Citation: | Lu Shiming, Wu Zhonghai, Han Shuai, Hu Yuan, Fan Fuxin, 2025. Quaternary Activity Characteristics of the Yiong-Zayu Segment of the Jiali Fault Zone. Earth Science, 50(8): 3052-3069. doi: 10.3799/dqkx.2025.065 |
Adams, K. D., Wesnousky, S. G., Bills, B. G., 1999. Isostatic Rebound, Active Faulting, and Potential Geomorphic Effects in the Lake Lahontan Basin, Nevada and California. Geological Society of America Bulletin, 111(12): 1739-1756. https://doi.org/10.1130/0016-7606(1999)1111739:irafap>2.3.co;2 doi: 10.1130/0016-7606(1999)1111739:irafap>2.3.co;2
|
Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/JB094iB03p02787
|
Chen, P. G., He, X. H., Xu, S. F., et al., 2023. Earthquake Relocation and Regional Stress Field around the Eastern Himalayan Syntaxis. Reviews of Geophysics and Planetary Physics, 54(6): 667-683(in Chinese with English abstract).
|
Chung, L., 2014. Activity of the Eastern Karakoram-Jiali Fault Zone in Tibet(Dissertation). National Taiwan University, Taibei, 81-107(in Chinese).
|
Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569(in Chinese with English abstract).
|
Grosset, J., Mazzotti, S., Vernant, P., 2023. Glacial-Isostatic-Adjustment Strain Rate-Stress Paradox in the Western Alps and Impact on Active Faults and Seismicity. Solid Earth, 14(10): 1067-1081. https://doi.org/10.5194/se-14-1067-2023
|
Hampel, A., Hetzel, R., 2006. Response of Normal Faults to Glacial-Interglacial Fluctuations of Ice and Water Masses on Earth's Surface. Journal of Geophysical Research: Solid Earth, 111(B6): 1-13. https://doi.org/10.1029/2005JB004124
|
He, Z. H., Yang, D. M., Wang, T. W., 2006. Zircon SHRIMP U-Pb Age and Petrochemical and Geochemical Features of Mesozoic Muscovite Monzonitic Granite at Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 653-660 (in Chinese with English abstract).
|
Li, C. Y., Zhang, P. Z., Zhang, J. X., et al., 2007. Late-Quaternary Activity and Slip Rate of the Western Qinling Fault Zone at Huangxianggou. Quaternary Sciences, 27(1): 54-63(in Chinese with English abstract).
|
Li, H. R., Bai, L., Zhan, H. L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese with English abstract).
|
Li, Z. J., Wang, Y., Liu, L. J., et al., 2025. Lithospheric Deformation and Corresponding Deep Geodynamic Process of the SE Tibetan Plateau. Science China Earth Sciences, 55(5): 1351-1376 (in Chinese with English abstract).
|
Liu, S. J., Lan, H. X., Strom, A., et al., 2024. Spatial Segmentation of Jiali Fault's Holocene Activity in the Southeastern Tibetan Plateau. NPJ Natural Hazards, 1: 42. https://doi.org/10.1038/s44304-024-00038-3
|
Liu, Y. H., Zhang, Y. F., Shan, X. J., et al., 2019, Use of Seismic Waveforms and Insar Data for Determination of the Seismotectonics of the Mainling Ms6.9 Earthquake on Nov. 18, 2017. Seismology and Geology, 34(3): 896-907 (in Chinese with English abstract).
|
Miao, S. Q., Hu, Z. K., Zhang, L., et al., 2021. Geomorphic Analysis of Strike-Slip Faulting at the Top of Alluvial Fan: a Case Study at Ahebiedou River on the Eastern Margin of Tacheng Basin, Xinjiang, China. Seismology and Geology, 43(3): 488-503 (in Chinese with English abstract).
|
Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246X.1989.tb02020.x
|
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
|
Nichols, G., 2009. Sedimentology and Stratigraphy. Ladybird, UK, 420-425.
|
Ren, J. W., Shen, J., Cao, Z. Q., et al., 2000. Quaternary Faulting of Jiali Fault, Southeast Tibetan Plateau. Seismology and Geology, 22(4): 344-350 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2000.04.002
|
Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
|
Song, J., 2010. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults Around the Eastern Himalayan Syntaxis(Dissertation). Institute of Geology, China Earthquake Administration, Beijing, 34-43 (in Chinese with English abstract).
|
Song, J., Tang, F. T., Deng, Z. H., et al., 2013. Late Quaternary Movement Characteristic of Jiali Fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973-980 (in Chinese with English abstract).
|
Steffen, R., Wu, P., Steffen, H., et al., 2014. On the Implementation of Faults in Finite-Element Glacial Isostatic Adjustment Models. Computers & Geosciences, 62: 150-159. https://doi.org/10.1016/j.cageo.2013.06.012
|
Stewart, I. S., Sauber, J., Rose, J., 2000. Glacio-Seismotectonics: ice Sheets, Crustal Deformation and Seismicity. Quaternary Science Reviews, 19(14/15): 1367-1389. https://doi.org/10.1016/S0277-3791(00)00094-9
|
Tang, F. T., Song, J., Cao, Z. Q., et al., 2010. The Movement Characters of Main Faults around Eastern Himalayan Syntaxis Revealed by the Latest GPS Data. Chinese Journal of Geophysics, 53(9): 2119-2128 (in Chinese with English abstract).
|
Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. https://doi.org/10.1038/264319a0
|
Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1
|
Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 1-25. https://doi.org/10.1029/2002TC001361
|
Wang, E., Burchfiel, B. C., 1997. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191-219. https://doi.org/10.1080/00206819709465267
|
Wang, H., Li, K. J., Chen, L. C., et al., 2020. Evidence for Holocene Activity on the Jiali Fault, an Active Block Boundary in the Southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776-1780. https://doi.org/10.1785/0220190371
|
Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774
|
Wang, S. Y., Ai, M., Wu, C. Y., et al., 2018. Application of Dem Generation Technology from High Resolution Satellite Image in Quantitative Active Tectonics Study: a Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017 (in Chinese with English abstract).
|
Wang, X. N., Tang, F. T., Shao, C. R., 2018. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275 (in Chinese with English abstract).
|
Wu, Z. H., Long, C. X., Fan, T. Y., et al., 2015. The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract).
|
Xiang, S. Y. M., Ma, X. M., Ze, R., et al., 2007. Record of Apatite Fission Track of the Differential Uplift in both Sides of Jiali Fault Belt since Late Cenozoic. Earth Science, 32(5): 615-621 (in Chinese with English abstract).
|
Xu, Z. Q., Li, H. B., Tang, Z. M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract). http://www.oalib.com/paper/1475130
|
Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2003. Discussion on the Tectonic Pattern and Formation Process of the South Ngangla Ring of the Eastern Himalayas. Science in China (Series D), 4: 373-383(in Chinese).
|
Zhao, T. X., Su, X. N., Zhu, Q., et al., 2024. The Crustal Deformation Characteristics of Typical Tectonic Region in the Western Segment of the Jiali Fault Derived from GPS Observations. Science of Surveying and Mapping, 49(3): 27-35 (in Chinese with English abstract).
|
Zhao, Y. F., Gong, W. B., Jiang, W., et al., 2021. Multi-Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang-Tongmai Section, South Tibet. Geoscience, 35(1): 220-233(in Chinese with English abstract).
|
Zhong, N., Guo, C. B., Huang, X. L., et al., 2022. Late Quaternary Activity and Paleoseismic Records of the Middle South Section of the Jiali-Zayu Fault. Acta Geologica Sinica. 95(12): 3642-3659(in Chinese with English abstract).
|
陈平光, 何骁慧, 徐树峰, 等, 2023. 喜马拉雅东构造结地震精定位及其区域应力场研究. 地球与行星物理论评, (6): 667-683.
|
高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木-措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569. doi: 10.3799/dqkx.2023.009
|
和钟铧, 杨德明, 王天武, 2006. 西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义. 岩石学报, (3): 653-660.
|
李传友, 张培震, 张剑玺, 等, 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率. 第四纪研究, (1): 54-63.
|
李鸿儒, 白玲, 詹慧丽, 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182-193.
|
李长军, 王洋, 刘丽军, 等, 2025. 青藏高原东南缘岩石圈变形特征及其深部动力学过程. 中国科学: 地球科学, 55(5): 1351-1376.
|
刘云华, 张迎峰, 张国宏, 等, 2019. 2016年1月21日门源MS 6.4级地震InSAR同震形变及发震构造研究. 地球物理学进展, 34(3): 896-907.
|
苗树清, 胡宗凯, 张玲, 等, 2021. 洪积扇顶部活动走滑断裂的断错地貌分析——以新疆塔城盆地东缘阿合别斗河冲洪积扇为例. 地震地质, 43(3): 488-503.
|
任金卫, 沈军, 曹忠权, 等, 2000. 西藏东南部嘉黎断裂新知. 地震地质, (4): 344-350.
|
宋键, 2010. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究(博士学位论文). 北京: 中国地震局地质研究所. 34-43.
|
宋键, 唐方头, 邓志辉, 等, 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973-980.
|
唐方头, 宋键, 曹忠权, 等, 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119-2128.
|
汪思妤, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用——以库米什盆地南缘断裂陡坎为例. 地震地质, 40(5): 999-1017.
|
王晓楠, 2018. 南迦巴瓦构造结周边地区主要断裂带现今运动特征(博士学位论文). 北京: 中国地震局地球物理研究所, 15-66.
|
吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制. 地质通报, 34(01): 1-31.
|
向树元民, 马新民, 泽仁扎西, 等, 2007. 嘉黎断裂带两侧晚新生代差异隆升的磷灰石裂变径迹纪录. 地球科学, (5): 615-621. http://www.earth-science.net/article/id/3521
|
许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170.
|
张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑: 地球科学), (4): 373-383.
|
赵天祥, 苏小宁, 朱庆, 等, 2024. GPS观测的嘉黎断裂西段典型构造区域地壳变形特征. 测绘科学, 49(3): 27-35.
|
赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220-233.
|
钟令和, 2014. 西藏地区喀喇昆仑-嘉黎断裂带东段活动性讨论(博士学位论文). 台北: 国立台湾大学. 81-107.
|
钟宁, 郭长宝, 黄小龙, 等, 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642-3659.
|