| Citation: | Wu Jian, Peng Yong, Kong Shaofei, Hu Yao, Qin Xujing, Wu Zheng, Qi Shihua, 2025. Emission Characteristics and Inventory of PCDD/Fs in Fine Particulate Matter from Domestic Biomass and Coal Combustion in China. Earth Science, 50(9): 3441-3453. doi: 10.3799/dqkx.2025.090 | 
Indoor simulation combustion experiments were performed using a dilution tunnel sampling system. The emission characteristics of PCDD/Fs in PM2.5 from domestic biomass and coal combustion were analyzed using isotope dilution high-resolution gas chromatography/mass spectrometry (HRGC/HRMS), with subsequent calculation of emission factors. By integrating China's fuel consumption and population density data, we developed a "bottom-up" emission inventory for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion in China. The key findings are as follows: (1) The mass concentrations of PCDD/Fs in PM2.5 from domestic biomass and coal combustion ranged from 0.181 to 4.700 pg/m3, with international toxic equivalent (I-TEQ) concentrations of 0.081 to 2.300 pg I-TEQ/m3. Congener analysis revealed that 2, 3, 7, 8-T4CDD (P < 0.01, R2=0.90) showed strong correlations with I-TEQ concentration, suggesting its potential as reliable toxicity indicators for PM2.5-bound PCDD/Fs from domestic biomass and coal combustion. (2) The mass-based emission factors of PCDD/Fs in PM2.5 were (1.82±0.97) ng/kg for biomass combustion and (4.09±2.76) ng/kg for coal combustion. The corresponding I-TEQ emission factors were (0.40±0.21) ng I-TEQ/kg (domestic biomass) and (0.53±0.24) ng I-TEQ/kg (domestic coal). (3) In 2021, the total emissions of PCDD/Fs in PM2.5 from domestic biomass and coal combustion reached 90.0 g I-TEQ. With spatial analysis showing emission hotspots (> 8 μg I-TEQ/km2) concentrated in Northeast and East China. Compared to previous studies, the emissions of PCDD/Fs in PM2.5 from waste incineration (22.56 g I-TEQ) and industrial combustion (208 g I-TEQ) were 0.2 times and 1.5 times those from domestic biomass and coal combustion, respectively. These results highlight that domestic biomass and coal combustion represent non-negligible and substantial sources of PCDD/Fs in PM2.5. (4) The estimated inhalation cancer risks were (9.5±7.2)×10-5 for domestic biomass combustion and (3.1±1.7)×10-5 for domestic coal combustion, representing 3.3-fold and 1.1-fold increases respectively over occupational exposure risks for industrial workers ((2.88±2.45)×10-5).
	                | 
					 Akagi, S. K., Yokelson, R., Wiedinmyer, C., et al., 2011. Emission Factors for Open and Domestic Biomass Burning for Use in Atmospheric Models. Atmospheric Chemistry and Physics, 11(9): 4039-4072. 
						
					 | 
			
| 
					 Andreae, M. O., Merlet, P., 2001. Emission of Trace Gases and Aerosols from Biomass Burning. Global Biogeochemical Cycles, 15(4): 955-966.  https://doi.org/10.1029/2000GB001382 
						
					 | 
			
| 
					 Black, R. R., Meyer, C. P., Touati, A., et al., 2012. Emission Factors for PCDD/PCDF and Dl-PCB from Open Burning of Biomass. Environment International, 38(1): 62-66.  https://doi.org/10.1016/j.envint.2011.07.003 
						
					 | 
			
| 
					 Chang, S. S., Lee, W. J., Holsen, T. M., et al., 2014. Emissions of Polychlorinated-p-Dibenzo Dioxin, Dibenzofurans (PCDD/Fs) and Polybrominated Diphenyl Ethers (PBDEs) from Rice Straw Biomass Burning. Atmospheric Environment, 94: 573-581.  https://doi.org/10.1016/j.atmosenv.2014.05.067 
						
					 | 
			
| 
					 Chen, C. M., 2004. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54(10): 1413-1420.  https://doi.org/10.1016/j.chemosphere.2003.10.039 
						
					 | 
			
| 
					 Chen, D. Y., Peng, P. A., Hu, J. F., et al., 2011. The Emission Characteristics of Dioxins in Biomass Burning. Environmental Chemistry, 30(7): 1271-1279 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Chen, L. L., Huang, T., Chen, K. J., et al., 2020. Gridded Atmospheric Emission Inventory of PCDD/Fs in China. Environmental Science, 41(2): 510-519 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Chen, W. S., Shen, Y. H., Hsieh, T. Y., et al., 2011. Fate and Distribution of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in a Woodchip-Fuelled Boiler. Aerosol and Air Quality Research, 11(3): 282-289.  https://doi.org/10.4209/aaqr.2010.11.0098 
						
					 | 
			
| 
					 Chen, Y. J., Sheng, G. Y., Bi, X. H., et al., 2005. Emission Factors for Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons from Residential Coal Combustion in China. Environmental Science & Technology, 39(6): 1861-1867.  https://doi.org/10.1021/es0493650 
						
					 | 
			
| 
					 Chen, Z. J., Tan, Y. Y., Xu, J., 2022. Economic and Environmental Impacts of the Coal-to-Gas Policy on Households: Evidence from China. Journal of Cleaner Production, 341: 130608.  https://doi.org/10.1016/j.jclepro.2022.130608 
						
					 | 
			
| 
					 Cheng, Y. Y., Lu, M. F., Lin, J. J. M., 2015. Emission Factors for Dioxin for Coal Burning, Secondary Smelting and Alloying of Aluminum, and Cement Kiln Processes. Advanced Materials Research, 1102: 27-32.  https://doi.org/10.4028/www.scientific.net/amr.1102.27 
						
					 | 
			
| 
					 Dindal, A., Thompson, E., Strozier, E., et al., 2011. Application of GC-HRMS and GC×GC-TOFMS to Aid in the Understanding of a Dioxin Assay's Performance for Soil and Sediment Samples. Environmental science & technology, 45(24): 10501-10508. 
						
					 | 
			
| 
					 Duan, F., Cong, S. Q., Shuang, W., et al., 2012. Co-combustion Characteristics of Municipal Sewage Sludge and Different Bituminous Coals. Chinese Journal of Environmental Engineering, 6(8): 2865-2869 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Energy Statistics Division of the National Bureau of Statistics, 2015. China Energy Statistical Yearbook. China Statistics Press, Beijing, 130-304 (in Chinese). 
						
					 | 
			
| 
					 Fu, J. Y., 2014. China Kilometer Grid Population Distribution Dataset.  
						
					 | 
			
| 
					 Fu, Z. Q., Lin, S. M., Tian, H. Z., et al., 2022. A Comprehensive Emission Inventory of Hazardous Air Pollutants from Municipal Solid Waste Incineration in China. Science of the Total Environment, 826: 154212.  https://doi.org/10.1016/j.scitotenv.2022.154212 
						
					 | 
			
| 
					 Gao, H. C., Ni, Y. W., Zhang, H. J., et al., 2009. Stack Gas Emissions of PCDD/Fs from Hospital Waste Incinerators in China. Chemosphere, 77(5): 634-639.  https://doi.org/10.1016/j.chemosphere.2009.08.017 
						
					 | 
			
| 
					 Grandesso, E., Gullett, B., Touati, A., et al., 2011. Effect of Moisture, Charge Size, and Chlorine Concentration on PCDD/F Emissions from Simulated Open Burning of Forest Biomass. Environmental Science & Technology, 45(9): 3887-3894.  https://doi.org/10.1021/es103686t 
						
					 | 
			
| 
					 Hites, R. A., 2011. Dioxins: An Overview and History. Environmental Science & Technology, 45(1): 16-20.  https://doi.org/10.1021/es1013664 
						
					 | 
			
| 
					 Hu, J. C., Wu, J., Xu, C. Y., et al., 2021. Characterization and Health Risks of PCDD/Fs, PCBS, and PCNS in the Soil around a Typical Secondary Copper Smelter. Environmental Science, 42(3): 1141-1151 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Hu, J. C., Zheng, M. H., Liu, W. B., et al., 2013. Occupational Exposure to Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans, Dioxin-Like Polychlorinated Biphenyls, and Polychlorinated Naphthalenes in Workplaces of Secondary Nonferrous Metallurgical Facilities in China. Environmental Science & Technology, 47(14): 7773-7779.  https://doi.org/10.1021/es4016475 
						
					 | 
			
| 
					 Kong, S. F., Bai, Z. P., Lu, B., 2014. Comparative Analysis on Emission Factors of Carbonaceous Components in PM2.5 and PM10 from Domestic Fuels Combustion. China Environmental Science, 34(11): 2749-2756 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Lammel, G., Heil, A., Stemmler, I., et al., 2013. On the Contribution of Biomass Burning to POPs (PAHs and PCDDS) in Air in Africa. Environmental Science & Technology, 47(20): 11616-11624.  https://doi.org/10.1021/es401499q 
						
					 | 
			
| 
					 Lavric, E. D., Konnov, A. A., De Ruyck, J., 2004. Dioxin Levels in Wood Combustion—A Review. Biomass and Bioenergy, 26(2): 115-145.  https://doi.org/10.1016/S0961-9534(03)00104-1 
						
					 | 
			
| 
					 Lei, M., Hai, J., Cheng, J., et al., 2017. Emission Characteristics of Toxic Pollutants from an Updraft Fixed Bed Gasifier for Disposing Rural Domestic Solid Waste. Environmental Science and Pollution Research International, 24(24): 19807-19815.  https://doi.org/10.1007/s11356-017-9615-z 
						
					 | 
			
| 
					 Lei, R. R., Xu, Z. C., Xing, Y., et al., 2021. Global Status of Dioxin Emission and China's Role in Reducing the Emission. Journal of Hazardous Materials, 418: 126265.  https://doi.org/10.1016/j.jhazmat.2021.126265 
						
					 | 
			
| 
					 Li, H., Li, Y., Jin, Y., 2015a. Gaseous Emissions from the Co-Combustion of Wet Sludge and Coal. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(19): 2064-2072.  https://doi.org/10.1080/15567036.2012.666622 
						
					 | 
			
| 
					 Li, M., Tang, B., Zheng, J., et al., 2020. PCDD/Fs in Paired Hair and Serum of Workers from a Municipal Solid Waste Incinerator Plant in South China: Concentrations, Correlations, and Source Identification. Environment International, 144: 106064.  https://doi.org/10.1016/j.envint.2020.106064 
						
					 | 
			
| 
					 Li, Y. Q., Chen, T., Zhang, J., et al., 2015b. Mass Balance of Dioxins over a Cement Kiln in China. Waste Management, 36: 130-135.  https://doi.org/10.1016/j.wasman.2014.11.027 
						
					 | 
			
| 
					 Lin, L. F., Lee, W. J., Li, H. W., et al., 2007. Characterization and Inventory of PCDD/F Emissions from Coal-Fired Power Plants and Other Sources in Taiwan. Chemosphere, 68(9): 1642-1649.  https://doi.org/10.1016/j.chemosphere.2007.04.002 
						
					 | 
			
| 
					 Liu, F. J., Tang, J. Y., Liu, F. S., et al., 2023. Analysis of Influencing Factors of Aerosol Optical Depth in Beijing. Earth Science, 48(10): 3812-3819 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Liu, H. B., Kong, S. F., Wang, W., et al., 2016. Emission Inventory of Heavy Metals in Fine Particles Emitted from Residential Coal Burning in China. Environmental Science, 37(8): 2823-2835 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Lohmann, R., Jones, K. C., 1998. Dioxins and Furans in Air and Deposition: A Review of Levels, Behaviour and Processes. Science of the Total Environment, 219(1): 53-81.  https://doi.org/10.1016/S0048-9697(98)00237-X 
						
					 | 
			
| 
					 Meng, W. J., Zhong, Q. R., Chen, Y. L., et al., 2019. Energy and Air Pollution Benefits of Household Fuel Policies in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 116(34): 16773-16780.  https://doi.org/10.1073/pnas.1904182116 
						
					 | 
			
| 
					 Ni, H. Y., Han, Y. M., Cao, J. J., et al., 2015. Emission Characteristics of Carbonaceous Particles and Trace Gases from Open Burning of Crop Residues in China. Atmospheric Environment, 123: 399-406.  https://doi.org/10.1016/j.atmosenv.2015.05.007 
						
					 | 
			
| 
					 Pan, S. Y., Liou, Y. T., Chang, M. B., et al., 2021. Characteristics of PCDD/Fs in PM2.5 from Emission Stacks and the nearby Ambient Air in Taiwan. Scientific Reports, 11(1): 8093.  https://doi.org/10.1038/s41598-021-87468-5 
						
					 | 
			
| 
					 Penner, J. E., Dickinson, R. E., 1992. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science, 256(5062): 1432-1434.  https://doi.org/10.1126/science.256.5062.1432 
						
					 | 
			
| 
					 Petit, P., Maître, A., Persoons, R., et al., 2019. Lung Cancer Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons in Various Industries. Environment International, 124: 109-120.  https://doi.org/10.1016/j.envint.2018.12.058 
						
					 | 
			
| 
					 Qin, X. J., Kong, S. F., Wu, J., et al., 2025. Number Concentration Size Distribution and Emission Factors of Submicron Particles from Residential Coal Combustion. China Environmental Science, 45(2): 593-605 (in Chinese with English abstract). 
						
					 | 
			
| 
					 Quaß, U., Fermann, M. W., Bröker, G., 2000. Steps towards a European Dioxin Emission Inventory. Chemosphere, 40(9-11): 1125-1129.  https://doi.org/10.1016/S0045-6535(99)00361-6 
						
					 | 
			
| 
					 Salian, K., Strezov, V., Evans, T. J., et al., 2019. Application of National Pollutant Inventories for Monitoring Trends on Dioxin Emissions from Stationary Industrial Sources in Australia, Canada and European Union. PLoS One, 14(10): e0224328.  https://doi.org/10.1371/journal.pone.0224328 
						
					 | 
			
| 
					 Shih, T. S., Lee, W. J., Shih, M., et al., 2008. Exposure and Health-Risk Assessment of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans (PCDD/Fs) for Sinter Plant Workers. Environment International, 34(1): 102-107.  https://doi.org/10.1016/j.envint.2007.07.010 
						
					 | 
			
| 
					 Song, S. J., Chen, K. J., Huang, T., et al., 2023. New Emission Inventory Reveals Termination of Global Dioxin Declining Trend. Journal of Hazardous Materials, 443: 130357.  https://doi.org/10.1016/j.jhazmat.2022.130357 
						
					 | 
			
| 
					 Ssebugere, P., Sillanpää, M., Matovu, H., et al., 2019. Human and Environmental Exposure to PCDD/Fs and Dioxin-like PCBS in Africa: A Review. Chemosphere, 223: 483-493.  https://doi.org/10.1016/j.chemosphere.2019.02.065 
						
					 | 
			
| 
					 United States Environmental Protection Agency (USEPA), 2025. PCDD/Fs Emission Factor Database.  
						
					 | 
			
| 
					 Wang, K., Tian, H. Z., Hua, S. B., et al., 2016. A Comprehensive Emission Inventory of Multiple Air Pollutants from Iron and Steel Industry in China: Temporal Trends and Spatial Variation Characteristics. Science of the Total Environment, 559: 7-14.  https://doi.org/10.1016/j.scitotenv.2016.03.125 
						
					 | 
			
| 
					 Ward, D. E., Hardy, C. C., 1991. Smoke Emissions from Wildland Fires. Environment International, 17(2-3): 117-134.  https://doi.org/10.1016/0160-4120(91)90095-8 
						
					 | 
			
| 
					 Wei, J. X., Li, H., Liu, J. G., et al., 2022. National and Provincial Dioxin Emissions from Municipal Solid Waste Incineration in China. Science of the Total Environment, 851: 158128.  https://doi.org/10.1016/j.scitotenv.2022.158128 
						
					 | 
			
| 
					 Wikström, E., Ryan, S., Touati, A., et al., 2003. Importance of Chlorine Speciation on de Novo Formation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans. Environmental Science & Technology, 37(6): 1108-1113.  https://doi.org/10.1021/es026262d 
						
					 | 
			
| 
					 Wu, D., Qi, J., Li, Q., et al., 2021a. Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. Environmental Science & Technology, 55(11): 7299-7306.  https://doi.org/10.1021/acs.est.1c00469 
						
					 | 
			
| 
					 Wu, J., Kong, S. F., Wu, F. Q., et al., 2018. Estimating the Open Biomass Burning Emissions in Central and Eastern China from 2003 to 2015 Based on Satellite Observation. Atmospheric Chemistry & Physics, 18(16): 11623-11646.  https://doi.org/10.5194/acp-18-11623-2018 
						
					 | 
			
| 
					 Wu, J., Kong, S. F., Yan, Y. Y., et al., 2022. The Toxicity Emissions and Spatialized Health Risks of Heavy Metals in PM2.5 from Biomass Fuels Burning. Atmospheric Environment, 284: 119178.  https://doi.org/10.1016/j.atmosenv.2022.119178 
						
					 | 
			
| 
					 Wu, J., Kong, S. F., Zeng, X., et al., 2021b. First High-Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non-Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507.  https://doi.org/10.1021/acs.est.0c06675 
						
					 | 
			
| 
					 Yang, L. L., Zheng, M. H., Zhao, Y. Y., et al., 2019. Unintentional Persistent Organic Pollutants in Cement Kilns Co-Processing Solid Wastes. Ecotoxicology and Environmental Safety, 182: 109373.  https://doi.org/10.1016/j.ecoenv.2019.109373 
						
					 | 
			
| 
					 Zhang, C. L., Bai, L., Yao, Q., et al., 2022. Emission Characteristics of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans from Industrial Combustion of Biomass Fuels. Environmental Pollution, 292: 118265.  https://doi.org/10.1016/j.envpol.2021.118265 
						
					 | 
			
| 
					 Zhang, G., Huang, X. X., Liao, W. B., et al., 2019. Measurement of Dioxin Emissions from a Small-Scale Waste Incinerator in the Absence of Air Pollution Controls. International Journal of Environmental Research and Public Health, 16(7): 1267.  https://doi.org/10.3390/ijerph16071267 
						
					 | 
			
| 
					 Zhang, M. M., Buekens, A., Li, X. D., 2017. Dioxins from Biomass Combustion: An Overview. Waste and Biomass Valorization, 8(1): 1-20.  https://doi.org/10.1007/s12649-016-9744-5 
						
					 | 
			
| 
					 Zhang, Y. X., Schauer, J. J., Zhang, Y. H., et al., 2008. Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environmental Science & Technology, 42(14): 5068-5073.  https://doi.org/10.1021/es7022576 
						
					 | 
			
| 
					 Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom-Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry & Physics, 11(5): 2295-2308.  https://doi.org/10.5194/acp-11-2295-201110.5194/acpd-10-29075-2010 
						
					 | 
			
| 
					 Zhou, Q., Yang, J. X., Liu, M. M., et al., 2018. Toxicological Risk by Inhalation Exposure of Air Pollution Emitted from China's Municipal Solid Waste Incineration. Environmental Science & Technology, 52(20): 11490-11499.  https://doi.org/10.1021/acs.est.8b03352 
						
					 | 
			
| 
					 Zou, C., Han, J. L., Fu, H. Q., 2012. Emissions of PCDD/Fs from Steel and Secondary Nonferrous Productions. Procedia Environmental Sciences, 16: 279-288.  https://doi.org/10.1016/j.proenv.2012.10.039 
						
					 | 
			
| 
					 陈德翼, 彭平安, 胡建芳, 等, 2011. 生物质燃烧的二噁英排放特性. 环境化学, 30(7): 1271-1279. 
					
					 | 
			
| 
					 陈露露, 黄韬, 陈凯杰, 等, 2020. 我国PCDD/Fs网格化大气排放清单. 环境科学, 41(2): 510-519. 
					
					 | 
			
| 
					 段锋, 从胜全, 双伟, 等, 2012. 市政污泥与不同烟煤混合燃烧特性. 环境工程学报, 6(8): 2865-2869. 
					
					 | 
			
| 
					 国家统计局能源统计司, 2015. 中国能源统计年鉴. 北京: 中国统计出版社, 130-304. 
					
					 | 
			
| 
					 付晶莹, 2014. 中国公里网格人口分布数据集.  
					
					 | 
			
| 
					 胡吉成, 邬静, 许晨阳, 等, 2021. 典型再生铜冶炼厂周边土壤中PCDD/Fs、PCBs和PCNs的污染特征及健康风险评估. 环境科学, 42(3): 1141-1151. 
					
					 | 
			
| 
					 孔少飞, 白志鹏, 陆炳, 2014. 民用燃料燃烧排放PM2.5和PM10中碳组分排放因子对比. 中国环境科学, 34(11): 2749-2756. 
					
					 | 
			
| 
					 刘福江, 唐家玉, 刘福寿, 等, 2023. 北京市气溶胶光学厚度影响因子分析. 地球科学, 48(10): 3812-3819. doi:  10.3799/dqkx.2021.223 
					
					 | 
			
| 
					 刘海彪, 孔少飞, 王伟, 等, 2016. 中国民用煤燃烧排放细颗粒物中重金属的清单. 环境科学, 37(8): 2823-2835. 
					
					 | 
			
| 
					 覃旭菁, 孔少飞, 吴剑, 等, 2025. 民用煤燃烧排放亚微米颗粒物数浓度粒径分布和排放因子. 中国环境科学, 45(2): 593-605. 
					
					 |