• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Yang Hanshui, Ma Lin, Wang Ruizhen, Chen Weitao, Wang Lizhe, 2025. Mapping Organic Carbon Content in Black Soil Using UAV Hyperspectral Remote Sensing and Deep Learning. Earth Science, 50(8): 3144-3152. doi: 10.3799/dqkx.2025.061
    Citation: Yang Hanshui, Ma Lin, Wang Ruizhen, Chen Weitao, Wang Lizhe, 2025. Mapping Organic Carbon Content in Black Soil Using UAV Hyperspectral Remote Sensing and Deep Learning. Earth Science, 50(8): 3144-3152. doi: 10.3799/dqkx.2025.061

    Mapping Organic Carbon Content in Black Soil Using UAV Hyperspectral Remote Sensing and Deep Learning

    doi: 10.3799/dqkx.2025.061
    • Received Date: 2025-04-02
      Available Online: 2025-08-18
    • Publish Date: 2025-08-25
    • Black soil in northeastern China is an important agricultural resource but has been increasingly degraded due to long-term development. The use of satellite remote sensing technology to retrieve the organic carbon content in black soil offers technical support for the protection and sustainable use. However, satellite hyperspectral data suffer from low spatial resolution, and the retrieval accuracy for organic carbon content remains limited in fine-scaled study sites. To address these challenges, this study utilized UAV-based hyperspectral data and soil geochemical data instead. We proposed and compared four models based on one-dimensional convolutional neural networks (1DCNN)-MDS-1DCNN, LLE-1DCNN, PLSR-1DCNN, and KPCA-1DCNN, for organic carbon content retrieval using the Wudalianchi region in Heilongjiang Province as a case study. The results show that the LLE-1DCNN model outperforms the others, achieving an R2 of 0.806 and an RMSE of 0.572% on the validation set. This approach offers promising potential for accurately retrieving organic carbon content in black soil and supporting its conservation and management.

       

    • loading
    • Angelopoulou, T., Tziolas, N., Balafoutis, A., et al., 2019. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sensing, 11(6): 676. https://doi.org/10.3390/rs11060676
      Bendor, E., Chabrillat, S., Demattê, J. A. M., et al., 2009. Using Imaging Spectroscopy to Study Soil Properties. Remote Sensing of Environment, 113: S38-S55. https://doi.org/10.1016/j.rse.2008.09.019
      Brunet, D., Barthès, B. G., Chotte, J. L., et al., 2007. Determination of Carbon and Nitrogen Contents in Alfisols, Oxisols and Ultisols from Africa and Brazil Using NIRS analysis: Effects of Sample Grinding and Set Heterogeneity. Geoderma, 139(1/2): 106-117. https://doi.org/10.1016/j.geoderma.2007.01.007
      Chen, Y., Wang, J. L., Liu, G. J., et al., 2019. Hyperspectral Estimation Model of Forest Soil Organic Matter in Northwest Yunnan Province, China. Forests, 10(3): 217. https://doi.org/10.3390/f10030217
      Deng, Y., Niu, Z. W., Feng, Q. Y., et al., 2023. A Novel Hyperspectral Prediction Model of Organic Matter in Red Soil Based on Improved Temporal Convolutional Network. Spectroscopy and Spectral Analysis, 43(9): 2942-2951(in Chinese with English abstract).
      Diwu, P. Y., Bian, X. H., Wang, Z. F., et al., 2019. Study on the Selection of Spectral Preprocessing Methods. Spectroscopy and Spectral Analysis, 39(9): 2800(in Chinese with English abstract).
      Gao, L. L., Zhu, X. C., Han, Z. Y., et al., 2019. Spectroscopy-Based Soil Organic Matter Estimation in Brown Forest Soil Areas of the Shandong Peninsula, China. Pedosphere, 29(6): 810-818. https://doi.org/10.1016/S1002-0160(17)60485-5
      Huang, Y., Dend, G., 2013. Research on Development of Agricultural Geographic Information Ontology. Journal of Integrative Agriculture, 11(5): 865-877. https://doi.org/10.1016/S2095-3119(12)60077-X
      Ji, W. J., Li, S., Chen, S. C., et al., 2016. Prediction of Soil Attributes Using the Chinese Soil Spectral Library and Standardized Spectra Recorded at Field Conditions. Soil and Tillage Research, 155: 492-500. https://doi.org/10.1016/j.still.2015.06.004
      Li, X. P., Zhang, F., Wang, X. P., 2019. Study on Differential-Based Multispectral Modeling of Soil Organic Matter in Ebinur Lake Wetland. Spectroscopy and Spectral Analysis, 39(2): 535-542(in Chinese with English abstract).
      Liaghat, S., Balasundram, S. K., 2020. A review: the Role of Remote Sensing in Precision Agriculture. American Journal of Agricultural & Biological Science, 5(1): 553-564.
      Liu, H. J., Zhang, B., Zhao, J., et al., 2007. Spectral Models for Prediction of Organic Matter in Black Soil. Acta Pedologica Sinica, 44(1): 27-32(in Chinese with English abstract).
      Liu, Y., Xu, Y., 2013. Application of Savitzky-Golay Smoothing Filter in the Pre-Processing of Near-Infrared Spectra for Rapid Analysis of Grape Juices. Food Chemistry, 139(1-4): 205-212.
      Padarian, J., Minasny, B., McBratney, A. B., 2019. Using Deep Learning to Predict Soil Properties from Regional Spectral Data. Geoderma Regional, 16: e00198. https://doi.org/10.1016/j.geodrs.2018.e00198
      Pan, N., Wang, S., Liu, Y. X., et al., 2019. Advances in Soil Moisture Retrieval from Remote Sensing. Acta Ecologica Sinica, 39(13): 4615-4626(in Chinese with English abstract).
      Piikki, K., Wetterlind, J., Söderström, M., et al., 2021. Perspectives on Validation in Digital Soil Mapping of Continuous Attributes: A Review. Soil Use and Management, 37(1): 7-21. https://doi.org/10.1111/sum.12694
      Rossel, R. A., Webster, R., 2012. Predicting Soil Properties from the Australian Soil Visible-Near Infrared Spectroscopic Database. European Journal of Soil Science, 63(6): 848-860. https://doi.org/10.1111/j.1365-2389. 2012. 01495. x doi: 10.1111/j.1365-2389.2012.01495.x
      Rostami, R., Fathollahi-Fard, A. M., 2022. A New Approach for Evaluating the Pearson Correlation Coefficient Using Machine Learning. Applied Sciences, 12(5): 2456.
      Shi, Z., Xu, D. Y., Teng, H. F., et al., 2018. Soil Information Acquisition Based on Remote Sensing and Proximal Soil sensing: Current Status and Prospect. Progress in Geography, 37(1): 79-92(in Chinese with English abstract).
      Tian, W. X., 2019. Hyperspectral Quantitative inversion of Black Soil Organic Matter Based on Statistical Model. Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., et al., 2016. A Global Spectral Library to Characterize the World's Soil. Earth-Science Reviews, 155: 198-230. https://doi.org/10.1016/j.earscirev.2016.01.012
      Wang, D. M., Qin, K., Li, Z. Z., et al., 2018. Retrieval of Organic Matter Content in Black Soil Based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang District in Heilongjiang Province as an Example. Earth Science, 43(6): 2184-2194(in Chinese with English abstract).
      Wang, H. F., Chen, Y. W., Zhang, Z. T., et al., 2019. Quantitatively Estimating Main Soil Water-Soluble Salt Ions Content Based on Visible-Near Infrared Wavelength Selected Using GC, SR and VIP. PeerJ, 7: e6310. https://doi.org/10.7717/peerj.6310
      Wang, Y. D., Zhang, F., Hu, W. Y., et al., 2024. Reversing Organic Matter Contents in Black Soils in Northeast China Using Digital Image Technology. Soils, 56(5): 1051-1056(in Chinese with English abstract).
      Xiao, Y., Xin, H. B., Wang, B., et al., 2021. Hyperspectral Estimation of Black Soil Organic Matter Content Based on Wavelet Transform and Successive Projections Algorithm. Remote Sensing for Land & Resources, 33(2): 33-39(in Chinese with English abstract).
      Xie, Y. H., 2019. Study on Spatial Prediction of Soil Nutrient Distribution in Field Plots of Black Soil Region. Northeast Agricultural University, Harbin(in Chinese with English abstract).
      Yang, Y. C., Zhao, Y. J., Qin, K., et al., 2019. Prediction of Black Soil Nutrient Content Based on Airborne Hyperspectral Remote Sensing. Transactions of the Chinese Society of Agricultural Engineering, 35(20): 94-101(in Chinese with English abstract).
      Zhang, J. J., Xi, L., Yang, X. Y., et al., 2020. Construction of Hyperspectral Estimation Model for Organic Matter Content in Shajiang Black Soil. Transactions of the Chinese Society of Agricultural Engineering, 36(17): 135-141(in Chinese with English abstract).
      Zheng, M., Wang, X., Li, S. J., et al., 2022. Remote Sensing Inversion of Soil Organic Matter and Total Nitrogen in Black Soil Region. Scientia Geographica Sinica, 42(8): 1336-1347(in Chinese with English abstract).
      Zhu, A. X., Yang, L., Fan, N. Q., et al., 2018. The Review and Outlook of Digital Soil Mapping. Progress in Geography, 37(1): 66-78(in Chinese with English abstract).
      邓昀, 牛照文, 冯琦尧, 等, 2023. 改进时间卷积网络的红壤有机质高光谱预测模型. 光谱学与光谱分析, 43(9): 2942-2951.
      第五鹏瑶, 卞希慧, 王姿方, 等, 2019. 光谱预处理方法选择研究. 光谱学与光谱分析, 39(9): 2800.
      李雪萍, 张飞, 王小平, 2019. 微分算法的艾比湖湿地自然保护区土壤有机质多光谱建模. 光谱学与光谱分析, 39(2): 535-542.
      刘焕军, 张柏, 赵军, 等, 2007. 黑土有机质含量高光谱模型研究. 土壤学报, 44(1): 27-32.
      潘宁, 王帅, 刘焱序, 等, 2019. 土壤水分遥感反演研究进展. 生态学报, 39(13): 4615-4626.
      史舟, 徐冬云, 滕洪芬, 等, 2018. 土壤星地传感技术现状与发展趋势. 地理科学进展, 37(1): 79-92.
      田尉霞, 2019. 基于统计模型的黑土有机质高光谱定量反演(博士学位论文). 成都: 成都理工大学.
      汪大明, 秦凯, 李志忠, 等, 2018. 基于航空高光谱遥感数据的黑土地有机质含量反演: 以黑龙江省建三江地区为例. 地球科学, 43(6): 2184-2194. doi: 10.3799/dqkx.2018.612
      王亚丹, 张凤, 胡文友, 等, 2024. 基于数字图像技术反演中国东北黑土有机质含量. 土壤, 56(5): 1051-1056.
      肖艳, 辛洪波, 王斌, 等, 2021. 基于小波变换和连续投影算法的黑土有机质含量高光谱估测. 国土资源遥感, 33(2): 33-39.
      谢雅慧, 2019. 黑土区田块土壤养分空间分布预测研究(博士学位论文). 哈尔滨: 东北农业大学.
      杨越超, 赵英俊, 秦凯, 等, 2019. 黑土养分含量的航空高光谱遥感预测. 农业工程学报, 35(20): 94-101.
      张娟娟, 席磊, 杨向阳, 等, 2020. 砂姜黑土有机质含量高光谱估测模型构建. 农业工程学报, 36(17): 135-141.
      郑淼, 王翔, 李思佳, 等, 2022. 黑土区土壤有机质和全氮含量遥感反演研究. 地理科学, 42(8): 1336-1347.
      朱阿兴, 杨琳, 樊乃卿, 等, 2018. 数字土壤制图研究综述与展望. 地理科学进展, 37(1): 66-78.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(7)  / Tables(6)

      Article views (88) PDF downloads(13) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return