• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 8
    Aug.  2025
    Turn off MathJax
    Article Contents
    Lu Shiming, Wu Zhonghai, Han Shuai, Hu Yuan, Fan Fuxin, 2025. Quaternary Activity Characteristics of the Yiong-Zayu Segment of the Jiali Fault Zone. Earth Science, 50(8): 3052-3069. doi: 10.3799/dqkx.2025.065
    Citation: Lu Shiming, Wu Zhonghai, Han Shuai, Hu Yuan, Fan Fuxin, 2025. Quaternary Activity Characteristics of the Yiong-Zayu Segment of the Jiali Fault Zone. Earth Science, 50(8): 3052-3069. doi: 10.3799/dqkx.2025.065

    Quaternary Activity Characteristics of the Yiong-Zayu Segment of the Jiali Fault Zone

    doi: 10.3799/dqkx.2025.065
    • Received Date: 2025-04-15
    • Publish Date: 2025-08-25
    • The Jiali Fault Zone is one of the major active tectonic structures along the southeastern margin of the Tibetan Plateau, playing a crucial role in regional seismicity and geomorphic evolution. This study systematically analyzes the tectonic activity of the Yiong-Zayu segment of the Jiali Fault Zone by integrating high-resolution remote sensing imagery, DEM data, field investigations, and focal mechanism solutions.The results indicate that the Jiali Fault Zone has exhibited weak tectonic activity since the Quaternary, with no significant evidence of right-lateral strike-slip motion. Instead, localized NW- and nearly E-W-trending normal faulting has been observed along certain segments, and seismic activity is predominantly characterized by local normal-faulting earthquakes. GPS velocity analysis reveals that the fault exhibits low horizontal slip rates, with deformation primarily characterized by extension, suggesting that it does not function as a major boundary fault.By integrating previous studies, we further infer that the formation of local normal faults is primarily influenced by localized shear stress or post-glacial rebound. Moreover, the kinematic model of southeastern Tibet is more consistent with a clockwise rotational extrusion mechanism.

       

    • loading
    • Adams, K. D., Wesnousky, S. G., Bills, B. G., 1999. Isostatic Rebound, Active Faulting, and Potential Geomorphic Effects in the Lake Lahontan Basin, Nevada and California. Geological Society of America Bulletin, 111(12): 1739-1756. https://doi.org/10.1130/0016-7606(1999)1111739:irafap>2.3.co;2 doi: 10.1130/0016-7606(1999)1111739:irafap>2.3.co;2
      Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/JB094iB03p02787
      Chen, P. G., He, X. H., Xu, S. F., et al., 2023. Earthquake Relocation and Regional Stress Field around the Eastern Himalayan Syntaxis. Reviews of Geophysics and Planetary Physics, 54(6): 667-683(in Chinese with English abstract).
      Chung, L., 2014. Activity of the Eastern Karakoram-Jiali Fault Zone in Tibet(Dissertation). National Taiwan University, Taibei, 81-107(in Chinese).
      Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569(in Chinese with English abstract).
      Grosset, J., Mazzotti, S., Vernant, P., 2023. Glacial-Isostatic-Adjustment Strain Rate-Stress Paradox in the Western Alps and Impact on Active Faults and Seismicity. Solid Earth, 14(10): 1067-1081. https://doi.org/10.5194/se-14-1067-2023
      Hampel, A., Hetzel, R., 2006. Response of Normal Faults to Glacial-Interglacial Fluctuations of Ice and Water Masses on Earth's Surface. Journal of Geophysical Research: Solid Earth, 111(B6): 1-13. https://doi.org/10.1029/2005JB004124
      He, Z. H., Yang, D. M., Wang, T. W., 2006. Zircon SHRIMP U-Pb Age and Petrochemical and Geochemical Features of Mesozoic Muscovite Monzonitic Granite at Ningzhong, Tibet. Acta Petrologica Sinica, 22(3): 653-660 (in Chinese with English abstract).
      Li, C. Y., Zhang, P. Z., Zhang, J. X., et al., 2007. Late-Quaternary Activity and Slip Rate of the Western Qinling Fault Zone at Huangxianggou. Quaternary Sciences, 27(1): 54-63(in Chinese with English abstract).
      Li, H. R., Bai, L., Zhan, H. L., 2021. Research Progress of Jiali Fault Activity. Reviews of Geophysics and Planetary Physics, 52(2): 182-193 (in Chinese with English abstract).
      Li, Z. J., Wang, Y., Liu, L. J., et al., 2025. Lithospheric Deformation and Corresponding Deep Geodynamic Process of the SE Tibetan Plateau. Science China Earth Sciences, 55(5): 1351-1376 (in Chinese with English abstract).
      Liu, S. J., Lan, H. X., Strom, A., et al., 2024. Spatial Segmentation of Jiali Fault's Holocene Activity in the Southeastern Tibetan Plateau. NPJ Natural Hazards, 1: 42. https://doi.org/10.1038/s44304-024-00038-3
      Liu, Y. H., Zhang, Y. F., Shan, X. J., et al., 2019, Use of Seismic Waveforms and Insar Data for Determination of the Seismotectonics of the Mainling Ms6.9 Earthquake on Nov. 18, 2017. Seismology and Geology, 34(3): 896-907 (in Chinese with English abstract).
      Miao, S. Q., Hu, Z. K., Zhang, L., et al., 2021. Geomorphic Analysis of Strike-Slip Faulting at the Top of Alluvial Fan: a Case Study at Ahebiedou River on the Eastern Margin of Tacheng Basin, Xinjiang, China. Seismology and Geology, 43(3): 488-503 (in Chinese with English abstract).
      Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246X.1989.tb02020.x
      Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
      Nichols, G., 2009. Sedimentology and Stratigraphy. Ladybird, UK, 420-425.
      Ren, J. W., Shen, J., Cao, Z. Q., et al., 2000. Quaternary Faulting of Jiali Fault, Southeast Tibetan Plateau. Seismology and Geology, 22(4): 344-350 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2000.04.002
      Royden, L. H., Burchfiel, B. C., King, R. W., et al., 1997. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 276(5313): 788-790. https://doi.org/10.1126/science.276.5313.788
      Song, J., 2010. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults Around the Eastern Himalayan Syntaxis(Dissertation). Institute of Geology, China Earthquake Administration, Beijing, 34-43 (in Chinese with English abstract).
      Song, J., Tang, F. T., Deng, Z. H., et al., 2013. Late Quaternary Movement Characteristic of Jiali Fault in Tibetan Plateau. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(6): 973-980 (in Chinese with English abstract).
      Steffen, R., Wu, P., Steffen, H., et al., 2014. On the Implementation of Faults in Finite-Element Glacial Isostatic Adjustment Models. Computers & Geosciences, 62: 150-159. https://doi.org/10.1016/j.cageo.2013.06.012
      Stewart, I. S., Sauber, J., Rose, J., 2000. Glacio-Seismotectonics: ice Sheets, Crustal Deformation and Seismicity. Quaternary Science Reviews, 19(14/15): 1367-1389. https://doi.org/10.1016/S0277-3791(00)00094-9
      Tang, F. T., Song, J., Cao, Z. Q., et al., 2010. The Movement Characters of Main Faults around Eastern Himalayan Syntaxis Revealed by the Latest GPS Data. Chinese Journal of Geophysics, 53(9): 2119-2128 (in Chinese with English abstract).
      Tapponnier, P., Molnar, P., 1976. Slip-Line Field Theory and Large-Scale Continental Tectonics. Nature, 264(5584): 319-324. https://doi.org/10.1038/264319a0
      Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1
      Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 1-25. https://doi.org/10.1029/2002TC001361
      Wang, E., Burchfiel, B. C., 1997. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191-219. https://doi.org/10.1080/00206819709465267
      Wang, H., Li, K. J., Chen, L. C., et al., 2020. Evidence for Holocene Activity on the Jiali Fault, an Active Block Boundary in the Southeastern Tibetan Plateau. Seismological Research Letters, 91(3): 1776-1780. https://doi.org/10.1785/0220190371
      Wang, M., Shen, Z. K., 2020. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. https://doi.org/10.1029/2019JB018774
      Wang, S. Y., Ai, M., Wu, C. Y., et al., 2018. Application of Dem Generation Technology from High Resolution Satellite Image in Quantitative Active Tectonics Study: a Case Study of Fault Scarps in the Southern Margin of Kumishi Basin. Seismology and Geology, 40(5): 999-1017 (in Chinese with English abstract).
      Wang, X. N., Tang, F. T., Shao, C. R., 2018. The Current Movement Characters of Main Faults Surrounding the Namcha Barwa Syntaxis. Technology for Earthquake Disaster Prevention, 13(2): 267-275 (in Chinese with English abstract).
      Wu, Z. H., Long, C. X., Fan, T. Y., et al., 2015. The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geological Bulletin of China, 34(1): 1-31 (in Chinese with English abstract).
      Xiang, S. Y. M., Ma, X. M., Ze, R., et al., 2007. Record of Apatite Fission Track of the Differential Uplift in both Sides of Jiali Fault Belt since Late Cenozoic. Earth Science, 32(5): 615-621 (in Chinese with English abstract).
      Xu, Z. Q., Li, H. B., Tang, Z. M., et al., 2011. The Transformation of the Terrain Structures of the Tibet Plateau through Large-Scale Strike-Slip Faults. Acta Petrologica Sinica, 27(11): 3157-3170 (in Chinese with English abstract). http://www.oalib.com/paper/1475130
      Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2003. Discussion on the Tectonic Pattern and Formation Process of the South Ngangla Ring of the Eastern Himalayas. Science in China (Series D), 4: 373-383(in Chinese).
      Zhao, T. X., Su, X. N., Zhu, Q., et al., 2024. The Crustal Deformation Characteristics of Typical Tectonic Region in the Western Segment of the Jiali Fault Derived from GPS Observations. Science of Surveying and Mapping, 49(3): 27-35 (in Chinese with English abstract).
      Zhao, Y. F., Gong, W. B., Jiang, W., et al., 2021. Multi-Stage Characteristics and Tectonic Significance of the Jiali Fault in Guxiang-Tongmai Section, South Tibet. Geoscience, 35(1): 220-233(in Chinese with English abstract).
      Zhong, N., Guo, C. B., Huang, X. L., et al., 2022. Late Quaternary Activity and Paleoseismic Records of the Middle South Section of the Jiali-Zayu Fault. Acta Geologica Sinica. 95(12): 3642-3659(in Chinese with English abstract).
      陈平光, 何骁慧, 徐树峰, 等, 2023. 喜马拉雅东构造结地震精定位及其区域应力场研究. 地球与行星物理论评, (6): 667-683.
      高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木-措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569. doi: 10.3799/dqkx.2023.009
      和钟铧, 杨德明, 王天武, 2006. 西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义. 岩石学报, (3): 653-660.
      李传友, 张培震, 张剑玺, 等, 2007. 西秦岭北缘断裂带黄香沟段晚第四纪活动表现与滑动速率. 第四纪研究, (1): 54-63.
      李鸿儒, 白玲, 詹慧丽, 2021. 嘉黎断裂带活动性研究进展. 地球与行星物理论评, 52(2): 182-193.
      李长军, 王洋, 刘丽军, 等, 2025. 青藏高原东南缘岩石圈变形特征及其深部动力学过程. 中国科学: 地球科学, 55(5): 1351-1376.
      刘云华, 张迎峰, 张国宏, 等, 2019. 2016年1月21日门源MS 6.4级地震InSAR同震形变及发震构造研究. 地球物理学进展, 34(3): 896-907.
      苗树清, 胡宗凯, 张玲, 等, 2021. 洪积扇顶部活动走滑断裂的断错地貌分析——以新疆塔城盆地东缘阿合别斗河冲洪积扇为例. 地震地质, 43(3): 488-503.
      任金卫, 沈军, 曹忠权, 等, 2000. 西藏东南部嘉黎断裂新知. 地震地质, (4): 344-350.
      宋键, 2010. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究(博士学位论文). 北京: 中国地震局地质研究所. 34-43.
      宋键, 唐方头, 邓志辉, 等, 2013. 青藏高原嘉黎断裂晚第四纪运动特征. 北京大学学报(自然科学版), 49(6): 973-980.
      唐方头, 宋键, 曹忠权, 等, 2010. 最新GPS数据揭示的东构造结周边主要断裂带的运动特征. 地球物理学报, 53(9): 2119-2128.
      汪思妤, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用——以库米什盆地南缘断裂陡坎为例. 地震地质, 40(5): 999-1017.
      王晓楠, 2018. 南迦巴瓦构造结周边地区主要断裂带现今运动特征(博士学位论文). 北京: 中国地震局地球物理研究所, 15-66.
      吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制. 地质通报, 34(01): 1-31.
      向树元民, 马新民, 泽仁扎西, 等, 2007. 嘉黎断裂带两侧晚新生代差异隆升的磷灰石裂变径迹纪录. 地球科学, (5): 615-621. http://www.earth-science.net/article/id/3521
      许志琴, 李海兵, 唐哲民, 等, 2011. 大型走滑断裂对青藏高原地体构架的改造. 岩石学报, 27(11): 3157-3170.
      张进江, 季建清, 钟大赉, 等, 2003. 东喜马拉雅南迦巴瓦构造结的构造格局及形成过程探讨. 中国科学(D辑: 地球科学), (4): 373-383.
      赵天祥, 苏小宁, 朱庆, 等, 2024. GPS观测的嘉黎断裂西段典型构造区域地壳变形特征. 测绘科学, 49(3): 27-35.
      赵远方, 公王斌, 江万, 等, 2021. 藏南嘉黎断裂古乡-通麦段多期活动特征及其构造意义. 现代地质, 35(1): 220-233.
      钟令和, 2014. 西藏地区喀喇昆仑-嘉黎断裂带东段活动性讨论(博士学位论文). 台北: 国立台湾大学. 81-107.
      钟宁, 郭长宝, 黄小龙, 等, 2021. 嘉黎-察隅断裂带中南段晚第四纪活动性及其古地震记录. 地质学报, 95(12): 3642-3659.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(13)  / Tables(1)

      Article views (254) PDF downloads(165) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return