Citation: | Zhang Cancan, Ding Mingtao, Shen Chuanqing, Li Yunlong, Li Zhenhong, Yu Chen, 2025. Intelligent Recognition of Coseismic Landslides Based on MultiU-EGANet Model. Earth Science, 50(8): 3182-3198. doi: 10.3799/dqkx.2025.067 |
Badrinarayanan, V., Kendall, A., Cipolla, R., 2017. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12): 2481-2495
|
Borgwardt, K. M., Gretton, A., Rasch, M. J., et al., 2006. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy. Bioinformatics, 22(14): e49-e57. https://doi.org/10.1093/bioinformatics/btl242
|
Bragagnolo, L., Rezende, L. R., da Silva, R. V., et al., 2021. Convolutional Neural Networks Applied to Semantic Segmentation of Landslide Scars. CATENA, 201: 105189. https://doi.org/10.1016/j.catena.2021.105189
|
Bui, N. T., Hoang, D. H., Nguyen, Q. T., et al., 2024. MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary Polyp Segmentation. 2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). January 3-8, 2024, Waikoloa, HI, USA. IEEE: 7970-7979.
|
Chang, M., Zhou, Y., Zhou, C., et al., 2021. Coseismic Landslides Induced by the 2018 Mw 6.6 Iburi, Japan, Earthquake: Spatial Distribution, Key Factors Weight, and Susceptibility Regionalization. Landslides, 18(2): 755-772. https://doi.org/10.1007/s10346-020-01522-3
|
Chen, B., Song, C., Chen, Y., et al., 2025. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Damages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake. Geomatics and Information Science of Wuhan University, 50(2): 322-332(in Chinese with English abstract).
|
Chen, L. Q., Zhao, C. Y., Ren, C. F., et al., 2020. Monitoring the Jianshanying Landslide in a Karst Mountainous Area of Guizhou by Optical Remote Sensing. Carsologica Sinica, 39(4): 518-523(in Chinese with English abstract).
|
Dai, L. X., Fan, X. M., Wang, X., et al., 2023. Coseismic Landslides Triggered by the 2022 Luding Ms6.8 Earthquake, China. Landslides, 20(6): 1277-1292. https://doi.org/10.1007/s10346-023-02061-3
|
Dai, L. X., Xu, Q., Fan, X. M., et al., 2017. A Preliminary Study on Spatial Distribution Patterns of Landslides Triggered by Jiuzhaigou Earthquake in Sichuan on August 8TH, 2017 and Their Susceptibility Assessment. Journal of Engineering Geology, 25(4): 1151-1164(in Chinese with English abstract).
|
Dou, J., Xiang, Z. L., Xu, Q., et al., 2023. Application and Development Trend of Machine Learning in Landslide Intelligent Disaster Prevention and Mitigation. Earth Science, 48(5): 1657-1674(in Chinese with English abstract).
|
Emberson, R., Kirschbaum, D., Stanley, T., 2021. Global Connections between El Nino and Landslide Impacts. Nature Communications, 12: 2262. https://doi.org/10.1038/s41467-021-22398-4
|
Fan, X. M., Scaringi, G., Xu, Q., et al., 2018. Coseismic Landslides Triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou Earthquake (Sichuan, China): factors Controlling Their Spatial Distribution and Implications for the Seismogenic Blind Fault Identification. Landslides, 15(5): 967-983. https://doi.org/10.1007/s10346-018-0960-x
|
Ghorbanzadeh, O., Meena, S. R., Shahabi Sorman Abadi, H., et al., 2021. Landslide Mapping Using Two Main Deep-Learning Convolution Neural Network Streams Combined by the Dempster-Shafer Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 452-463
|
Guo, Z. L., Wen, Y. M., Xu, G. Y., et al., 2019. Fault Slip Model of the 2018 Mw 6.6 Hokkaido Eastern Iburi, Japan, Earthquake Estimated from Satellite Radar and GPS Measurements. Remote Sensing, 11(14): 1667. https://doi.org/10.3390/rs11141667
|
Hacıefendioğlu, K., Demir, G., Başağa, H. B., 2021. Landslide Detection Using Visualization Techniques for Deep Convolutional Neural Network Models. Natural Hazards, 109(1): 329-350. https://doi.org/10.1007/s11069-021-04838-y
|
He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Identity Mappings in Deep Residual Networks. Computer Vision - ECCV 2016. Cham: Springer International Publishing: 630-645.
|
Ibtehaz, N., Rahman, M. S., 2020. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Networks, 121: 74-87. https://doi.org/10.1016/j.neunet.2019.08.025
|
Ji, S. P., Yu, D. W., Shen, C. Y., et al., 2020. Landslide Detection from an Open Satellite Imagery and Digital Elevation Model Dataset Using Attention Boosted Convolutional Neural Networks. Landslides, 17(6): 1337-1352. https://doi.org/10.1007/s10346-020-01353-2
|
Jiang, H. W., Peng, M., Zhong, Y. J., et al., 2022. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sensing, 14(7): 1552. https://doi.org/10.3390/rs14071552
|
Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2 doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
|
Lan, H. X., Li, L. P., Zhang, Y. S., et al., 2013. Risk Assessment of Debris Flow in Yushu Seismic Area in China: a Perspective for the Reconstruction. Natural Hazards and Earth System Sciences, 13(11): 2957-2968. https://doi.org/10.5194/nhess-13-2957-2013
|
Li, Y. L., Ding, M. T., Zhang, Q., et al., 2024. Old Landslide Detection Using Optical Remote Sensing Images Based on Improved YOLOv8. Applied Sciences, 14(3): 1100. https://doi.org/10.3390/app14031100
|
Lin, T. Y., Goyal, P., Girshick, R., et al., 2020. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2): 318-327. https://doi.org/10.1109/TPAMI.2018.2858826
|
Liu, J., Wu, Y. M., Gao, X., et al., 2022. Image Recognition of Coseismic Landslide Based on GEE and U-Net Neural Network. Journal of Geo-Information Science, 24(7): 1275-1285(in Chinese with English abstract).
|
Liu, P., Wei, Y. M., Wang, Q. J., et al., 2020. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sensing, 12(5): 894. https://doi.org/10.3390/rs12050894
|
Lu, P., Shi, W. Y., Wang, Q. M., et al., 2021. Co-Seismic Landslide Mapping Using Sentinel-2 10m Fused NIR Narrow, Red-Edge, and SWIR Bands. Landslides, 18(6): 2017-2037. https://doi.org/10.1007/s10346-021-01636-2
|
Milletari, F., Navab, N., Ahmadi, S. A., 2016. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 Fourth International Conference on 3D Vision (3DV). October 25-28, 2016, Stanford, CA, USA. IEEE: 565-571.
|
Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Navab, N., Hornegger, J., Wells, W. M., eds., Medical Image Computing and Computer-Assisted Intervention: MICCAI 2015, Springer International Publishing, Cham, 234-241.
|
Shelhamer, E., Long, J., Darrell, T., 2017. Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(4): 640-651. https://doi.org/10.1109/TPAMI.2016.2572683
|
Tang, X. G., Wang, L. J., Wang, H. Y., et al., 2024. Predicted Climate Change Will Increase Landslide Risk in Hanjiang River Basin, China. Journal of Earth Science, 35(4): 1334-1354. https://doi.org/10.1007/s12583-021-1511-2
|
Wang, X., Fan, X. M., Xu, Q., et al., 2022. Change Detection-Based Co-Seismic Landslide Mapping through Extended Morphological Profiles and Ensemble Strategy. ISPRS Journal of Photogrammetry and Remote Sensing, 187: 225-239. https://doi.org/10.1016/j.isprsjprs.2022.03.011
|
Woo, S., Park, J., Lee, J. Y., et al., 2018. CBAM: Convolutional Block Attention Module. In: Ferrari, V., Hebert, M., Sminchisescu, C., eds., Computer Vision: ECCV 2018, PT VII, Lecture Notes in Computer Science, Presented at the 15th European Conference on Computer Vision (ECCV), Springer International Publishing Ag, Cham, 3-19.
|
Xu, Q., Dong, X. J., Li, W. L., 2019. Integrated Space-Air-Ground Early Detection, Monitoring and Warning System for Potential Catastrophic Geohazards. Geomatics and Information Science of Wuhan University, 44(7): 957-966(in Chinese with Englis abstract).
|
Yamagishi, H., Yamazaki, F., 2018. Landslides by the 2018 Hokkaido Iburi-Tobu Earthquake on September 6. Landslides, 15(12): 2521-2524. https://doi.org/10.1007/s10346-018-1092-z
|
Yang, J., Ding, M. T., Huang, W. B., et al., 2024. A Generalized Deep Learning-Based Method for Rapid Co-Seismic Landslide Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17: 16970-16983
|
Zhang, S., Li, R., Wang, F. W., et al., 2019. Characteristics of Landslides Triggered by the 2018 Hokkaido Eastern Iburi Earthquake, Northern Japan. Landslides, 16(9): 1691-1708. https://doi.org/10.1007/s10346-019-01207-6
|
Zhang, Z. X., Liu, Q. J., Wang, Y. H., 2018. Road Extraction by Deep Residual U-Net. IEEE Geoscience and Remote Sensing Letters, 15(5): 749-753. https://doi.org/10.1109/LGRS.2018.2802944
|
Zhao, W., Li, A. N., Nan, X., et al., 2017. Postearthquake Landslides Mapping from Landsat-8 Data for the 2015 Nepal Earthquake Using a Pixel-Based Change Detection Method. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5): 1758-1768. https://doi.org/10.1109/JSTARS.2017.2661802
|
陈博, 宋闯, 陈毅, 等, 2025. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究. 武汉大学学报(信息科学版), 50(2): 322-332.
|
陈立权, 赵超英, 任超锋, 等, 2020. 光学遥感用于贵州发耳镇尖山营滑坡监测研究. 中国岩溶, 39(4): 518-523.
|
戴岚欣, 许强, 范宣梅, 等, 2017. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究. 工程地质学报, 25(4): 1151-1164.
|
窦杰, 向子林, 许强, 等, 2023. 机器学习在滑坡智能防灾减灾中的应用与发展趋势. 地球科学, 48(5): 1657. doi: 10.3799/dqkx.2022.419
|
刘佳, 伍宇明, 高星, 等, 2022. 基于GEE和U-Net模型的同震滑坡识别方法. 地球信息科学学报, 24(7): 1275-1285.
|
许强, 董秀军, 李为乐, 2019. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警. 武汉大学学报(信息科学版), 44(7): 957-966.
|