• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 9
    Sep.  2025
    Turn off MathJax
    Article Contents
    Sun Houyun, Ma Feng, Wang Guiling, Zhu Xi, Zhang Wei, Chen Liming, 2025. Formation Mode of Geothermal Resources in Fujian Province Ⅱ: Circulation Conceptual Model and Driving Force of Hydrothermal System. Earth Science, 50(9): 3581-3615. doi: 10.3799/dqkx.2025.062
    Citation: Sun Houyun, Ma Feng, Wang Guiling, Zhu Xi, Zhang Wei, Chen Liming, 2025. Formation Mode of Geothermal Resources in Fujian Province Ⅱ: Circulation Conceptual Model and Driving Force of Hydrothermal System. Earth Science, 50(9): 3581-3615. doi: 10.3799/dqkx.2025.062

    Formation Mode of Geothermal Resources in Fujian Province Ⅱ: Circulation Conceptual Model and Driving Force of Hydrothermal System

    doi: 10.3799/dqkx.2025.062
    • Received Date: 2024-12-24
    • Publish Date: 2025-09-25
    • Fujian Province is one of the most important geothermal anomaly areas in the southern margin of China. It is of great significance for the scientific utilization of geothermal resources to reveal the formation mechanisms of geothermal system in the area. The circulation and evolutionary characteristics of geothermal fluid were clarified, and the conceptual formation mode and driving force of hydrothermal system were established in each hydrogeochemical zone based on the implications of hydrochemical and isotopic characteristics of geothermal water samples, GIS spatial analysis, and the overview of regional geothermal geological and crustal thermal structure conditions. The results show that the geothermal system in Fujian Province can be divided into deep circulation convection type of uplifted mountain faults in northwestern region, complex convection conduction hydrothermal type of fault basin in southeastern region, and deep circulation convection type of fault depression zone in eastern and southeastern region. The endowment of geothermal resources in Fujian is controlled by regional tectonics and crustal thermal structure that the geothermal systems of Wuyi uplift zone in western Zhenghe-Dapu fault and the coastal margin zone in eastern Fujian obtained different crust and mantle heat source compositions, but relatively uniform hydrothermal transmission channels. The heat accumulation of the geothermal system in the Wuyi uplift zone is mainly derived by mantle conduction, while the lithospheric thermal structure of eastern volcanic depression zone is the "hot crust-cold mantle" type in which radioactive element decay of intrusive-volcanic rock mass contributed a relatively high amount of crustal heat accumulation. The regional tensile torsional NW faults turned out to be the water conducting channels of geothermal systems, while compression-dominated NE-trending faults were the water-blocking and heat-conducting channels for heat accumulation. The standard head of total geothermal driving force generated by temperature rise and salinity increase in hydrothermal system of northwestern, southwestern, eastern volcanic depression zone and coastal margin region was +218.75 m, +202.24~+250.60 m, +261.72 m and +308.32 m respectively. The Yongmei depression zone in western Fujian, and intersection zones of regional NW and NE deep faults, namely the hydraulic fracture of the faulted basin and the sunken bay extend deep into the mainland, the basement uplift zone of fault basins such as Fuzhou and Zhangzhou basins, intersection zones of regional NE deep faults and ring-shaped volcanic apparatus in eastern Fujian were the optimal target areas for exploitation of medium-high temperature geothermal resources in bulk.

       

    • loading
    • Bath, A. H., Williamson, K. H., 1983. Isotopic and Chemical Evidence for Water Sources and Mixing in the Cerro Pando Geothermal Area, Republic of Panama. Geothermics, 12(2-3): 177-184. https://doi.org/10.1016/0375-6505(83)90028-7
      Batzle, M., Wang, Z. J., 1992. Seismic Properties of Pore Fluids. Geophysics, 57(11): 1396-1408. https://doi.org/10.1190/1.1443207
      Chen, G. N., Grapes, R., 2007. Granite Genesis: In Situ Melting and Crustal Evolution. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5891-2
      Chen, J. C., Chen, J., Zhang, X. C. J., et al., 2024. Stable Hydrogen Isoscape in Precipitation Generated Using Data Fusion for East China. Science in China (Series D), 54(9): 3023-3039 (in Chinese with English abstract).
      Chen, L. M., 2019. Isotopic Characteristic Analysis of Hydrogen-Oxygen Environment in Geothermal Water in Fujian Province. Geology of Fujian, 38(1): 61-68 (in Chinese with English abstract).
      Chen, T. D., 2018. Petroleum Geology Condition Analysis and Exploration Targets in Fujian, Zhejiang and Jiangxi Area (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract).
      Chen, Y. T., Wang, Z. P., Huang, Q. T., et al., 1998. Downfaulted Basin, Plain, Bay and Earthquakes of Coastland in Fujian Province. Journal of Geodesy and Geodynamics, 18(4): 55-61 (in Chinese with English abstract).
      Craig, H., 1961. Isotopic Variations in Meteoric Waters. Science, 133(3465): 1702-1703. https://doi.org/10.1126/science.133.3465.1702
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      Dong, S. W., Li, J. H., Cawood, P. A., et al., 2020. Mantle Influx Compensates Crustal Thinning beneath the Cathaysia Block, South China: Evidence from SINOPROBE Reflection Profiling. Earth and Planetary Science Letters, 544: 116360. https://doi.org/10.1016/j.epsl.2020.116360
      Faure, M., Chen, Y., Feng, Z. H., et al., 2017. Tectonics and Geodynamics of South China: An Introductory Note. Journal of Asian Earth Sciences, 141: 1-6. https://doi.org/10.1016/j.jseaes.2016.11.031
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
      Gan, H. N., 2023. Thermo-Rheological Structure of the Lithosphere and Geodynamic Evolution of the Coastal Fujian and Adjacent Region, China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      Gan, H. N., Wang, G. L., Wang, X., et al., 2019. Research on the Hydrochemistry and Fault Control Mechanism of Geothermal Water in Northwestern Zhangzhou Basin. Geofluids, 2019: 3925462. https://doi.org/10.1155/2019/3925462
      Gan, Q. L., 2023. Preliminary Exploration of Geological Characteristics and Metallogenic Regularity of Feiluan Geothermal Resources in Ningde City, Fujian Province. Geology of Fujian, 42(1): 48-55 (in Chinese with English abstract).
      Ghomshei, M. M., Clark, I. D., 1993. Oxygen and Hydrogen Isotopes in Deep Thermal Waters from the South Meager Creek Geothermal Area, British Columbia, Canada. Geothermics, 22(2): 79-89. https://doi.org/10.1016/0375-6505(93)90048-R
      Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12): 2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
      Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Science Letters, 113(4): 495-510. https://doi.org/10.1016/0012-821X(92)90127-H
      Guo, F., Wu, Y. M., Zhang, B., et al., 2021. Magmatic Responses to Cretaceous Subduction and Tearing of the Paleo-Pacific Plate in SE China: An Overview. Earth-Science Reviews, 212: 103448. https://doi.org/10.1016/j.earscirev.2020.103448
      Hochstein, M. P., Yang, Z. K., Ehara, S., 1990. The Fuzhou Geothermal System (People's Republic of China): Modelling Study of a Low Temperature Fracture-Zone System. Geothermics, 19(1): 43-60. https://doi.org/10.1016/0375-6505(90)90065-J
      Hu, S. B., Wang, J. Y., 2000. Heat Flow, Deep Temperature and Thermal Structure across the Orogenic Belts in Southeast China. Journal of Geodynamics, 30(4): 461-473. https://doi.org/10.1016/S0264-3707(00)00010-7
      Huang, C. Q., Lin, F. J., Ye, B. F., 2018. The Characteristics of Radioactive Heat Production Rate and Assessment of Hot Dry Rock in High-Value Areas of Heat Flow, Fujian Province. Geology of Fujian, 37(3): 227-237 (in Chinese with English abstract).
      Huang, H. F., Goff, F., 1986. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 27(3-4): 203-227. https://doi.org/10.1016/0377-0273(86)90014-4
      Huang, R., Xu, Y. X., Zhu, L. P., et al., 2015. Detailed Moho Geometry beneath Southeastern China and Its Implications on Thinning of Continental Crust. Journal of Asian Earth Sciences, 112: 42-48. https://doi.org/10.1016/j.jseaes.2015.09.002
      Institute of Geophysics, Chinese Academy of Sciences, 1992. Geothermal Geophysical Research in Fujian Province. China Science and Technology Press, Beijing (in Chinese).
      Jia, W. H., Liu, K., Yan, J. K., et al., 2024. Characteristics of Geothermal Waters in Eastern Wugongshan Based on Hydrogen, Oxygen, and Strontium Isotopes. Applied Geochemistry, 161: 105874. https://doi.org/10.1016/j.apgeochem.2023.105874
      Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract).
      Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006
      Kang, F. X., Sui, H. B., Zheng, T. T., et al., 2024. Formation Mechanism of Cold Springs and Hot Springs in Karst Groundwater Systems in North China: A Study of Baotu Spring. Earth Science, 49(8): 2862-2878 (in Chinese with English abstract).
      Kell, G. S., 1977. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water. Journal of Physical and Chemical Reference Data, 6(4): 1109-1131. https://doi.org/10.1063/1.555561
      Li, C. L., 2019. Geological and Geochemical Characteristics of Tangyang Geothermal Anomalies Area in Zhangzhou, Fujian Province (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).
      Li, J. X., Sagoe, G., Yang, G., et al., 2018a. Evaluation of Mineral-Aqueous Chemical Equilibria of Felsic Reservoirs with Low-Medium Temperature: A Comparative Study in Yangbajing Geothermal Field and Guangdong Geothermal Fields. Journal of Volcanology and Geothermal Research, 352: 92-105. https://doi.org/10.1016/j.jvolgeores.2018.01.008
      Li, K. F., Zhu, C. Q., 2023. Heat Generation Rate of Granite in the Cathaysia Block and Its Influence on Geothermal Fields, SouthEast China. Petroleum Science Bulletin, 8(3): 259-289 (in Chinese with English abstract).
      Li, Q. L., 2021. Geothermal Characteristics and Prospect Analysis of Longmen Canyon in Dehua County, Fujian Province. Geology of Fujian, 40(4): 305-313 (in Chinese with English abstract).
      Li, R., Chen, Q. C., Zhang, C. Y., et al., 2016. In Situ Stress Characteristics in the Western Coast of Taiwan Strait. Acta Geologica Sinica, 90(8): 1703-1714 (in Chinese with English abstract).
      Li, S., Han, J. T., Liu, L. J., et al., 2022. The Deep Electrical Structure and Thermal Characteristics of the Zhangshu-Ningde Magnetotelluric Profile in South China. Chinese Journal of Geophysics, 65(4): 1354-1375 (in Chinese with English abstract).
      Li, Z., Wang, X. C., Wilde, S. A., et al., 2018b. Role of Deep-Earth Water Cycling in the Growth and Evolution of Continental Crust: Constraints from Cretaceous Magmatism in SouthEast China. Lithos, 302: 126-141. https://doi.org/10.1016/j.lithos.2017.12.028
      Liang, C. H., Xu, X. S., He, Z. Y., 2022. Connected Volcanic and Plutonic Association by Crystal-Melt Segregation in the Daiyunshan Volcanic Field, SE China. Tectonophysics, 836: 229409. https://doi.org/10.1016/j.tecto.2022.229409
      Liao, Z. J., 2012. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 26(1): 85-98 (in Chinese with English abstract).
      Lin, L. F., Sun, Z. X., Wang, A. D., et al., 2017. Radioactive Geochemical Characteristics of Mesozoic Granites from Nanling Region and Southeast Coastal Region and Their Constraints on Lithospheric Thermal Structure. Acta Petrologica et Mineralogica, 36(4): 488-500 (in Chinese with English abstract).
      Lin, W. J., Chen, X. Y., Gan, H. N., et al., 2020. Geothermal, Geological Characteristics and Exploration Direction of Hot Dry Rocks in the Xiamen Bay-Zhangzhou Basin, Southeastern China. Acta Geologica Sinica, 94(7): 2066-2077 (in Chinese with English abstract).
      Lin, W. J., Wang, G. L., Gan, H. N., et al., 2023. Heat Source Model for Enhanced Geothermal Systems (EGS) under Different Geological Conditions in China. Gondwana Research, 122: 243-259. https://doi.org/10.1016/j.gr.2022.08.007
      Lin, W. J., Wang, G. L., Gan, H. N., 2024. Differential Crustal Thermal Structure and Geothermal Significance in the Igneous Region of Southeastern China. Acta Geologica Sinica, 98(2): 544-557 (in Chinese with English abstract).
      Lin, W. J., Yin, X. X., 2022. Temperature Estimation of a Deep Geothermal Reservoir Based on Multiple Methods: A Case Study in Southeastern China. Water, 14(20): 3205. https://doi.org/10.3390/w14203205
      Liu, C. L., Li, Y. S., Cao, S. W., et al., 2022. Effects of Seawater Recharge on the Formation of Geothermal Resources in Coastal Areas and Their Mechanisms: A Case Study of Xiamen City, Fujian Province, China. Frontiers in Earth Science, 10: 872620. https://doi.org/10.3389/feart.2022.872620
      Liu, C. L., Zhang, Y. J., Li, Y. S., 2025. Distribution Characteristics and Genesis of Seawater-Replenished Geothermal Systems on the Western Coast of the Taiwan Strait. Geothermics, 131: 103368. https://doi.org/10.1016/j.geothermics.2025.103368
      Liu, J. R., Song, X. F., Yuan, G. F., et al., 2009. Characteristics of δ18O in Precipitation over Eastern Monsoon China and the Water Vapor Sources. Chinese Science Bulletin, 54(22): 3521-3531 (in Chinese). doi: 10.1360/csb2009-54-22-3521
      Liu, K. K., Yui, T. F., Shieh, Y. N., et al., 1990. Hydrogen and Oxygen Isotopic Compositions of Meteoric and Thermal Waters from the Chingshui Geothermal Area, Northern Taiwan. Proceedings of the Geological Society of China, 33(2): 143-165.
      Lu, G. P., Wang, X., Li, F. S., et al., 2017. Deep Geothermal Processes Acting on Faults and Solid Tides in Coastal Xinzhou Geothermal Field, Guangdong, China. Physics of the Earth and Planetary Interiors, 264: 76-88. https://doi.org/10.1016/j.pepi.2016.12.004
      Luo, J., Li, Y. M., Tian, J., et al., 2022. Geochemistry of Geothermal Fluid with Implications on Circulation and Evolution in Fengshun-Tangkeng Geothermal Field, South China. Geothermics, 100: 102323. https://doi.org/10.1016/j.geothermics.2021.102323
      Lyu, H. J., Yang, Z. H., Chen, H. Q., 1989. The "Earthquake Window" and Its Mechanism at Zhangzhou-Huaan, Fujian Province. Seismology and Geology, 11(2): 33-38 (in Chinese with English abstract).
      Ma, F., Wang, G. L., Sun, H. L., et al., 2022. Indication of Hydrogen and Oxygen Stable Isotopes on the Characteristics and Circulation Patterns of Medium-Low Temperature Geothermal Resources in the Guanzhong Basin, China. Journal of Groundwater Science and Engineering, 10(1): 70-86. https://doi.org/10.19637/j.cnki.2305-7068.2022.01.007
      Mao, X. M., Ye, J. Q., Dong, Y. Q., et al., 2022. Geothermal Driving Force: A New Additional Non-Gravity Action Driving the Migration of Geothermal Water in the Xinzhou Geothermal Field of Yangjiang, Guangdong. Bulletin of Geological Science and Technology, 41(1): 137-145 (in Chinese with English abstract).
      Pang, Z. H., 1987. Zhangzhou Basin Geothermal System-Genesis Model, Energy Potential and the Occurrence of Thermal Water (Dissertation). Institute of Geology and Geophysics, CAS, Beijing (in Chinese with English abstract).
      Pang, Z. H., Fan, Z. C., Wang, J. Y., 1990. Isotope Evidence for Geothermal Water Genesis and Seawater Involvement in Zhangzhou Basin, Southeast China. Geochimica, 19(4): 296-302 (in Chinese with English abstract).
      Pang, Z. H., Kong, Y. L., Li, J., et al., 2017. An Isotopic Geoindicator in the Hydrological Cycle. Procedia Earth and Planetary Science, 17: 534-537. https://doi.org/10.1016/j.proeps.2016.12.135
      Phillips, S. L., Igbene, A., Fair, J. A., et al., 1981. A Technical Databook for Geothermal Energy Utilization. Lawrence Berkeley National Laboratory, Berkeley.
      Qi, S. H., 2021. Geothermal Geochemical Exploration. Science Press, Beijing (in Chinese).
      Rybach, L., Muffler, L. J. P., 1987. Geothermal Systems Principles and Case Histories. Translated by Geothermal Research of Department of Geology, Peking University. Geological Publishing House, Beijing.
      Saar, M. O., 2011. Review: Geothermal Heat as a Tracer of Large-Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeology Journal, 19(1): 31-52. https://doi.org/10.1007/s10040-010-0657-2
      Shi, Z. D., Mao, X. M., Ye, J. Q., et al., 2024. Source Analysis of Sodium of Low-Salinity High-Sodium Geothermal Water in Huangshadong Geothermal Field from East Guangdong. Earth Science, 49(1): 271-287 (in Chinese with English abstract).
      Shu, L. S., Yao, J. L., Wang, B., et al., 2021. Neoproterozoic Plate Tectonic Process and Phanerozoic Geodynamic Evolution of the South China Block. Earth-Science Reviews, 216: 103596. https://doi.org/10.1016/j.earscirev.2021.103596
      Stefánsson, A., Arnórsson, S., Sveinbjörnsdóttir, Á. E., et al., 2019. Isotope (δD, δ18O, 3H, δ13C, 14C) and Chemical (B, Cl) Constrains on Water Origin, Mixing, Water-Rock Interaction and Age of Low-Temperature Geothermal Water. Applied Geochemistry, 108: 104380. https://doi.org/10.1016/j.apgeochem.2019.104380
      Sun, H. Y., 2023. Mechanism of Strontium Enrichment in Sallow Groundwater Driven by the Coupling of Rock Weathering and Water-Rock Interaction in Central Chengde (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Sun, H. Y., Ma, F., Wang, G. L., et al., 2025a. Spatial Variation Characteristics and Source Apportionment of Geothermal Hydrochemical Components with Therapeutic Benefits in Fujian Province Based on Machine Learning. Acta Geologica Sinica, Online (in Chinese with English abstract). https://doi.org/10.19762/j.cnki.dizhixuebao.2024440
      Sun, H. Y., Ma, F., Zhu, X., et al., 2025b. Hydrogeochemical Evolution of Geothermal Fluids and Its Indications in the Yanshan Uplift-North China Fault Basin, Northern Hebei. Acta Geologica Sinica, 99(5): 1711-1742 (in Chinese with English abstract).
      Sun, H. Y., Sun, X. M., Wei, X. F., et al., 2023. Geochemical Characteristics and Origin of Nuanquanzi Geothermal Water in Yudaokou, Chengde, Hebei, North China. Journal of Earth Science, 34(3): 838-856. https://doi.org/10.1007/s12583-022-1635-z
      Temizel, E. H., Gültekin, F., Ersoy, A. F., et al., 2021. Multi-Isotopic (O, H, C, S, Sr, B, Li) Characterization of Waters in a Low-Enthalpy Geothermal System in Havza (Samsun), Turkey. Geothermics, 97: 102240. https://doi.org/10.1016/j.geothermics.2021.102240
      Teng, J. W., Si, X., Zhuang, Q. X., et al., 2017. Abnormal Structure of Crust and Mantle and Analysis of Deep Thermal Potential in Fujian Continental Margin. Science Technology and Engineering, 17(17): 6-38 (in Chinese with English abstract).
      Tian, J., Stefánsson, A., Li, Y. M., et al., 2023. Geochemistry of Thermal Fluids and the Genesis of Granite-Hosted Huangshadong Geothermal System, SouthEast China. Geothermics, 109: 102647. https://doi.org/10.1016/j.geothermics.2023.102647
      Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
      Wagner, W., Kretzschmar, H. J., 2008. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97 (Second Edition). Springer-Verlag, Berlin.
      Wan, T. F., Chu, M. J., Chen, M. Y., 1988. Thermal Regimes of the Lithosphere and Geothermal Resources Potential in Fujian Province. Acta Geological Sinica, 62(2): 178-189 (in Chinese with English abstract).
      Wang, G. L., Lin, W. J., Liu, F., et al., 2023. Theory and Survey Practice of Deep Heat Accumulation in Geothermal System and Exploration Practice. Acta Geologica Sinica, 97(3): 639-660 (in Chinese with English abstract).
      Wang, G. L., Lin, W. J., 2020. Main Hydro-Geothermal Systems and Their Genetic Models in China. Acta Geologica Sinica, 94(7): 1923-1937 (in Chinese with English abstract).
      Wang, J., Chen, G. N., Grapes, R., et al., 2011. The Relationship between Evolution of the Intracrustal Magma Layer and Development of Basins: An Example from the Mesozoic Basins in SouthEast China. Earth Science Frontiers, 18(1): 24-31 (in Chinese with English abstract).
      Wang, K., Xiong, X., 2012. Refining Thermal Structure of the Lithosphere in Eastern Section of Heishui-Quanzhou Geotransect with Geodetic Observations. Progress in Geophysics, 27(4): 1366-1376 (in Chinese with English abstract).
      Wang, S. J., Zhang, M., Huang, X. L., et al., 2024. Geothermometry Calculation and Geothermal Fluid Evolution of Karst Geothermal Reservoir in Longmen County, Guangdong Province. Earth Science, 49(3): 992-1004 (in Chinese with English abstract).
      Wang, X., Lu, G. P., Hu, B. X., 2018. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China. Geofluids, 2018(1): 8715080. https://doi.org/10.1155/2018/8715080
      Wang, X., 2018. Formation Conditions and Hydrogeochemical Characteristics of the Geothermal Water in Typical Coastal Geothermal Field with Deep Faults, Guangdong Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      Wei, S. Y., Liu, S. C., Ao, G. H., et al., 1988. The Geothermal Activity and the Characteristics of Geophysics Field in Continental Margin of Fujian Province. Northwestern Seismological Journal, 10(3): 74-81 (in Chinese with English abstract).
      Wu, C. F., Xu, D., Yang, S. J., et al., 2025. Deep Thermal State on the Southern Margin of the Zhangzhou Basin Based on the Electrical Conductivity Model. Geothermics, 125: 103188. https://doi.org/10.1016/j.geothermics.2024.103188
      Xiao, Z. C., Wang, S., Qi, S. H., et al., 2023. Crustal Thermo-Structure and Geothermal Implication of the Huangshadong Geothermal Field in Guangdong Province. Journal of Earth Science, 34(1): 194-204. https://doi.org/10.1007/s12583-021-1486-z
      Xie, Y. N., Cheng, F. P., He, R. Y., et al., 1986. Hydrogen and Oxygen Isotopes of Precipitation and Geothermal Water in Taiwan Province. Geology-Geochemistry, 14(3): 42-46 (in Chinese).
      Xiong, S. B., Liu, H. B., Wang, Y. X., 2002. A Study on Velocity Distribution in Upper Crust and Tectonics of Basement and Cover in South China. Chinese Journal of Geophysics, 45(6): 784-791, 902-904 (in Chinese with English abstract).
      Xu, F. Y. M., Lu, G. P., 2017. Hydrochemical Characteristics of Xinzhou Geothermal Field, Coastal Guangdong and the Hydrodynamic Characteristics of Seawater Intrusion in the Field. Safety and Environmental Engineering, 24(1): 1-10 (in Chinese with English abstract).
      Xu, Q. J., Liu, S. F., Wang, Z. F., et al., 2019. Provenance of the East Guangdong Basin and Yong'an Basin in SouthEast China: Response to the Mesozoic Tectonic Regime Transformation. Journal of Asian Earth Sciences, 185: 104024. https://doi.org/10.1016/j.jseaes.2019.104024
      Xu, X. S., Wang, X. Y., Ma, Z. W., et al., 2024. Petrogenesis of Episodic Volcanic-Intrusive Rocks in SE China: Crystal-Melt Segregation and Magma Mixing. Chemical Geology, 670: 122457. https://doi.org/10.1016/j.chemgeo.2024.122457
      Xu, X. S., Zhao, K., He, Z. Y., et al., 2021. Cretaceous Volcanic-Plutonic Magmatism in SE China and a Genetic Model. Lithos, 402: 105728. https://doi.org/10.1016/j.lithos.2020.105728
      Ye, J. Q., Mao, X. M., 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783 (in Chinese with English abstract).
      Yu, M. G., Hong, W. T., Yang, Z. L., et al., 2021. Classification of Yanshanian Volcanic Cycle and the Related Mineralization in the Coast Area of Southeastern China. Geological Bulletin of China, 40(6): 845-863 (in Chinese with English abstract).
      Yuan, H. W., Jing, T. Y., Yin, Y. L., et al., 2024. Geothermal Model and Development Area of a Fault-Controlled Geothermal Zone along the Fujian Coastal Area of Southeastern China. Natural Gas Industry B, 11(1): 28-41. https://doi.org/10.1016/j.ngib.2024.01.005
      Zhang, C. R., Zhang, G. B., Jiang, G. M., et al., 2021. Seismic Pumping for Mineralization in Southern Fujian, Cathaysia Block: New Insights from a Teleseismic Full Waveform Inversion. Ore Geology Reviews, 131: 104036. https://doi.org/10.1016/j.oregeorev.2021.104036
      Zhang, C. Y., Li, B., Li, H. L., et al., 2023. Stress Estimation in a 3 km-Deep Geothermal Borehole: A Snapshot of Stress State in Southern Cathaysia Block, China. Tectonophysics, 864: 230031. https://doi.org/10.1016/j.tecto.2023.230031
      Zhang, J., He, Y. B., Fan, Y. X., 2024. Geophysical Analysis of Heat Source Composition in the Fujian Coastal Geothermal Anomaly Area. Earth Science Frontiers, 31(3): 392-401 (in Chinese with English abstract).
      Zhang, J., Wang, B. Y., Tang, X. C., et al., 2018. Temperature Structure and Dynamic Background of Crust and Mantle beneath the High Heat Flow Area of the South China Continental Margin. Chinese Journal of Geophysics, 61(10): 3917-3932 (in Chinese with English abstract).
      Zhang, K., Ma, H. M., Cai, J. B., 2002. Discussion on the Origins of Hot Spring along the Coast of South China. Acta Scientiarum Naturalium Universitatis Sunyatseni, 41(1): 82-86 (in Chinese with English abstract).
      Zhao, F. Y., Suo, Y. H., Liu, L. J., et al., 2023. Fine Lithospheric Structure Controlling Meso-Cenozoic Tectono-Magmatism in the South China Block: Inference from a Multidisciplinary Analysis. Earth-Science Reviews, 244: 104524. https://doi.org/10.1016/j.earscirev.2023.104524
      Zhao, L. L., 2011. Analysis on Gui'an Geothermal Resource Potential in Lianjiang County of Fujian Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhao, P., Wang, J. Y., Wang, J. A., et al., 1995. Characteristics of Heat Production Distribution in SE China. Acta Petrologica Sinica, 11(3): 292-305 (in Chinese with English abstract).
      Zhao, Y. H., Yang, J. Y., Wang, H., et al., 2017. Hydrogen and Oxygen Isotope Distribution Characteristics of Geothermal Water. Progress in Geophysics, 32(6): 2415-2423 (in Chinese with English abstract).
      Zheng, H. R., Luo, J., 2024. Progress in Research on the Exploration and Evaluation of Deep Geothermal Resources in the Fujian-Guangdong-Hainan Region, China. Energy Geoscience, 5(2): 100232. https://doi.org/10.1016/j.engeos.2023.100232
      Zhou, P. X., Xia, S. H., Hetényi, G., et al., 2020a. Seismic Imaging of a Mid-Crustal Low-Velocity Layer beneath the Northern Coast of the South China Sea and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 308: 106573. https://doi.org/10.1016/j.pepi.2020.106573
      Zhou, X. M., Li, W. X., 2000. Origin of Late Mesozoic Igneous Rocks in Southeastern China: Implications for Lithosphere Subduction and Underplating of Mafic Magmas. Tectonophysics, 326(3-4): 269-287. https://doi.org/10.1016/S0040-1951(00)00120-7
      Zhou, X., Song, C., Li, T., 2016. Estimation of the Inland Extending Length of the Freshwater-Saltwater Interface in Coastal Unconfined Aquifers. Hydrological Sciences Journal, 61(13): 2367-2375. https://doi.org/10.1080/02626667.2015.1111516
      Zhou, X., Zhuo, L. Y., Wu, Y. Q., et al., 2023. Origin of Some Hot Springs as Conceptual Geothermal Models. Journal of Hydrology, 624: 129927. https://doi.org/10.1016/j.jhydrol.2023.129927
      Zhou, Z. M., Ma, C. Q., Qi, S. H., et al., 2020b. Late Mesozoic High-Heat-Producing (HHP) and High-Temperature Geothermal Reservoir Granitoids: The Most Significant Geothermal Mechanism in South China. Lithos, 366: 105568. https://doi.org/10.1016/j.lithos.2020.105568
      Zhuang, Q. X., Li, D. W., Zheng, S. G., et al., 2019. Study on Geothermal Resources and Geological Response of Deep High Temperature Rock Mass in Zhangzhou Basin and Its Adjacent Areas. Geological Publishing House, Beijing (in Chinese).
      Zu, F. P., 2012. Evolution Features of Sedimentary and Structural Environment of Representative Basins since Late Palaeozoic in Southeast China (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract).
      陈佳澄, 陈杰, Zhang, X. C. J., 等, 2024. 基于数据融合的中国东部降水氢稳定同位素数据集. 中国科学(D辑), 54(9): 3023-3039.
      陈礼明, 2019. 福建地热水氢氧环境同位素特征浅析. 福建地质, 38(1): 61-68.
      陈廷东, 2018. 闽浙赣地区油气地质条件分析与勘探选区(硕士学位论文). 东营: 中国石油大学(华东).
      陈园田, 王志鹏, 黄卿团, 等, 1998. 福建沿海的断陷盆地、平原、海湾与地震. 地壳形变与地震, 18(4): 55-61.
      甘浩男, 2023. 福建沿海及邻区岩石圈热‒流变结构及其构造演化(博士学位论文). 南京: 南京大学.
      甘秋玲, 2023. 福建宁德飞鸾地热资源地质特征及成矿规律探讨. 福建地质, 42(1): 48-55.
      黄昌旗, 林锋杰, 叶冰斐, 2018. 福建大地热流高值区岩体岩石放射性生热率特征及与干热岩有关的指标评价. 福建地质, 37(3): 227-237.
      中国科学院地球物理研究所, 1992. 福建地热地球物理研究. 北京: 中国科学技术出版社.
      姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910.
      康凤新, 隋海波, 郑婷婷, 等, 2024. 岩溶地下水系统冷泉和热泉的形成机制: 以趵突泉群为例. 地球科学, 49(8): 2862-2878. doi: 10.3799/dqkx.2023.051
      李成龙, 2019. 福建漳州汤洋地温异常区的地质与地球化学特征研究(硕士学位论文). 徐州: 中国矿业大学.
      李科甫, 朱传庆, 2023. 华夏地块花岗岩生热率特征及其对地温场的影响. 石油科学通报, 8(3): 259-289.
      李全力, 2021. 福建德化龙门大峡谷地热特征及前景分析. 福建地质, 40(4): 305-313.
      李冉, 陈群策, 张重远, 等, 2016. 台湾海峡西岸地应力特征研究. 地质学报, 90(8): 1703-1714.
      李帅, 韩江涛, 刘立家, 等, 2022. 华南地区樟树‒宁德大地电磁测深剖面深部电性结构及热特征. 地球物理学报, 65(4): 1354-1375.
      廖志杰, 2012. 福建无岩浆热源的深循环水热系统. 现代地质, 26(1): 85-98.
      林乐夫, 孙占学, 王安东, 等, 2017. 南岭地区与东南沿海地区中生代花岗岩放射性地球化学特征及岩石圈热结构对比研究. 岩石矿物学杂志, 36(4): 488-500.
      蔺文静, 陈向阳, 甘浩男, 等, 2020. 东南沿海厦门湾‒漳州盆地地热地质特征及干热岩勘查方向. 地质学报, 94(7): 2066-2077.
      蔺文静, 王贵玲, 甘浩男, 2024. 华南陆缘火成岩区差异性地壳热结构及地热意义. 地质学报, 98(2): 544-557.
      柳鉴容, 宋献方, 袁国富, 等, 2009. 中国东部季风区大气降水δ18O的特征及水汽来源. 科学通报, 54(22): 3521-3531.
      吕浩江, 杨志辉, 陈辉琼, 1989. 漳州‒华安"地震窗" 及其机制. 地震地质, 11(2): 33-38.
      毛绪美, 叶建桥, 董亚群, 等, 2022. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法. 地质科技通报, 41(1): 137-145.
      庞忠和, 樊志成, 汪集旸, 1990. 漳州盆地地下热水成因与海水混入的同位素证据. 地球化学, 19(4): 296-302.
      庞忠和, 1987. 漳州盆地地热系统‒成因模式、热能潜力与热水分布规律的研究(博士学位论文). 北京: 中国科学院地质与地球物理研究所.
      祁士华, 2021. 地热地球化学勘查. 北京: 科学出版社.
      史自德, 毛绪美, 叶建桥, 等, 2024. 中低温地热系统低盐度地热水高含量钠的地球化学成因: 以广东惠州黄沙洞地热田为例. 地球科学, 49(1): 271-287. doi: 10.3799/dqkx.2022.170
      孙厚云, 2023. 承德中部浅层地下水锶富集的岩石风化与水岩作用驱动机制(博士学位论文). 北京: 中国地质大学.
      孙厚云, 马峰, 王贵玲, 等, 2025a. 基于机器学习的福建省地热温泉理疗热矿水元素空间分异特征与物源解析. 地质学报, 在线出版. https://doi.org/10.19762/j.cnki.dizhixuebao.2024440.
      孙厚云, 马峰, 朱喜, 等, 2025b. 冀北燕山隆起‒华北断陷盆地地热流体地球化学特征及地热学意义. 地质学报, 99(5): 1711-1742.
      滕吉文, 司芗, 庄庆祥, 等, 2017. 福建陆缘壳幔异常结构与深部热储潜能分析. 科学技术与工程, 17(17): 6-38.
      万天丰, 褚明记, 陈明佑, 1988. 福建省岩石圈的热状态与地热资源的远景评价. 地质学报, 62(2): 178-189.
      王贵玲, 蔺文静, 刘峰, 等, 2023. 地热系统深部热能聚敛理论及勘查实践. 地质学报, 97(3): 639-660.
      王贵玲, 蔺文静, 2020. 我国主要水热型地热系统形成机制与成因模式. 地质学报, 94(7): 1923-1937.
      王晶, 陈国能, Grapes, R., 等, 2011. 壳内岩浆层演化的盆地效应: 以中国东南部中生代盆地为例. 地学前缘, 18(1): 24-31.
      王恺, 熊熊, 2012. 利用大地测量和地热资料联合确定黑水‒泉州地学断面东段岩石圈热及强度结构. 地球物理学进展, 27(4): 1366-1376.
      王思佳, 张敏, 黄学莲, 等, 2024. 广东省龙门岩溶热储温度计算及流体演化特征. 地球科学, 49(3): 992-1004. doi: 10.3799/dqkx.2022.430
      汪啸, 2018. 广东沿海典型深大断裂带地热水系统形成条件及水文地球化学特征(博士学位论文). 武汉: 中国地质大学.
      魏斯禹, 刘绍成, 敖光华, 等, 1988. 我国福建陆缘地带的地热活动与地球物理场特征. 西北地震学报, 10(3): 74-81.
      谢越宁, 程枫萍, 何瑞因, 等, 1986. 台湾大气降水和地热水的氢、氧同位素研究. 地质地球化学, 14(3): 42-46.
      熊绍柏, 刘宏兵, 王有学, 等, 2002. 华南上地壳速度分布与基底、盖层构造研究. 地球物理学报, 45(6): 784-791, 902-904.
      徐钫一鸣, 卢国平, 2017. 广东海岸带型新洲地热田水化学及海水入侵水动力特征. 安全与环境工程, 24(1): 1-10.
      叶建桥, 毛绪美, 2024. 高温水热系统中相变时温度和驱动力的变化. 地球科学, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126
      余明刚, 洪文涛, 杨祝良, 等, 2021. 东南沿海燕山期火山活动旋回划分及其成矿规律. 地质通报, 40(6): 845-863.
      张健, 何雨蓓, 范艳霞, 2024. 福建沿海地区地热异常热源成因的地球物理分析. 地学前缘, 31(3): 392-401.
      张健, 王蓓羽, 唐显春, 等, 2018. 华南陆缘高热流区的壳幔温度结构与动力学背景. 地球物理学报, 61(10): 3917-3932.
      张珂, 马浩明, 蔡剑波, 2002. 华南沿海温泉成因探讨. 中山大学学报(自然科学版), 41(1): 82-86.
      赵亮亮, 2011. 福建省连江县贵安地热资源潜力分析(硕士学位论文). 武汉: 中国地质大学.
      赵平, 汪集旸, 汪缉安, 等, 1995. 中国东南地区岩石生热率分布特征. 岩石学报, 11(3): 292-305.
      赵永红, 杨家英, 王航, 等, 2017. 地热水氢氧同位素分布特性. 地球物理学进展, 32(6): 2415-2423.
      庄庆祥, 李德威, 郑霜高, 等, 2019. 漳州盆地及邻区地热资源与深部高温岩体的地质响应研究. 北京: 地质出版社.
      祖辅平, 2012. 中国东南部晚古生代以来典型盆地沉积构造环境演化特征(博士学位论文). 南京: 南京大学.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(10)

      Article views (200) PDF downloads(27) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return