• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Peng Ming, He Longkun, Sun Rui, Qi Hui, Cui Xinzhuang, Bi Jingchao, Du Changcheng, Zhao Qingxin, 2025. Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model. Earth Science, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075
    Citation: Peng Ming, He Longkun, Sun Rui, Qi Hui, Cui Xinzhuang, Bi Jingchao, Du Changcheng, Zhao Qingxin, 2025. Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model. Earth Science, 50(10): 3857-3872. doi: 10.3799/dqkx.2025.075

    Seismic Performance Analysis of Slope Reinforced by Pile-Anchor Combination Based on Newmark Model

    doi: 10.3799/dqkx.2025.075
    • Received Date: 2025-01-03
    • Publish Date: 2025-10-25
    • The composite structure of anti-slide pile and anchor cable can give full play to the rigid constraint of anti-slide pile and the active tension of anchor cable to control slope deformation, showing good seismic performance, and has been widely used in landslide prevention in strong earthquake areas. However, at present, there is little research on the seismic dynamic response of slope strengthened by pile-anchor composite structure, and its cooperative seismic mechanism is not clear. Based on Newmark model, this paper presents a dynamic response analysis method of slope strengthened by pile-anchor composite structure considering earthquake time-history characteristics. The method is applied to the high slope of Shandong expressway, and the permanent displacement, safety factor and internal force of supporting structure of the slope with different reinforcement methods are analyzed. The results show that the pile-anchor composite structure effectively reduces the permanent displacement of the slope and ensures the stability of the slope. Compared with only anchor support and only pile support, the maximum anchorage tension at the anchorage end, the maximum shear force and the maximum bending moment of the pile body are reduced. With the increase of cohesion and internal friction angle, the yield acceleration of slope increases in direct proportion, while the permanent displacement transitions from sharp decrease to slow decrease, in which the influence of cohesion is more significant. By forming an active stress system, the pile-anchor composite structure increases the yield acceleration of the slope, realizes the coordinated stress of the pile and the anchor cable, and prevents excessive stress concentration near the sliding surface, which is an efficient reinforcement method.

       

    • loading
    • Chen, J. F., Du, C. C., Chen, S. X., et al., 2022. Mechanical Mechanism of Slopes Stabilized with Anti-Slide Piles and Prestressed Anchor Cable Frame Beams under Seismic Loading. Earth Science, 47(12): 4362-4372(in Chinese with English abstract).
      Chen, Q. G., Ge, H., Zhou, H. F., 2011. Mapping of Seismic Triggered Landslide through Newmark Method: An Example from Study Area Yingxiu. Coal Geology of China, 23(11): 44-48, 56 (in Chinese with English abstract).
      Du, W. Q., 2018. Effects of Directionality and Vertical Component of Ground Motions on Seismic Slope Displacements in Newmark Sliding-Block Analysis. Engineering Geology, 239: 13-21. https://doi.org/10.1016/j.enggeo.2018.03.012
      Fkramer, S. L., 1995. Geotechnical Earthquake Engineering. Mcgraw Hill Handbooks. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000042
      Franklin, A. G., Chang, F. K., 1977. Earthquake Resistance of Earth and Rock-Fill Dams. Report 5: Permanent Displacements of Earth Embankments by Newmark Sliding Block Analysis. Department of Defense, Department of the Army, Corps of Engineers, Waterways Experiment Station, Soils and Pavements Laboratory.
      Gao, S. F., Feng, Y. F., 2022. Simplified Analysis Method of Bank Slope Seismic Stability Based on Newmark's Sliding Block Method. Port & Waterway Engineering, (6): 40-48 (in Chinese with English abstract).
      Gao, S. F., Gong, J. X., Feng, Y. F., 2015. Estimation of Earthquake-Induced Permanent Slope Deformation Based on Response Spectrum in Code. Hydro-Science and Engineering, (3): 37-44 (in Chinese with English abstract).
      Ge, H., Chen, Q. G., Wang, D. W., 2013. The Assessment and Mapping of Seismic Landslide Hazards: A Case Study of Yingxiu Area, Sichuan Province. Geology in China, 40(2): 644-652 (in Chinese with English abstract).
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658(in Chinese with English abstract).
      Jibson, R. W., Harp, E. L., Michael, J. A., 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area. US Department of the Interior, US Geological Survey, Washington, D. C., USA.
      Jibson, R. W., Michael, J. A., 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska. Center for Integrated Data Analytics Wisconsin Science Center.
      Jin, K. P., Yao, L. K., Chen, M. D., 2019. Improvement of Newmark Model and Method Study of Risk Zoning for Earthquake Triggered Landslide. Journal of Disaster Prevention and Mitigation Engineering, 39(2): 301-308 (in Chinese with English abstract).
      Kokusho, T., 2019. Energy-Based Newmark Method for Earthquake-Induced Slope Displacements. Soil Dynamics and Earthquake Engineering, 121: 121-134. https://doi.org/10.1016/j.soildyn.2019.02.027
      Lei, Z., Li, L. R., Long, J. F., et al., 2022. Improvement of Newmark Model and Prediction of Seismic Landslide Risk Based on Rainfall Infiltration. China Earthquake Engineering Journal, 44(3): 527-534 (in Chinese with English abstract).
      Li, H. J., Chi, S. C., Lin, G., 2006. Newmark Slider Displacement Method Based on Dynamic Strength Model and Time-History Stress Analysis. Rock and Soil Mechanics, 27(S2): 1063-1068 (in Chinese with English abstract).
      Li, J. F., Su, Y., Sun, Z. B., et al., 2020.3D Seismic Displacement Analysis Method of Stepped Slopes Reinforced with Piles Based on Newmark Principle. Rock and Soil Mechanics, 41(8): 2785-2795 (in Chinese with English abstract).
      Liu, B., Zhang, B. Y., 2019. Analysis of Seismic Permanent Displacement of a High Slope for a Hydropower Plant in Tibet. Journal of China Institute of Water Resources and Hydropower Research, 17(2): 125-131 (in Chinese with English abstract).
      Luo, Q., Li, L., Zhao, L. H., 2010. Quasi-Static Analysis of Seismic Stability of Anchored Rock Slope under Surcharge and Water Pressure Conditions. Rock and Soil Mechanics, 31(11): 3585-3593 (in Chinese with English abstract).
      Ma, X. W., Liang, Q. G., Zhao, T., et al., 2021. Review and Further Consideration on Research of Soil Dynamics. World Earthquake Engineering, 37(4): 217-230 (in Chinese with English abstract).
      Ministry of Housing and Urban-Rural Development of the People's Republic of China, 2014. Technical Code for Building Slope Engineering: GB 50330—2013. China Architecture & Building Press, Beijing (in Chinese).
      Nadukuru, S. S., Michalowski, R. L., 2013. Three-Dimensional Displacement Analysis of Slopes Subjected to Seismic Loads. Canadian Geotechnical Journal, 50(6): 650-661. https://doi.org/10.1139/cgj-2012-0223
      Naylor, D. J., 1982. Finite Elements and Slope Stability. Numerical Methods in Geomechanics. Dordrecht: Springer Netherlands: 229-244. https://doi.org/10.1007/978-94-009-7895-9_10 doi: 10.1007/978-94-009-7895-9_10
      Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Geotechnique, 15(2): 139-160. https://doi.org/10.1680/geot.1965.15.2.139
      Nouri, H., Fakher, A., Jones, C. J. F. P., 2006. Development of Horizontal Slice Method for Seismic Stability Analysis of Reinforced Slopes and Walls. Geotextiles and Geomembranes, 24(3): 175-187. https://doi.org/10.1016/j.geotexmem.2005.11.004
      Poulos, H. G., Davis, E. H., 1980. Pile Foundation Analysis and Design. Rainbow-Bridge Book Co., Wiley, New York. http://worldcat.org/isbn/0471020842
      Veylon, G., Luu, L. H., Mercklé, S., et al., 2017. A Simplified Method for Estimating Newmark Displacements of Mountain Reservoirs. Soil Dynamics and Earthquake Engineering, 100: 518-528. https://doi.org/10.1016/j.soildyn.2017.07.003
      Wilson, R. C., Keefer, D. K., 1983. Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Seismological Society of America, 73(3): 863-877. https://doi.org/10.1785/bssa0730030863
      Wu, J. J., Chen, W. K., Jia, Y. J., et al., 2025. Rapid Seismic Intensity and Disaster Assessment Based on Dense Seismic Array: A Case of the 2025 Rikaze MS6.8 Earthquake in Xizang. Earth Science, 50(5): 1770-1781(in Chinese with English abstract).
      Xu, G. X., Yao, L. K., Li, C. H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong-Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131-1136 (in Chinese with English abstract).
      Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Analysis of Earthquake Sequence and Seismogenic Structure of the 2025 MS6.8 Dingri Earthquake in Tibetan Plateau. Earth Science, 50(5): 1721-1732(in Chinese with English abstract).
      Zhang, B. Y., Wang, C., Li, D. Y., et al., 2018. The Research Progress on Seismic Stability Analysis of Slopes in Water Conservancy and Hydropower Projects. Journal of China Institute of Water Resources and Hydropower Research, 16(3): 168-178 (in Chinese with English abstract).
      Zhang, G., Zhu, W. S., 1993. Parameter Sensitivity Analysis and Optimizing for Test Programs. Rock and Soil Mechanics, 14(1): 51-58(in Chinese with English abstract).
      Zhang, L., Lu, C., Kong, Y. N., 2020. Comparison of Chinese and Foreign Strong Seismic Design Methods for Bank Slope. Port & Waterway Engineering, (5): 218-223 (in Chinese with English abstract).
      Zhou, D. P., Zhang, J. J., Tang, Y., 2010. Seismic Damage Analysis of Road Slopes in Wenchuan Earthquake. Chinese Journal of Rock Mechanics and Engineering, 29(3): 565-576 (in Chinese with English abstract).
      陈建峰, 杜长城, 陈思贤, 等, 2022. 地震作用下抗滑桩-预应力锚索框架组合结构受力机制. 地球科学, 47(12): 4362-4372.
      陈启国, 葛华, 周洪福, 2011. 利用Newmark方法进行地震滑坡制图: 以映秀研究区为例. 中国煤炭地质, 23(11): 44-48, 56.
      高树飞, 冯云芬, 2022. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程, (6): 40-48.
      高树飞, 贡金鑫, 冯云芬, 2015. 基于规范反应谱的码头岸坡地震永久变形计算. 水利水运工程学报, (3): 37-44.
      葛华, 陈启国, 王德伟, 2013. 地震滑坡危险性评价及编图: 以映秀震中区为例. 中国地质, 40(2): 644-652.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      金凯平, 姚令侃, 陈秒单, 2019. Newmark模型的修正以及地震触发崩塌滑坡危险性区划方法研究. 防灾减灾工程学报, 39(2): 301-308.
      雷真, 李林锐, 隆交凤, 等, 2022. 基于降雨入渗的Newmark模型改进及地震滑坡危险性预测研究. 地震工程学报, 44(3): 527-534.
      李红军, 迟世春, 林皋, 2006. 基于动强度模式和时程应力分析的Newmark滑块位移法. 岩土力学, 27(S2): 1063-1068.
      李见飞, 苏杨, 孙志彬, 等, 2020. 基于Newmark滑块原理的抗滑桩加固三维土坡的地震位移分析方法. 岩土力学, 41(8): 2785-2795.
      刘彪, 张伯艳, 2019. 西藏某水电站高边坡地震永久位移分析. 中国水利水电科学研究院学报, 17(2): 125-131.
      罗强, 李亮, 赵炼恒, 2010. 水力和超载条件下锚固岩石边坡动态稳定性拟静力分析. 岩土力学, 31(11): 3585-3593.
      马晓文, 梁庆国, 赵涛, 等, 2021. 土动力学研究综述及思考. 世界地震工程, 37(4): 217-230.
      吴佳杰, 陈文凯, 贾艺娇, 等, 2025. 基于密集台阵的地震烈度及灾情快速评估: 以2025年西藏日喀则MS6.8地震为例. 地球科学, 50(5): 1770-1781.
      徐光兴, 姚令侃, 李朝红, 等, 2012. 基于汶川地震强震动记录的边坡永久位移预测模型. 岩土工程学报, 34(6): 1131-1136.
      杨婷, 王世广, 房立华, 等, 2025.2025年1月7日西藏定日MS6.8地震余震序列特征与发震构造. 地球科学, 50(5): 1721-1732. doi: 10.3799/dqkx.2025.033
      张伯艳, 王璨, 李德玉, 等, 2018. 地震作用下水利水电工程边坡稳定分析研究进展. 中国水利水电科学研究院学报, 16(3): 168-178.
      章光, 朱维申, 1993. 参数敏感性分析与试验方案优化. 岩土力学, 14(1): 51-58.
      张磊, 陆澄, 孔友南, 2020. 中外岸坡抗强震设计方法对比. 水运工程(5): 218-223.
      中华人民共和国住房和城乡建设部, 2014. 建筑边坡工程技术规范GB 50330—2013[S]. 北京: 中国建筑工业出版社.
      周德培, 张建经, 汤涌, 2010. 汶川地震中道路边坡工程震害分析. 岩石力学与工程学报, 29(3): 565-576.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(16)  / Tables(4)

      Article views (138) PDF downloads(7) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return