Citation: | Yang Hanshui, Ma Lin, Wang Ruizhen, Chen Weitao, Wang Lizhe, 2025. Mapping Organic Carbon Content in Black Soil Using UAV Hyperspectral Remote Sensing and Deep Learning. Earth Science, 50(8): 3144-3152. doi: 10.3799/dqkx.2025.061 |
Angelopoulou, T., Tziolas, N., Balafoutis, A., et al., 2019. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6): 676. https://doi.org/10.3390/rs11060676
|
Bendor, E., Chabrillat, S., Demattê, J. A. M., et al., 2009. Using Imaging Spectroscopy to Study Soil Properties. Remote Sensing of Environment, 113: S38-S55. https://doi.org/10.1016/j.rse.2008.09.019
|
Brunet, D., Barthès, B. G., Chotte, J. L., et al., 2007. Determination of Carbon and Nitrogen Contents in Alfisols, Oxisols and Ultisols from Africa and Brazil Using NIRS analysis: Effects of Sample Grinding and Set Heterogeneity. Geoderma, 139(1/2): 106-117. https://doi.org/10.1016/j.geoderma.2007.01.007
|
Chen, Y., Wang, J. L., Liu, G. J., et al., 2019. Hyperspectral Estimation Model of Forest Soil Organic Matter in Northwest Yunnan Province, China. Forests, 10(3): 217. https://doi.org/10.3390/f10030217
|
Deng, Y., Niu, Z. W., Feng, Q. Y., et al., 2023. A Novel Hyperspectral Prediction Model of Organic Matter in Red Soil Based on Improved Temporal Convolutional Network. Spectroscopy and Spectral Analysis, 43(9): 2942-2951(in Chinese with English abstract).
|
Diwu, P. Y., Bian, X. H., Wang, Z. F., et al., 2019. Study on the Selection of Spectral Preprocessing Methods. Spectroscopy and Spectral Analysis, 39(9): 2800(in Chinese with English abstract).
|
Gao, L. L., Zhu, X. C., Han, Z. Y., et al., 2019. Spectroscopy-Based Soil Organic Matter Estimation in Brown Forest Soil Areas of the Shandong Peninsula, China. Pedosphere, 29(6): 810-818. https://doi.org/10.1016/S1002-0160(17)60485-5
|
Huang, Y., Dend, G., 2013. Research on Development of Agricultural Geographic Information Ontology. Journal of Integrative Agriculture, 11(5): 865-877. https://doi.org/10.1016/S2095-3119(12)60077-X
|
Ji, W. J., Li, S., Chen, S. C., et al., 2016. Prediction of Soil Attributes Using the Chinese Soil Spectral Library and Standardized Spectra Recorded at Field Conditions. Soil and Tillage Research, 155: 492-500. https://doi.org/10.1016/j.still.2015.06.004
|
Li, X. P., Zhang, F., Wang, X. P., 2019. Study on Differential-Based Multispectral Modeling of Soil Organic Matter in Ebinur Lake Wetland. Spectroscopy and Spectral Analysis, 39(2): 535-542(in Chinese with English abstract).
|
Liaghat, S., Balasundram, S. K., 2020. A review: the Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural & Biological Science, 5(1): 553-564.
|
Liu, H. J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Pedologica Sinica, 44(1): 27-32(in Chinese with English abstract).
|
Liu, Y., Xu, Y., 2013. Application of Savitzky-Golay Smoothing Filter in the Pre-Processing of Near-Infrared Spectra for Rapid Analysis of Grape Juices. Food Chemistry, 139(1-4): 205-212.
|
Padarian, J., Minasny, B., McBratney, A. B., 2019. Using Deep Learning to Predict Soil Properties from Regional Spectral Data. Geoderma Regional, 16: e00198. https://doi.org/10.1016/j.geodrs.2018.e00198
|
Pan, N., Wang, S., Liu, Y. X., et al., 2019. Advances in Soil Moisture Retrieval from Remote Sensing. Acta Ecologica Sinica, 39(13): 4615-4626(in Chinese with English abstract).
|
Piikki, K., Wetterlind, J., Söderström, M., et al., 2021. Perspectives on Validation in Digital Soil Mapping of Continuous Attributes: A Review. Soil Use and Management, 37(1): 7-21. https://doi.org/10.1111/sum.12694
|
Rossel, R. A., Webster, R., 2012. Predicting Soil Properties from the Australian Soil Visible-Near Infrared Spectroscopic Database. European Journal of Soil Science, 63(6): 848-860. https://doi.org/10.1111/j.1365-2389. 2012. 01495. x doi: 10.1111/j.1365-2389.2012.01495.x
|
Rostami, R., Fathollahi-Fard, A. M., 2022. A New Approach for Evaluating the Pearson Correlation Coefficient Using Machine Learning. Applied Sciences, 12(5): 2456.
|
Shi, Z., Xu, D. Y., Teng, H. F., et al., 2018. Soil Information Acquisition Based on Remote Sensing and Proximal Soil sensing: Current Status and Prospect. Progress in Geography, 37(1): 79-92(in Chinese with English abstract).
|
Tian, W. X., 2019. Hyperspectral Quantitative inversion of Black Soil Organic Matter Based on Statistical Model. Chengdu University of Technology, Chengdu(in Chinese with English abstract).
|
Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., et al., 2016. A Global Spectral Library to Characterize the World's Soil. Earth-Science Reviews, 155: 198-230. https://doi.org/10.1016/j.earscirev.2016.01.012
|
Wang, D. M., Qin, K., Li, Z. Z., et al., 2018. Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example. Earth Science, 43(6): 2184-2194(in Chinese with English abstract).
|
Wang, H. F., Chen, Y. W., Zhang, Z. T., et al., 2019. Quantitatively Estimating Main Soil Water-Soluble Salt Ions Content Based on Visible-Near Infrared Wavelength Selected Using GC, SR and VIP. PeerJ, 7: e6310. https://doi.org/10.7717/peerj.6310
|
Wang, Y. D., Zhang, F., Hu, W. Y., et al., 2024. Reversing Organic Matter Contents in Black Soils in Northeast China Using Digital Image Technology. Soils, 56(5): 1051-1056(in Chinese with English abstract).
|
Xiao, Y., Xin, H. B., Wang, B., et al., 2021. Hyperspectral Estimation of Black Soil Organic Matter Content Based on Wavelet Transform and Successive Projections Algorithm. Remote Sensing for Land & Resources, 33(2): 33-39(in Chinese with English abstract).
|
Xie, Y. H., 2019. Study on Spatial Prediction of Soil Nutrient Distribution in Field Plots of Black Soil Region. Northeast Agricultural University, Harbin(in Chinese with English abstract).
|
Yang, Y. C., Zhao, Y. J., Qin, K., et al., 2019. Prediction of Black Soil Nutrient Content Based on Airborne Hyperspectral Remote Sensing. Transactions of the Chinese Society of Agricultural Engineering, 35(20): 94-101(in Chinese with English abstract).
|
Zhang, J. J., Xi, L., Yang, X. Y., et al., 2020. Construction of Hyperspectral Estimation Model for Organic Matter Content in Shajiang Black Soil. Transactions of the Chinese Society of Agricultural Engineering, 36(17): 135-141(in Chinese with English abstract).
|
Zheng, M., Wang, X., Li, S. J., et al., 2022. Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region. Scientia Geographica Sinica, 42(8): 1336-1347(in Chinese with English abstract).
|
Zhu, A. X., Yang, L., Fan, N. Q., et al., 2018. The Review and Outlook of Digital Soil Mapping. Progress in Geography, 37(1): 66-78(in Chinese with English abstract).
|
邓昀, 牛照文, 冯琦尧, 等, 2023. 改进时间卷积网络的红壤有机质高光谱预测模型. 光谱学与光谱分析, 43(9): 2942-2951.
|
第五鹏瑶, 卞希慧, 王姿方, 等, 2019. 光谱预处理方法选择研究. 光谱学与光谱分析, 39(9): 2800.
|
李雪萍, 张飞, 王小平, 2019. 微分算法的艾比湖湿地自然保护区土壤有机质多光谱建模. 光谱学与光谱分析, 39(2): 535-542.
|
刘焕军, 张柏, 赵军, 等, 2007. 黑土有机质含量高光谱模型研究. 土壤学报, 44(1): 27-32.
|
潘宁, 王帅, 刘焱序, 等, 2019. 土壤水分遥感反演研究进展. 生态学报, 39(13): 4615-4626.
|
史舟, 徐冬云, 滕洪芬, 等, 2018. 土壤星地传感技术现状与发展趋势. 地理科学进展, 37(1): 79-92.
|
田尉霞, 2019. 基于统计模型的黑土有机质高光谱定量反演(博士学位论文). 成都: 成都理工大学.
|
汪大明, 秦凯, 李志忠, 等, 2018. 基于航空高光谱遥感数据的黑土地有机质含量反演: 以黑龙江省建三江地区为例. 地球科学, 43(6): 2184-2194. doi: 10.3799/dqkx.2018.612
|
王亚丹, 张凤, 胡文友, 等, 2024. 基于数字图像技术反演中国东北黑土有机质含量. 土壤, 56(5): 1051-1056.
|
肖艳, 辛洪波, 王斌, 等, 2021. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测. 国土资源遥感, 33(2): 33-39.
|
谢雅慧, 2019. 黑土区田块土壤养分空间分布预测研究(博士学位论文). 哈尔滨: 东北农业大学.
|
杨越超, 赵英俊, 秦凯, 等, 2019. 黑土养分含量的航空高光谱遥感预测. 农业工程学报, 35(20): 94-101.
|
张娟娟, 席磊, 杨向阳, 等, 2020. 砂姜黑土有机质含量高光谱估测模型构建. 农业工程学报, 36(17): 135-141.
|
郑淼, 王翔, 李思佳, 等, 2022. 黑土区土壤有机质和全氮含量遥感反演研究. 地理科学, 42(8): 1336-1347.
|
朱阿兴, 杨琳, 樊乃卿, 等, 2018. 数字土壤制图研究综述与展望. 地理科学进展, 37(1): 66-78.
|