• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 5
    May  2025
    Turn off MathJax
    Article Contents
    Jin Zhitong, Zhou Mingyue, Huang Jichao, Wan Yongge, 2025. The Stress Triggering of the 2025 Dingri, Xizang, China MW6.8 Earthquake by the 2015 Nepal MW7.8 and MW7.2 Earthquakes. Earth Science, 50(5): 1782-1793. doi: 10.3799/dqkx.2025.074
    Citation: Jin Zhitong, Zhou Mingyue, Huang Jichao, Wan Yongge, 2025. The Stress Triggering of the 2025 Dingri, Xizang, China MW6.8 Earthquake by the 2015 Nepal MW7.8 and MW7.2 Earthquakes. Earth Science, 50(5): 1782-1793. doi: 10.3799/dqkx.2025.074

    The Stress Triggering of the 2025 Dingri, Xizang, China MW6.8 Earthquake by the 2015 Nepal MW7.8 and MW7.2 Earthquakes

    doi: 10.3799/dqkx.2025.074
    • Received Date: 2025-02-01
    • Publish Date: 2025-05-25
    • The stress triggering of the 2015 Nepal MW7.8 and MW7.2 earthquakes on the 2025 Dingri MW6.8 earthquake and its seismogenic fault are analyzed and discussed in this study, based on the rupture models of the two Nepal earthquakes and a layered viscoelastic crustal velocity model. The results show follows: (1) The 2015 Nepal MW7.8 earthquake caused a Coulomb stress change of 0.003 9 MPa at the source location of the Dingri earthquake, which was significantly greater than the stress modulation caused by solid tides, indicating that it played a promoting role in the occurrence of the Dingri earthquake. The combined Coulomb stress changes from the 2015 Nepal MW7.8 and MW7.2 earthquakes at the source location of the Dingri earthquake amounted to 0.010 4 MPa, exceeding the seismic stress triggering threshold of 0.01 MPa, suggesting that the joint effect of the two earthquakes significantly promoted the occurrence of the Dingri earthquake. (2) During the Dingri earthquake, both the MW7+ earthquakes caused positive Coulomb stress changes on its seismogenic fault plane, with an average Coulomb stress change of 8 837 Pa. Especially at the source of the Dingri earthquake, the Coulomb stress change exceeded the stress triggering threshold of 0.01 MPa, indicating that the two earthquakes effectively increased the stress level on the seismogenic fault plane of the Dingri earthquake, having a significant triggering effect on the source location of the Dingri earthquake. (3) Considering the two MW7+ earthquakes in 2015, along with the two MS5.9 earthquakes in Dingri in 2015 and 2020, it was found that the 2015 Dingri earthquake had a suppressing effect on the Dingri earthquake, while the 2020 MS5.9 Dingri earthquake had a promoting effect. The combined Coulomb stress changes from these four earthquakes amounted to 0.01 MPa, which triggered the Dingri earthquake. The results of this study provide basic data and information for understanding the seismic hazard analysis of the fault where the Dingri earthquake occurred, with significance for the seismic activity at the boundary of the Indian Plate and the Eurasian Plate, as well as the tectonic evolution of the Tibetan Plateau.

       

    • loading
    • Chen, Y. T., Lin, B. H., Lin, Z. Y., et al., 1975. The Focal Mechanism of the 1966 Hsingtai Earthquake as Inferred from the Ground Deformation Observations. Chinese Journal of Geophysics, 18(3): 164-182 (in Chinese with English abstract).
      Chinnery, M. A., 1963. The Stress Changes That Accompany Strike-Slip Faulting. The Bulletin of the Seismological Society of America, 53(5): 921-932. https://doi.org/10.1785/BSSA0530050921
      Fang, J. L., Zhao, B., Yu, J. S., et al., 2022. Research on the Seismic Source Model and Static Stress Triggering of the 2015 Dingri MW5.7 Earthquake. Journal of Geodesy and Geodynamics, 42(9): 964-970 (in Chinese with English abstract).
      Freed, A. M., Lin, J., 2001. Delayed Triggering of the 1999 Hector Mine Earthquake by Viscoelastic Stress Transfer. Nature, 411(6834): 180-183. https://doi.org/10.1038/35075548
      Gao, Y., Wu, Z. H., Zuo, J. M., et al., 2024. Spatial-Temporal Activity of Quaternary Faults at Southern End of Nyalam-Coqen Rift, Southern Tibet. Earth Science, 49(7): 2552-2569 (in Chinese with English abstract).
      Hardebeck, J. L., Nazareth, J. J., Hauksson, E., 1998. The Static Stress Change Triggering Model: Constraints from Two Southern California Aftershock Sequences. Journal of Geophysical Research: Solid Earth, 103(B10): 24427-24437. https://doi.org/10.1029/98JB00573
      Harris, R. A., 1998. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 103(B10): 24347-24358. https://doi.org/10.1029/98JB01576
      Jin, Z. T., Cui, H. W., Liu, J. L., et al., 2023. Impact of Two Strong Earthquakes in Turkey in 2023 on the Static Stress in the Surrounding Areas of the Epicenters. Journal of Institute of Disaster Prevention, 25(2): 1-12 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8047.2023.02.001
      Jin, Z. T., Wan, Y. G., Liu, Z. C., et al., 2019. The Static Stress Triggering Influences of the 2017 MS7.0 Jiuzhaigou Earthquake on Neighboring Areas. Chinese Journal of Geophysics, 62(4): 1282-1299 (in Chinese with English abstract).
      Jin, Z. T., Wan, Y. G., Wang, F. C., et al., 2024. Research on the Fault Geometry and Slip Characteristics of Lushan Earthquake Sequence in 2013 and 2022. Chinese Journal of Geophysics, 67(6): 2202-2219 (in Chinese with English abstract).
      Jónsson, S., Segall, P., Pedersen, R., et al., 2003. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients. Nature, 424(6945): 179-183. https://doi.org/10.1038/nature01776
      King, G. C. P., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953. https://doi.org/10.1785/BSSA0840030935
      Laske, G., Masters, G., Ma, Z. T., et al., 2013. Update on CRUST1.0-A1-Degree Global Model of Earth's Crust. European Geosciences Union General Assembly 2013, Vienna.
      Li, Q., Li, C. T., Zhao, B., et al., 2024. Estimated Seismic Source Parameters for 2020 Dingri Mw 5.6 Earthquake in Xizang and Study on the Stress Triggering. 67(1): 172-188 (in Chinese with English abstract).
      Li, Y. J., Chen, L. W., Lu, Y. Z., et al., 2013. Numerical Simulation on Influences of Wenchuan Earthquake on the Stability of Faults in the Neighborhood. Earth Science, 38(2): 398-410 (in Chinese with English abstract).
      Liu, C., Dong, P. Y., Zhu, B. J., et al., 2018. Stress Shadow on the Southwest Portion of the Longmen Shan Fault Impacted the 2008 Wenchuan Earthquake Rupture. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. https://doi.org/10.1029/2018JB015633
      Okada, Y., 1992. Internal Deformation Due to Shear and Tensile Faults in a Half-Space. The Bulletin of the Seismological Society of America, 82(2): 1018-1040. https://doi.org/10.1785/BSSA0820021018
      Rydelek, P. A., Sacks, I. S., 1990. Asthenospheric Viscosity and Stress Diffusion: A Mechanism to Explain Correlated Earthquakes and Surface Deformations in Ne Japan. Geophysical Journal International, 100(1): 39-58. https://doi.org/10.1111/j.1365-246X.1990.tb04566.x
      Shan, B., Zheng, Y., Liu, C. L., et al., 2017. Coseismic Coulomb Failure Stress Changes Caused by the 2017 M7.0 Jiuzhaigou Earthquake, and Its Relationship with the 2008 Wenchuan Earthquake. Scientia Sinica (Terrae), 47(11): 1329-1338 (in Chinese). doi: 10.1360/N072017-00268
      Shen, Z. K., Wan, Y. G., Gan, W. J., et al., 2003. Viscoelastic Triggering among Large Earthquakes along the East Kunlun Fault System. Chinese Journal of Geophysics, 46(6): 786-795 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2003.06.010
      Sheng, S. Z., Wan, Y. G., Jiang, C. S., et al., 2015. Preliminary Study on the Static Stress Triggering Effects on China Mainland with the 2015 Nepal MS8.1 Earthquake. Chinese Journal of Geophysics, 58(5): 1834-1842 (in Chinese with English abstract).
      Sheng, S. Z., Wang, Q. R., Li, Z. Y., et al., 2025. Investigation of the Seismogenic Structure of the 2025 Dingri MS6.8 Earthquake in Xizang Based on the Tectonic Stress Field Perspective. Seismology and Geology, 47(1): 49-63 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2025.01.004
      Shi, Y. L., Cao, J. L., 2008. Effective Viscosity of China Continental Lithosphere. Earth Science Frontiers, 15(3): 82-95 (in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60064-0
      Stein, R. S., 1999. The Role of Stress Transfer in Earthquake Occurrence. Nature, 402(6762): 605-609. https://doi.org/10.1038/45144
      Wan, Y. G., 2016. Introduction to Seismology. Science Press, Beijing, 195-253 (in Chinese).
      Wan, Y. G., 2019. Determination of Center of Several Focal Mechanisms of the Same Earthquake. Chinese Journal of Geophysics, 62(12): 4718-4728 (in Chinese with English abstract). doi: 10.6038/cjg2019M0553
      Wan, Y. G., Sheng, S. Z., Li, X., et al., 2015. Stress Influence of the 2015 Nepal Earthquake Sequence on Chinese Mainland. Chinese Journal of Geophysics, 58(11): 4277-4286 (in Chinese with English abstract). doi: 10.6038/cjg20151132
      Wan, Y. G., Wu, Z. L., Zhou, G. W., 2003. Small Stress Change Triggering a Big Earthquake: A Test of the Critical Point Hypothesis for Earthquakes. Chinese Physics Letters, 20(9): 1452-1455. doi: 10.1088/0256-307X/20/9/312
      Wan, Y. G., Wu, Z. L., Zhou, G. W., et al., 2000. "Stress Triggering" between Different Rupture Events in Several Complex Earthquakes. Acta Seismologica Sinica, 22(6): 568-576 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2000.06.002
      Wang, R. J., Lorenzo-Martín, F., Roth, F., 2006. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory. Computers & Geosciences, 32(4): 527-541. https://doi.org/10.1016/j.cageo.2005.08.006
      Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579. https://doi.org/10.1029/98EO00426
      Xiao, Y., Shan, B., Liu, C. L., et al., 2024. Stress Triggering and Seismic Hazard Assessment of the 2022 Lushan MS6.1 Earthquake. Earth Science, 49(8): 2979-2991 (in Chinese with English abstract).
      Yagi, Y., Okuwaki, R., 2015. Integrated Seismic Source Model of the 2015 Gorkha, Nepal, Earthquake. Geophysical Research Letters, 42(15): 6229-6235. https://doi.org/10.1002/2015GL064995
      Yang, Q., Dang, Y. M., 2010. A Research about Effective Viscosity of Tibetan Plateau Lithosphere Viscoelastic Ductile Layer Using GPS Velocity Fields. Acta Geodaetica et Cartographica Sinica, 39(5): 497-502 (in Chinese with English abstract).
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract).
      Zhang, X. T., Jiang, X. H., Xue, Y., et al., 2020. Summary of the Dingri MS5.9 Earthquake in Tibet on March 20, 2020. Seismological and Geomagnetic Observation and Research, 41(4): 193-203 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-3246.2020.04.024
      Zhou, J. C., Sun, H. P., Xu, J. Q., et al., 2013. Tidal Strain and Tidal Stress in the Earth's Interior. Chinese Journal of Geophysics, 56(11): 3779-3787 (in Chinese with English abstract). doi: 10.6038/cjg20131119
      陈运泰, 林邦慧, 林中洋, 等, 1975. 根据地面形变的观测研究1966年邢台地震的震源过程. 地球物理学报, 18(3): 164-182.
      方金玲, 赵斌, 余建胜, 等, 2022. 2015年西藏定日MW5.7地震震源参数估计和静态应力触发研究. 大地测量与地球动力学, 42(9): 964-970.
      高扬, 吴中海, 左嘉梦, 等, 2024. 藏南聂拉木‒措勤裂谷南段第四纪正断层作用的时空特征. 地球科学, 49(7): 2552-2569.
      靳志同, 崔华伟, 刘佳璐, 等, 2023. 2023年土耳其两次强震对周围地区的静态应力影响. 防灾科技学院学报, 25(2): 1-12. doi: 10.3969/j.issn.1673-8047.2023.02.001
      靳志同, 万永革, 刘兆才, 等, 2019. 2017年九寨沟MS7.0地震对周围地区的静态应力影响. 地球物理学报, 62(4): 1282-1299.
      靳志同, 万永革, 王福昌, 等, 2024. 2013年和2022年芦山地震序列断层面花状构造及其滑动特性研究. 地球物理学报, 67(6): 2102-2119.
      李琦, 李承涛, 赵斌, 等, 2024. 2020年西藏定日MW5.6地震震源参数估计和应力触发研究. 地球物理学报, 67(1): 172-188.
      李玉江, 陈连旺, 陆远忠, 等, 2013. 汶川地震的发生对周围断层稳定性影响的数值模拟. 地球科学, 38(2): 398-410. doi: 10.3799/dqkx.2013.039
      单斌, 郑勇, 刘成利, 等, 2017. 2017年M7.0级九寨沟地震同震库仑应力变化及其与2008年汶川地震的关系. 中国科学: 地球科学, 47(11): 1329-1338.
      沈正康, 万永革, 甘卫军, 等, 2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究. 地球物理学报, 46(6): 786-795. doi: 10.3321/j.issn:0001-5733.2003.06.010
      盛书中, 万永革, 蒋长胜, 等, 2015. 2015年尼泊尔MS 8.1强震对中国大陆静态应力触发影响的初探. 地球物理学报, 58(5): 1834-1842.
      盛书中, 王倩茹, 李振月, 等, 2025. 基于构造应力场研究2025年西藏定日6.8级地震的发震构造. 地震地质, 47(1): 49-63. doi: 10.3969/j.issn.0253-4967.2025.01.004
      石耀霖, 曹建玲, 2008. 中国大陆岩石圈等效粘滞系数的计算和讨论. 地学前缘, 15(3): 82-95. doi: 10.3321/j.issn:1005-2321.2008.03.006
      万永革, 2016. 地震学导论. 北京: 科学出版社, 195-253.
      万永革, 2019. 同一地震多个震源机制中心解的确定. 地球物理学报, 62(12): 4718-4728. doi: 10.6038/cjg2019M0553
      万永革, 盛书中, 李祥, 等, 2015. 2015年尼泊尔强震序列对中国大陆的应力影响. 地球物理学报, 58(11): 4277-4286. doi: 10.6038/cjg20151132
      万永革, 吴忠良, 周公威, 等, 2000. 几次复杂地震中不同破裂事件之间的"应力触发"问题. 地震学报, 22(6): 568-576. doi: 10.3321/j.issn:0253-3782.2000.06.002
      肖阳, 单斌, 刘成利, 等, 2024. 2022年芦山MS6.1地震应力触发及地震危险性分析. 地球科学, 49(8): 2979-2991.
      杨强, 党亚民, 2010. 利用GPS速度场估算青藏高原地壳韧性层等效粘滞系数分布的研究. 测绘学报, 39(5): 497-502.
      杨婷, 王世广, 房立华, 等, 2025. 2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732.
      张小涛, 姜祥华, 薛艳, 等, 2020. 2020年3月20日西藏定日MS5.9地震总结. 地震地磁观测与研究, 41(4): 193-203. doi: 10.3969/j.issn.1003-3246.2020.04.024
      周江存, 孙和平, 徐建桥, 等, 2013. 地球内部应变与应力固体潮. 地球物理学报, 56(11): 3779-3787. doi: 10.6038/cjg20131119
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (129) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return