• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    Volume 50 Issue 10
    Oct.  2025
    Turn off MathJax
    Article Contents
    Peng Xingliang, Wang Fawu, Chen Ye, Zhao Zixin, 2025. Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement. Earth Science, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079
    Citation: Peng Xingliang, Wang Fawu, Chen Ye, Zhao Zixin, 2025. Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement. Earth Science, 50(10): 3844-3856. doi: 10.3799/dqkx.2025.079

    Research on Effects of Spatial Structure and Strength Characteristics of Tectonic Mélanges in Baige Landslide on Formation of Sliding Zone and Long Runout Movement

    doi: 10.3799/dqkx.2025.079
    • Received Date: 2025-01-04
    • Publish Date: 2025-10-25
    • In October and November 2018, two large-scale high-altitude long-runout landslides successively occurred in the central section of the Jinsha River tectonic mélange belt, triggering a cascade disaster chain of landslide-dammed lakes. The source areas of these landslides were located at Baige Village, Jiangda County, Changdu City, Tibet Autonomous Region. This study focuses on the long runout movement characteristics of the Baige landslide. It investigated the topographic features of the landslide area through unmanned aerial vehicle (UAV) surveying. Laboratory microscopic characterization was used to analyze the lithological properties of the mélange rock. The ambient noise dispersion measurements were used to explore the spatial structure of the mélange rock mass in the source area, combined with the high-speed undrained ring shear test to analyze the dynamics of the sliding zone material.This study reveals follows. (1) The mélange rocks of the source area are primarily composed of chloritized metamorphic siltstone and illitized metamorphic slate. These rocks contain a high proportion of clay minerals, which are prone to weathering when exposed to water, leading to a reduction in strength. (2) The spatial distribution of blocks within the mélange rock mass significantly affects the formation and shape of sliding zones. Sliding zones tend to form along zones of weakness in both the blocks and the matrix, exhibiting a failure mode characterized by block-bypassing mechanisms.(3) The saturated sliding zone sample generates high pore-water pressure during undrained rapid shear process, resulting in significant strength degradation. Its peak shear strength and residual strength are 67% and 60% of that under dry conditions, respectively.The results demonstrate that the combination of the spatial structure and strength deterioration characteristics of mélanges is a key factor causing the frequency of high-altitude long runout landslides in this region. The shear strength characteristics of mélanges controlled the long-runout movement of the landslide.This research provides a foundation for the subsequent potential deformation and failure of the Baige landslide slope. It also offers valuable insights for slope stability analysis and landslide disaster prevention in tectonic mélange areas.

       

    • loading
    • Asten, M. W., Hayashi, K., 2018. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise. Surveys in Geophysics, 39(4): 633-659. https://doi.org/10.1007/s10712-018-9474-2
      Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409 (in Chinese with English abstract).
      Chen, F., Wang, S., Gao, Y. J., et al., 2020. Evolution of the Cracking Zones at the Site of the Baige Landslides and Their Future Development. Advanced Engineering Sciences, 52(5): 71-78 (in Chinese with English abstract).
      Chen, Y., Wang, F. W., Feng, Y. Q., et al., 2024. Localised Fluidisation in a Giant Loess Landslide. Engineering Geology, 344: 107854. https://doi.org/10.1016/j.enggeo.2024.1078544
      Fan, X. M., Yang, F., Siva Subramanian, S., et al., 2020. Prediction of a Multi-Hazard Chain by an Integrated Numerical Simulation Approach: The Baige Landslide, Jinsha River, China. Landslides, 17(1): 147-164. https://doi.org/10.1007/s10346-019-01313-5
      Fang, J. R., Song, J., Li, X., 2021. Quantitative Analysis of Clay Minerals' Influence on Bound Water Characteristics and Mechanical Properties of Soft Soils. Journal of Engineering Geology, 29(5): 1303-1311 (in Chinese with English abstract).
      Feng, W. K., Zhang, G. Q., Bai, H. L., et al., 2019. A Preliminary Analysis of the Formation Mechanism and Development Tendency of the Huge Baige Landslide in Jinsha River on October 11, 2018. Journal of Engineering Geology, 27(2): 415-425 (in Chinese with English abstract).
      Festa, A., Dilek, Y., Pini, G. A., et al., 2012. Mechanisms and Processes of Stratal Disruption and Mixing in the Development of Mélanges and Broken Formations: Redefining and Classifying Mélanges. Tectonophysics, 568: 7-24. https://doi.org/10.1016/j.tecto.2012.05.021
      Festa, A., Pini, G. A., Ogata, K., et al., 2019. Diagnostic Features and Field-Criteria in Recognition of Tectonic, Sedimentary and Diapiric Mélanges in Orogenic Belts and Exhumed Subduction-Accretion Complexes. Gondwana Research, 74: 7-30. https://doi.org/10.1016/j.gr.2019.01.003
      Guo, C. B., Wu, R. A., Zhong, N., et al., 2024. Large Landslides along Active Tectonic Zones of Eastern Tibetan Plateau: Background and Mechanism of Landslide Formation. Earth Science, 49(12): 4635-4658 (in Chinese with English abstract).
      Guo, C. B., Yan, Y. Q., Zhang, Y. S., et al., 2022. Research Progress and Prospect of Failure Mechanism of Large Deep-Seated Creeping Landslides in Tibetan Plateau, China. Earth Science, 47(10): 3677-3700 (in Chinese with English abstract).
      Kimura, G., Yamaguchi, A., Hojo, M., et al., 2012. Tectonic Mélange as Fault Rock of Subduction Plate Boundary. Tectonophysics, 568: 25-38. https://doi.org/10.1016/j.tecto.2011.08.025
      Li, J. Q., Zhang, Y. S., Ren, S. S., et al., 2024. Catastrophic Mechanical Behavior of Clay-Altered Rock in the Baige Landslide Upstream of the Jinsha River. Advanced Engineering Sciences, 56(3): 72-82 (in Chinese with English abstract).
      Lin, S., Wang, W., Deng, X. H., et al., 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146 (in Chinese with English abstract).
      Montoya-Araque, E. A., Suarez-Burgoa, L. O., 2019. Automatic Generation of Tortuous Failure Surfaces in Block-in-Matrix Materials for 2D Slope Stability Assessments. Computers and Geotechnics, 112: 17-22. https://doi.org/10.1016/j.compgeo.2019.04.002
      National Energy Administration, 2018. X-Ray Diffraction Analysis Methods for Clay Minerals and Common Non-Clay Minerals in Sedimentary Rocks. Petroleum Industry Press, Beijing (in Chinese).
      Ogata, K., Festa, A., Pini, G. A., et al., 2021. Mélanges in Flysch-Type Formations: Reviewing Geological Constraints for a Better Understanding of Complex Formations with Block-in-Matrix Fabric. Engineering Geology, 293: 106289. https://doi.org/10.1016/j.enggeo.2021.106289
      Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract).
      Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389 (in Chinese with English abstract).
      Sassa, K., Dang, K., He, B., et al., 2014. A New High-Stress Undrained Ring-Shear Apparatus and Its Application to the 1792 Unzen-Mayuyama Megaslide in Japan. Landslides, 11(5): 827-842. https://doi.org/10.1007/s10346-014-0501-1
      Tang, Y., Qin, Y. D., Gong, X. D., et al., 2022. Determination of Material Composition of Jinshajiang Tectonic Mélange Belt in Gonjo-Baiyu Area, Eastern Tibet. Sedimentary Geology and Tethyan Geology, 42(2): 260-278 (in Chinese with English abstract).
      Tian, S. F., Chen, N. S., Wu, H., et al., 2020. New Insights into the Occurrence of the Baige Landslide along the Jinsha River in Tibet. Landslides, 17(5): 1207-1216. https://doi.org/10.1007/s10346-020-01351-4
      Wang, F. W., 1999. An Experimental Study on Grain Crushing and Excess Pore Pressure Generation during Shearing of Sandy Soils: A Key Factor for Rapid Landslide Motion (Dissertation). Kyoto University, Kyoto.
      Wang, F. W., 2019. Liquefactions Caused by Structure Collapse and Grain Crushing of Soils in Rapid and Long Runout Landslides Triggered by Earthquakes. Journal of Engineering Geology, 27(1): 98-107 (in Chinese with English abstract).
      Wang, F. W., Chen, Y., Liu, W. C., et al., 2022. Characteristics and Challenges to Dynamics of Long-Runout Landslides with High-Altitude in Southeast Tibet. Journal of Engineering Geology, 30(6): 1831-1841 (in Chinese with English abstract).
      Wang, F. W., Okeke, A. C., Kogure, T., et al., 2018. Assessing the Internal Structure of Landslide Dams Subject to Possible Piping Erosion by Means of Microtremor Chain Array and Self-Potential Surveys. Engineering Geology, 234: 11-26. https://doi.org/10.1016/j.enggeo.2017.12.023
      Wang, L. C., Wen, M. S., Feng, Z., et al., 2019. Researches on the Baige Landslide at Jinshajiang River, Tibet, China. The Chinese Journal of Geological Hazard and Control, 30(1): 1-9 (in Chinese with English abstract).
      Weaver, R. L., 2005. Information from Seismic Noise. Science, 307(5715): 1568-1569. https://doi.org/10.1126/science.1109834
      Yan, Y. Q., Guo, C. B., Zhang, Y. S., et al., 2021. Study of the Deformation Characteristics of the Xiongba Ancient Landslide Based on SBAS-InSAR Method, Tibet, China. Acta Geologica Sinica, 95(11): 3556-3570 (in Chinese with English abstract).
      Yan, Z., Wang, Z. Q., Fu, C. L., et al., 2018. Characteristics and Thematic Geological Mapping of Mélanges. Geological Bulletin of China, 37(S1): 167-191 (in Chinese with English abstract).
      Yuan, H., Guo, C. B., Wu, R. A., et al., 2024. Shear Strength Characteristics of Sliding Zone Soils and Mechanisms of Luanshibao Long Runout Landslide in Litang County, Sichuan Province, China. Earth Science, 49(12): 4659-4672 (in Chinese with English abstract).
      Zhang, S. L., Yin, Y. P., Hu, X. W., et al., 2020. Initiation Mechanism of the Baige Landslide on the Upper Reaches of the Jinsha River, China. Landslides, 17(12): 2865-2877. https://doi.org/10.1007/s10346-020-01495-3
      Zhang, Y. S., Li, J. Q., Ren, S. S., et al., 2022. Development Characteristics of Clayey Altered Rocks in the Sichuan-Tibet Traffic Corridor and Their Promotion to Large-Scale Landslides. Earth Science, 47(6): 1945-1956 (in Chinese with English abstract).
      Zhang, Y. S., Ren, S. S., Li, J. Q., et al., 2023. Prone Sliding Geo-Structure and High-Position Initiating Mechanism of Duolasi Landslide in Nu River Tectonic Mélange Belt. Earth Science, 48(12): 4668-4679 (in Chinese with English abstract).
      Zhang, Y. S., Wang, D. B., Li, X., et al., 2024. Research on Hazard Prone Geological Genes and Major Engineering Geological Problems in Tectonic Mélange Belts of Tibetan Plateau. Acta Geologica Sinica, 98(3): 992-1005 (in Chinese with English abstract).
      Zhang, Z., He, S. M., Liu, W., et al., 2019. Source Characteristics and Dynamics of the October 2018 Baige Landslide Revealed by Broadband Seismograms. Landslides, 16(4): 777-785. https://doi.org/10.1007/s10346-019-01145-3
      Zhao, Z. X., Wang, F. W., Zhu, G. L., et al., 2023. A Review of Forming Mechanisms and Inhomogeneous Mechanical Properties of Mélange. Journal of Engineering Geology, 31(3): 796-814(in Chinese with English abstract).
      Zhu, D. M., Li, P. Y., Hu, X. H., et al., 2021. Stability Analysis and Prevention Countermeasures for Residual Bodies of Baige Landslide in Jinsha River. Geoscience, 35(1): 56-63 (in Chinese with English abstract).
      曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      陈菲, 王塞, 高云建, 等, 2020. 白格滑坡裂缝区演变过程及其发展趋势分析. 工程科学与技术, 52(5): 71-78.
      方敬锐, 宋晶, 李学, 2021. 黏土矿物对软土结合水特征及力学性质影响的定量分析. 工程地质学报, 29(5): 1303-1311.
      冯文凯, 张国强, 白慧林, 等, 2019. 金沙江"10·11"白格特大型滑坡形成机制及发展趋势初步分析. 工程地质学报, 27(2): 415-425.
      郭长宝, 吴瑞安, 钟宁, 等, 2024. 青藏高原东部活动构造带大型滑坡成灾背景与灾变机制. 地球科学, 49(12): 4635-4658.
      郭长宝, 闫怡秋, 张永双, 等, 2022. 青藏高原大型深层蠕滑型滑坡变形机制研究进展与展望. 地球科学, 47(10): 3677-3700.
      国家能源局, 2018. 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法: SY/T5163-2018. 北京: 石油工业出版社.
      李金秋, 张永双, 任三绍, 等, 2024. 金沙江上游白格滑坡黏土化蚀变岩的灾变力学行为研究. 工程科学与技术, 56(3): 72-82.
      林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074
      潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304.
      彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389.
      唐渊, 秦雅东, 巩小栋, 等, 2022. 藏东贡觉-白玉地区金沙江构造混杂岩带物质组成的厘定. 沉积与特提斯地质, 42(2): 260-278.
      汪发武, 2019. 地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理. 工程地质学报, 27(1): 98-107.
      汪发武, 陈也, 刘伟超, 等, 2022. 藏东南高位远程滑坡动力学特征及研究难点. 工程地质学报, 30(6): 1831-1841.
      王立朝, 温铭生, 冯振, 等, 2019. 中国西藏金沙江白格滑坡灾害研究. 中国地质灾害与防治学报, 30(1): 1-9.
      闫怡秋, 郭长宝, 张永双, 等, 2021. 基于SBAS-InSAR技术的西藏雄巴古滑坡变形特征. 地质学报, 95(11): 3556-3570.
      闫臻, 王宗起, 付长垒, 等, 2018. 混杂岩基本特征与专题地质填图. 地质通报, 37(增刊1): 167-191.
      张永双, 王冬兵, 李雪, 等, 2024. 青藏高原构造混杂岩带的孕灾地质基因与重大工程地质问题研究. 地质学报, 98(3): 992-1005.
      赵子昕, 汪发武, 朱国龙, 等, 2023. 混杂岩形成机制及非均质力学特性研究进展. 工程地质学报, 31(3): 796-814.
      朱德明, 李鹏岳, 胡孝洪, 等, 2021. 金沙江白格滑坡残留体稳定性分析与防治对策. 现代地质, 35(1): 56-63.
    • 加载中

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

      Figures(9)  / Tables(1)

      Article views (352) PDF downloads(23) Cited by()
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return