Citation: | Zhang Xu, Hong Shunying, Dong Yanfang, Liu Tai, Yang Junyan, He Junyu, 2025. Coseismic Deformation and Fault Slip Distribution of the January 7, 2025, Dingri MW7.1 Earthquake. Earth Science, 50(5): 1709-1720. doi: 10.3799/dqkx.2025.072 |
On January 7, 2025, an MW7.1 earthquake struck Dingri County, Shigatse City, Xizang Autonomous Region. The epicenter was located at the intersection of the southern segment of the Shenzha-Dingjie rift fault system and the South Tibetan detachment system, near the Dengmocuo fault. To investigate the seismogenic mechanism, slip distribution, and Coulomb stress disturbances of the earthquake, this study firstly utilized the Sentinel-1A data to obtain the coseismic deformation fields by InSAR (interferometric synthetic aperture rader) and POT (pixel offset tracking) techniques. Then, we employed the SDM program to invert the fault coseismic slip-distribution, and subsequently calculated the coseismic Coulomb stress disturbances with variable depth. The results indicate that the coseismic deformation of the Dingri earthquake is dominated by subsidence. The seismogenic fault strikes nearly north-south, with a dip angle of ~60°. The inverted coseismic slip-distribution suggests that the major rupture zone (slip > 1 m) extends ~40 km in length and ~14 km in width. The maximum slip is approximately 4.45 m, occurring at a depth of ~4.33 km. The average rake angle is approximately ‒76.81°, indicating that this earthquake was predominantly a normal faulting event with a slight left-lateral strike-slip component. Taken the shear modulus at 30 GPa, the inverted seismic moment is about 3.53×1019 N·m, equivalent to the moment magnitude MW7.0. Aftershocks predominantly happened around the periphery of the major slip zone. Additionally, the coseismic and postseismic Coulomb stress disturbances suggest significant increases (> 10 kPa) in the southern segment of Shenzha-Dingjie fault, the eastern segment of Zanda-Lhaze-Qongdojiang fault, the central-eastern segment of Dagyiling-Ngamring-Rinbung fault, and the central segment of Yarlung Tsangpo fault. The future seismic hazards on these fault segments warrant heightened attention.
Ammon, C. J., Ji, C., Thio, H. K., et al., 2005. Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 308(5725): 1133-1139. https://doi.org/10.1126/science.1112260
|
Bai, L., Chen, Z. W., Wang, S. J., 2025. The 2025 Dingri 6.8 Earthquake in Xizang: Analysis of Tectonic Background and Discussion of Source Characteristics. Reviews of Geophysics and Planetary Physics, 56(3): 258-263 (in Chinese).
|
Chen, F., Diao, F. Q., Haghighi, M. H., et al., 2024. Mechanism and Implications of the Post-Seismic Deformation Following the 2021 MW7.4 Maduo (Tibet) Earthquake. Geophysical Journal International, 237(1): 203-216. https://doi.org/10.1093/gji/ggae034
|
Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., et al., 2007. Coseismic Slip and Afterslip of the Great MW9.15 Sumatra-Andaman Earthquake of 2004. Bulletin of the Seismological Society of America, 97(1A): S152-S173. https://doi.org/10.1785/0120050631
|
Delouis, B., Nocquet, J. M., Vallée, M., 2010. Slip Distribution of the February 27, 2010 MW= 8.8 Maule Earthquake, Central Chile, from Static and High-Rate GPS, InSAR, and Broadband Teleseismic Data. Geophysical Research Letters, 37(17): L17305. https://doi.org/10.1029/2010GL043899
|
Farr, T. G., Rosen, P. A., Caro, E., et al., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2): RG2004. https://doi.org/10.1029/2005RG000183
|
Hong, S. Y., Liu, M., Liu, T., et al., 2022. Fault Source Model and Stress Changes of the 2021 MW7.4 Maduo Earthquake, China, Constrained by InSAR and GPS Measurements. Bulletin of the Seismological Society of America, 112(3): 1284-1296. https://doi.org/10.1785/0120210250
|
Jiang, G. Y., Wen, Y. M., Liu, Y. J., et al., 2015. Joint Analysis of the 2014 Kangding, Southwest China, Earthquake Sequence with Seismicity Relocation and InSAR Inversion. Geophysical Research Letters, 42(9): 3273-3281. https://doi.org/10.1002/2015GL063750
|
Jónsson, S., Zebker, H., Segall, P., et al., 2002. Fault Slip Distribution of the 1999 MW7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 92(4): 1377-1389. https://doi.org/10.1785/0120000922
|
Laske, G., Masters, G., Ma, Z., et al., 2013. Update on CRUST1. 0-A 1-Degree Global Model of Earth's Crust. Geophysical Research Abstracts, 15(15): 2658.
|
Lay, T., Kanamori, H., Ammon, C. J., et al., 2005. The Great Sumatra-Andaman Earthquake of 26 December 2004. Science, 308(5725): 1127-1133. https://doi.org/10.1126/science.1112250
|
Li, Y. S., Li, W. L., Xu, Q., et al., 2025. InSAR Coseismic Deformation Detection and Fault Slip Distribution Inversion of the MS6.8 Earthquake in Dingri, Tibet on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 52(2): 199-211 (in Chinese with English abstract).
|
Miao, M., Zhu, S. B., 2012. A Study of the Impact of Static Coulomb Stress Changes of Megathrust Earthquakes along Subduction Zone on the Following Aftershocks. Chinese Journal of Geophysics, 55(9): 2982-2993 (in Chinese with English abstract).
|
Ozawa, S., Nishimura, T., Suito, H., et al., 2011. Coseismic and Postseismic Slip of the 2011 Magnitude-9 Tohoku-Oki Earthquake. Nature, 475(7356): 373-376. https://doi.org/10.1038/nature10227
|
Pollitz, F. F., Brooks, B., Tong, X. P., et al., 2011. Coseismic Slip Distribution of the February 27, 2010 MW8.8 Maule, Chile Earthquake. Geophysical Research Letters, 38(9): L09309. https://doi.org/10.1029/2011GL047065
|
Rosen, P. A., Gurrola, E., Sacco, G. F., et al., 2012. The InSAR Scientific Computing Environment. EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, 730-733.
|
Sheng, S. Z., Wang, Q. R., Li Z. Y., et al., 2025. Investigation of the Seismogenic Structure of the 2025 Dingri MS6.8 Earthquake in Xizang Base on the Tectonic Stress Filed Perspective. Seismology and Geology, 47(1): 49-63 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.004
|
Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri MS6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.001
|
Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the MS6.8 Earthquake on January 7, 2025 in Dingri (Xizang, China) Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411 (in Chinese with English abstract).
|
Wang, R., Diao, F., Hoechner, A., 2013. SDM-A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry. EGU General Assembly Conference, Vienna, 2411.
|
Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006
|
Wang, Y. Z., 2015. Coseismic Slip Distribution of the 2011 Tohoku MW9.0 Earthquake Inferred from GPS and InSAR Data. Acta Seismologica Sinica, 37(5): 796-805 (in Chinese with English abstract).
|
Wei, B. Y., Zhang, Y. M., Shi, F., et al., 2025. Analysis of Building Damage and Casualties of the 2025 Dingri MS6.8 Earthquake in Xizang Based on Field Investigation. Seismology and Geology, 47(1): 64-79 (in Chinese with English abstract).
|
Xu, C. J., He, P., W, Y. M., et al., 2012. Coseismic Deformation Slip Distribution for 2011 Tohoku-Oki MW9.0 Earthquake: Constrained by GPS and InSAR. Geomatics and Information Science of Wuhan University, 37(12): 1387-1391 (in Chinese with English abstract).
|
Xu, X. W., Han, Z. J., Yang, X. P., et al., 2016. Seismotectonic Map in China and Its Adjacent Regions. Seismological Press, Beijing (in Chinese).
|
Xu, X. W., Wang, S. G., Cheng, J., et al., 2025. Shaking the Tibetan Plateau: Insights from the MW7.1 Dingri Earthquake and Its Implications for Active Fault Mapping and Disaster Mitigation. NPJ Natural Hazards, 2: 16. https://doi.org/10.1038/s44304-025-00074-7
|
Yang, J. W., Jin, M. P., Ye, B., et al., 2025. Source Rupture Mechanism and Stress Changes to the Adjacent Area of January 7, 2025, MS6.8 Dingri Earthquake, Xizang, China. Seismology and Geology, 47(1): 36-48. (in Chinese with English abstract).
|
Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2025.033
|
Yu, C., Li, Z. H., Hu, X. N., et al., 2025a. Source Characteristics and Induced Hazards of the 2025 MW6.8 Dingri Earthquake, Xizang, China, Revealed by Imaging Geodesy. Journal of Earth Science, 36(2): 847-851. https://doi.org/10.1007/s12583-025-0175-8
|
Yu, S. Y., Zhang, S. B., Luo, J. J., et al., 2025b. The Tectonic Significance of the MW7.1 Earthquake Source Model in Tibet in 2025 Constrained by InSAR Data. Remote Sensing, 17(5): 936. https://doi.org/10.3390/rs17050936
|
Zhang, J. J., Guo, L., Ding, L., 2002. Structural Characteristics of the Middle and Southern Segment of the Shenzha-Dingjie Normal Fault System and Its Relationship with the Detachment System in Southern Tibet. Chinese Science Bulletin, 47(10): 738-743 (in Chinese).
|
Zhang, X. T., Jiang, X. H., Xue, Y., et al., 2020. Summary of the Dingri MS5.9 Earthquake in Tibet on March 20, 2020. Seismological and Geomagnetic Observation and Research, 41(4): 193-203 (in Chinese with English abstract).
|
Zhang, Y., Xu, L. S., Chen, Y. T., 2012. Rupture Process of the 2011 Tohoku Earthquake from the Joint Inversion of Teleseismic and GPS Data. Earthquake Science, 25(2): 129-135. https://doi.org/10.1007/s11589-012-0839-1
|
白玲, 陈治文, 王绍俊, 2025. 2025年西藏定日6.8级地震: 构造背景分析与震源特征探讨. 地球与行星物理论评(中英文), 56(3): 258-263.
|
李雨森, 李为乐, 许强, 等, 2025. 2025年1月7日西藏定日MS6.8级地震InSAR同震形变探测与断层滑动分布反演. 成都理工大学学报(自然科学版), 52(2): 199-211.
|
缪淼, 朱守彪, 2012. 俯冲带上特大地震静态库仑应力变化对后续余震触发效果的研究. 地球物理学报, 55(9): 2982-2993.
|
盛书中, 王倩茹, 李振月, 等, 2025. 基于构造应力场研究2025年西藏定日6.8级地震的发震构造. 地震地质, 47(1): 49-63.
|
石峰, 梁明剑, 罗全星, 等, 2025. 2025年1月7日西藏定日6.8级地震发震构造与同震地表破裂特征. 地震地质, 47(1): 1-15.
|
王楠, 李永生, 申文豪, 等, 2025. 2025年1月7日西藏定日MS6.8地震震源机制InSAR反演及强地面运动快速模拟. 武汉大学学报(信息科学版), 50(2): 404-411.
|
王永哲, 2015. 利用GPS和InSAR数据反演2011年日本东北MW9.0地震断层的同震滑动分布. 地震学报, 37(5): 796-805, 885.
|
魏本勇, 张钰曼, 石峰, 等, 2025. 基于现场调查的2025西藏定日MS6.8地震房屋震害与人员伤亡分析. 地震地质, 47(1): 64-79.
|
许才军, 何平, 温扬茂, 等, 2012. 日本2011 Tohoku-Oki MW9.0级地震的同震形变及其滑动分布反演: GPS和InSAR约束. 武汉大学学报(信息科学版), 37(12): 1387-1391.
|
徐锡伟, 韩竹军, 杨晓平, 等, 2016. 中国及邻区地震构造图. 北京: 地震出版社.
|
杨建文, 金明培, 叶泵, 等, 2025. 2025年1月7日西藏定日6.8级地震震源破裂机理及邻区应力变化. 地震地质, 47(1): 36-48.
|
杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造, 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
|
张进江, 郭磊, 丁林, 2002. 申扎‒定结正断层体系中、南段构造特征及其与藏南拆离系的关系. 科学通报, 47(10): 738-743.
|
张小涛, 姜祥华, 薛艳, 等, 2020. 2020年3月20日西藏定日MS5.9地震总结. 地震地磁观测与研究, 41(4): 193-203.
|