gca.2020.12.016
|
Zhang, M. L., Xu, S., Sano, Y., 2024. Deep Carbon Recycling Viewed from Global Plate Tectonics. National Science Review, 11(6): nwae089. https://doi.org/10.1093/nsr/nwae089
|
Zhao, K., Dai, L. Q., Fang, W., et al., 2022. Decoupling between Mg and Ca Isotopes in Alkali basalts: Implications for Geochemical Differentiation of Subduction Zone Fluids. Chemical Geology, 606: 120983. https://doi.org/10.1016/j.chemgeo.2022.120983
|
Zhao, Y., Zheng, J. P., Xiong, Q., 2021. Prolonged Slab-Derived Silicate and Carbonate Metasomatism of a Cratonic Mantle Wedge (Maowu Ultramafic Body, China). Journal of Petrology, 62(11): egab081. https://doi.org/10.1093/petrology/egab081
|
Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003
|
Zheng, Y. F., 2023. Plate Tectonics in the 21st Century. Science China Earth Sciences, 53(1): 1-40 (in Chinese with English abstract).
|
Zheng, Y. F., Chen, Y. X., 2016. Continental versus Oceanic Subduction Zones. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
|
Zheng, Y. F., Chen, R. X., 2017. Regional Metamorphism at Extreme conditions: Implications for Orogeny at Convergent Plate Margins. Journal of Asian Earth Sciences, 145: 46-73. https://doi.org/10.1016/j.jseaes.2017.03.009
|
Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983 (in Chinese with English abstract).
|
Zheng, Y. F., Chen, R. X., 2021. Extreme Metamorphism and Metamorphic Facies Series at Convergent Plate boundaries: Implications for Supercontinent Dynamics. Geosphere, 17(6): 1647-1685. https://doi.org/10.1130/ges02334.1
|
Zheng, Y. F., Chen, Y. X., Chen, R. X., et al., 2022. Tectonic Evolution of Convergent Plate Margins and Its Geological Effects. Science China Earth Sciences, 52(7): 1213-1242 (in Chinese with English abstract).
|
Zheng, Y. F., Chen, R. X., Gao, P., 2024. Anatectic Metamorphism and Granite Petrogenesis in Continental Collision Zones. Earth Science, 49(1): 1-28 (in Chinese with English abstract).
|
Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. Water Transport in Subduction Zones. Science China Earth Sciences, 46(3): 253-286(in Chinese with English abstract).
|
Zheng, Y. F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93. https://doi.org/10.1186/1880-5981-66-93
|
Zheng, Y. F., Zhou, J. B., Wu, Y. B., et al., 2005. Low-Grade Metamorphic Rocks in the Dabie-Sulu Orogenic Belt: A Passive-Margin Accretionary Wedge Deformed during Continent Subduction. International Geology Review, 47(8): 851-871. https://doi.org/10.2747/0020-6814.47.8.851
|
Zhu, X. X., Liu, Y., Hou, Z. Q., 2023. Massive Rare Earth Element Storage in Sub-Continental Lithospheric Mantle Initiated by Diapirism, Not by Melting. Geology, 52(2): 105-109. https://doi.org/10.1130/g51102.1
|
Zong, K. Q., Liu, Y. S., 2018. Carbonate Metasomatism in the Lithospheric Mantle: Implications for Cratonic Destruction in North China. Science China Earth Sciences, 61: 711-729 (in Chinese).
|
Zong, K. Q., He, D. T., Chen, C. F., et al., 2022. The Effect of the Deep Carbon Cycle on Environment and Climate. Acta Petrologica Sinica, 38(5): 1389-1398 (in Chinese with English abstract).
|
陈雪倩, 张立飞, 2023. 碳的固定、运输、转移和排放过程: 对地球深部碳循环的启示. 地学前缘, 30(3): 313-339.
|
邓黎旭, 刘勇胜, 宗克清等, 2019. 地幔橄榄岩中碳酸盐熔体交代作用及其鉴定特征. 地球科学, 44(4): 1113-1127. doi: 10.3799/dqkx.2018.357
|
冯伟民, 郑永飞, 周建波, 2003. 大别-苏鲁造山带大理岩碳氧同位素地球化学研究. 岩石学报, 19(3): 468-478.
|
兰春元, 陶仁彪, 张立飞, 等, 2022. 俯冲板片的脱碳机制及通量估算: 问题与进展. 岩石学报, 38(5): 1523-1540.
|
李曙光, 汪洋, 刘盛遨, 2024. 大地幔楔的两个深部碳循环圈: 差异及宜居效应. 地学前缘, 31(1): 15-27.
|
刘勇胜, 陈春飞, 何德涛, 等, 2019. 俯冲带地球深部碳循环作用. 中国科学: 地球科学, 49(12): 1982-2003.
|
倪怀玮, 肖益林, 熊小林等, 2024. 超临界地质流体的形成与演化. 中国科学: 地球科学, 55(1): 38-51.
|
陶仁彪, 张立飞, 刘曦, 2015. 地幔氧逸度与俯冲带深部碳循环. 岩石学报, 31(7): 1875-1890.
|
张立飞, 陶仁彪, 朱建江, 2017. 俯冲带深部碳循环: 问题与探讨. 矿物岩石地球化学通报, 36(2): 185-196.
|
郑永飞, 2023. 21世纪板块构造. 中国科学: 地球科学, 53(1): 1-40.
|
郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982
|
郑永飞, 陈伊翔, 陈仁旭, 等, 2022. 汇聚板块边缘构造演化及其地质效应. 中国科学: 地球科学, 52(7): 1213-1242.
|
郑永飞, 陈仁旭, 高彭, 2024. 大陆碰撞带深熔变质作用与花岗岩成因. 地球科学, 49(1): 1-28. doi: 10.3799/dqkx.2023.215
|
郑永飞, 陈仁旭, 徐峥, 等, 2016. 俯冲带中的水迁移. 中国科学: 地球科学, 46(3): 253-286.
|
宗克清, 刘勇胜, 2018. 华北克拉通东部岩石圈地幔碳酸盐熔体交代作用与克拉通破坏. 中国科学: 地球科学, 48(6): 732-752.
|
宗克清, 何德涛, 陈春飞, 等, 2022. 深部碳循环的环境气候效应. 岩石学报, 38(5): 1389-1398.
|